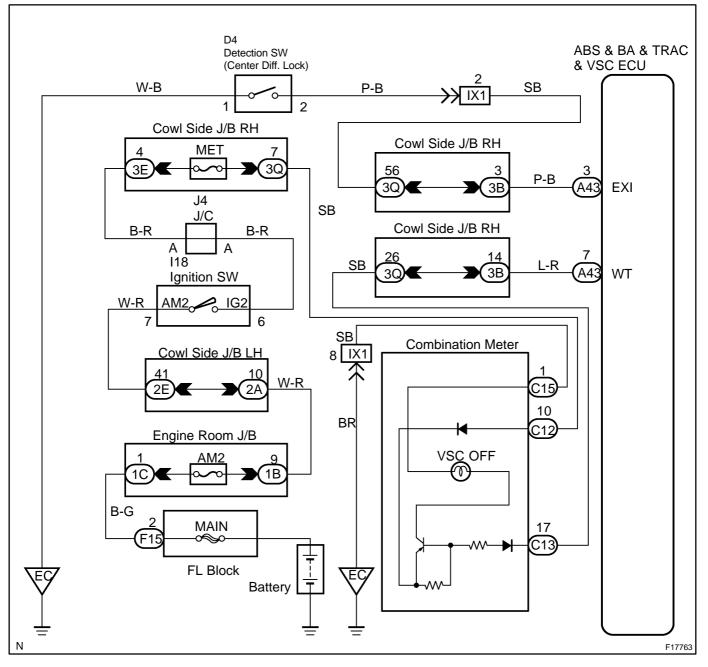
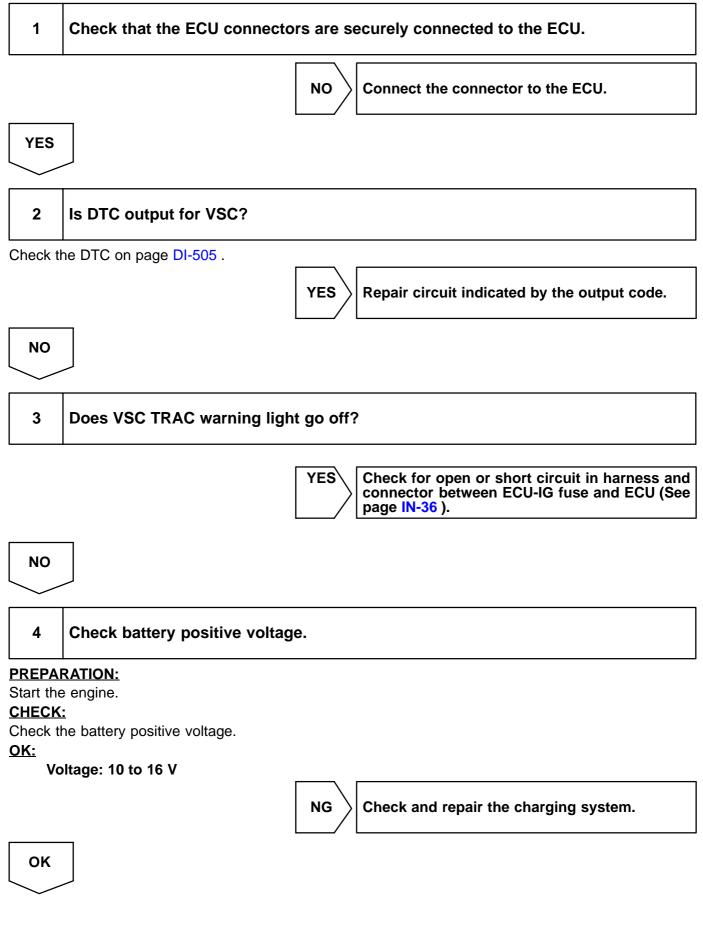
DICA4-01


DTC Always ON Malfunction in ECU VSC TRAC Warning Light Circuit

CIRCUIT DESCRIPTION


		★Power source circuit
Always ON	There is a malfunction in the ECU internal circuit.	★Skid control ECU
		★VSC TRAC warning light circuit

HINT:

If the fail safe function is activated in the VSC system, "VSC OFF" indicator light lights up.

INSPECTION PROCEDURE

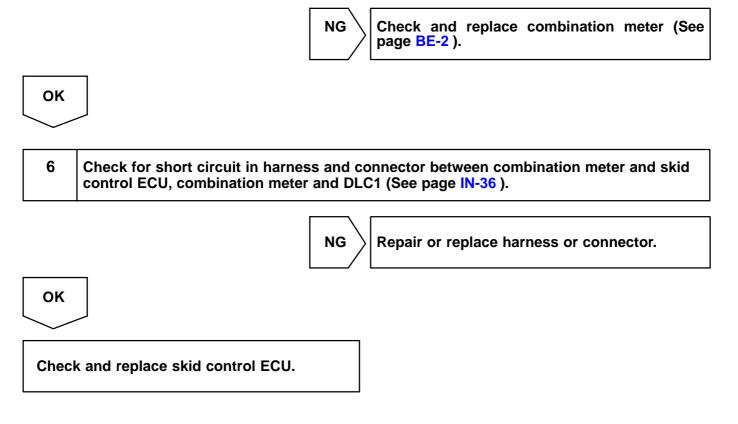
5 Check operation of the VSC TRAC warning light.

In case of using the hand-held tester:

PREPARATION:

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester main switch ON.
- (c) Select the ACTIVE TEST mode on the hand-held tester.

CHECK:


Check that "ON" and "OFF" of the VSC TRAC warning light can be shown on the combination meter on the hand-held tester.

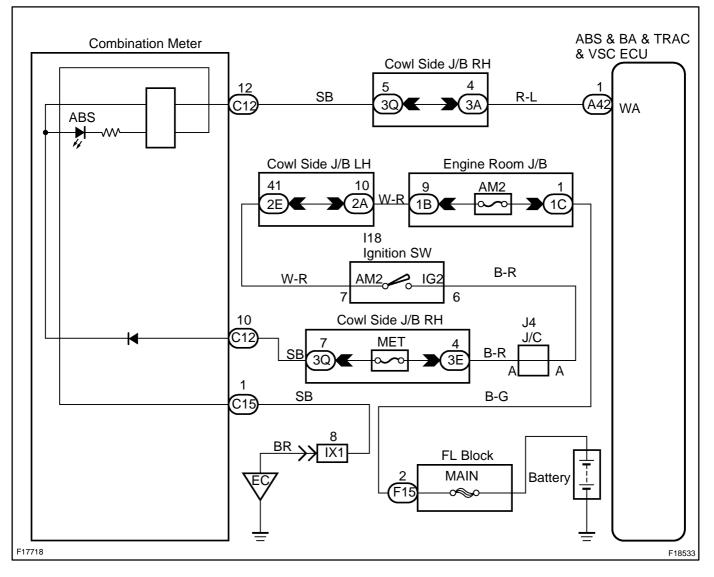
In case of not using the hand-held tester: <u>PREPARATION:</u>

- (a) Turn the ignition switch OFF.
- (b) Disconnect the connector from the skid control ECU.
- (c) Turn the ignition switch ON.

CHECK:

Check that the VSC TRAC warning light goes off.

DI-627


DICA5-02

ABS Warning Light Circuit

CIRCUIT DESCRIPTION

If the ECU detects trouble, it lights the ABS warning light while at the same time prohibiting ABS control. At this time, the ECU records a DTC in memory.

Connect terminals Tc and E_1 of the DLC1 or Tc and CG of DLC3 to make the ABS warning light blink and output the DTC.

INSPECTION PROCEDURE

HINT:

Troubleshoot in accordance with the table below for each trouble symptom.

ABS warning light does not light up	*1
ABS warning light remains on	*2

*¹: Start the inspection from step 1 in case of using the hand-held tester and start from step 2 in case of not using the hand-held tester.

*²: After inspection with step 4, start the inspection from step 5 in case of using the hand-held tester and start from step 6 in case of not using hand-held tester.

1	Check operation of the ABS warning light.
---	---

PREPARATION:

(a) Connect the hand-held tester to the DLC3.

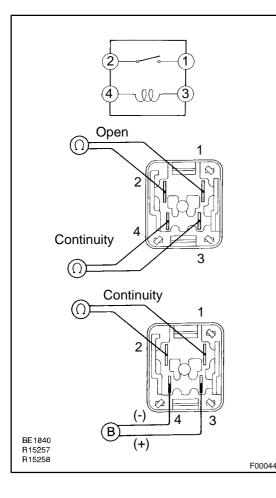
- (b) Turn the ignition switch ON and push the hand-held tester main switch ON.
- (c) Select the ACTIVE TEST mode on the hand-held tester.

CHECK:

Check that "ON" and "OFF" of the ABS warning light can be shown on the combination meter on the handheld tester.

NG

2	Does the warning lights other than ABS warning light come on?



Repair ABS warning light bulb or combination meter assembly.

NO

Check IG1 No. 1 relay.

3

PREPARATION:

Remove the IG1 No. 1 relay from the engine room J/B. CHECK:

Check continuity between the IG1 No. 1 relay terminals listed in the table below.

<u>OK:</u>

Terminals 3 and 4	Continuity
Terminals 1 and 2	Open

CHECK:

- (a) Apply battery positive voltage between terminals 3 and 4.
- (b) Check continuity between terminals.

<u>OK:</u>

Terminals 1 and 2

NG Replace IG1 No. 1 relay.

OK

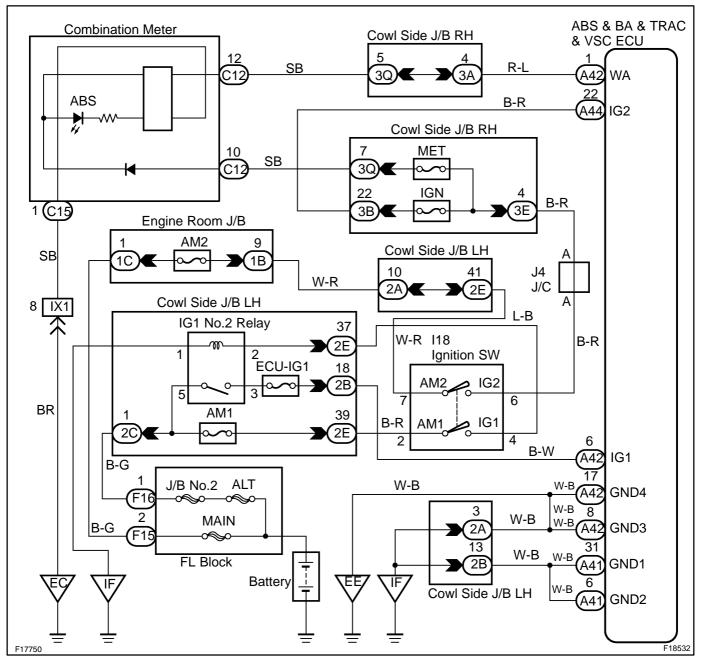
Check for open circuit in harness and connector between IG1 No. 1 relay and combination meter (See page IN-36).

4	Check that the ECU connectors are securely connected to the ECU.
	NO Connect the connector to the ECU.
YES	
\sim	
5	Check operation of the ABS warning light (See step 1).
	OK Check and replace skid control ECU.
NG	
\searrow	
6	Is DTC output?
Check t	he DTC on page DI-505 .
	YES Repair circuit indicated by the output code.
NO	
\sim	
7	Check for short circuit in harness and connector between ABS warning light and skid control ECU (See page IN-36).
	NG Repair or replace harness or connector.
ОК	
-	

DICA3-01

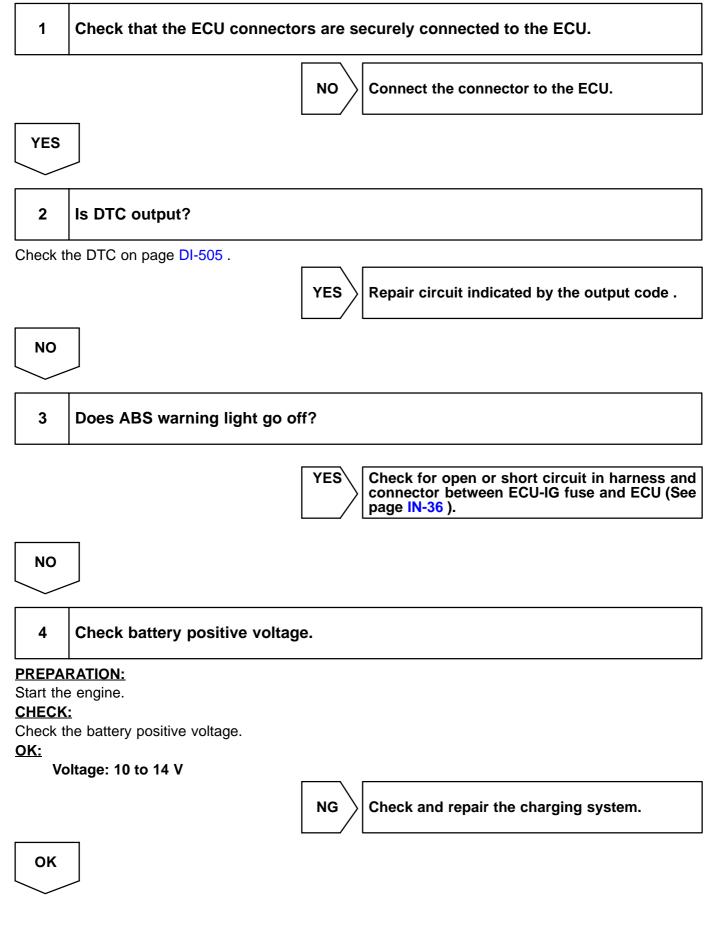
DTC

Always ON


Malfunction in ECU

CIRCUIT DESCRIPTION

DTC No.	DTC Detecting Condition	Trouble Area
Always ON	Either of the following 1. or 2. is detected:1. The ECU connectors are disconnected from the ECU.2. There is a malfunction in the ECU internal circuit.	Hattery HC regulator HPower source circuit HSkid control ECU


HINT:

The hand-held tester may not be used when the ECU is abnormal.

-

INSPECTION PROCEDURE

5 Check operation of the ABS warning light.

In case of using the hand-held tester:

PREPARATION:

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester main switch ON.
- (c) Select the ACTIVE TEST mode on the hand-held tester.

CHECK:

Check that "ON" and "OFF" of the ABS warning light can be shown on the combination meter by the handheld tester.

In case of not using the hand-held tester:

PREPARATION:

- (a) Turn the ignition switch OFF.
- (b) Disconnect the connector from the skid control ECU.
- (c) Using a service wire, connect terminal WA of the skid control ECU harness side connector and body ground.
- (d) Turn the ignition switch ON.

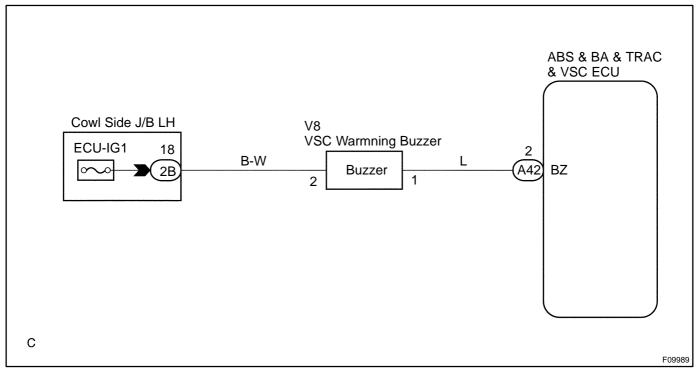
CHECK:

Check that the ABS warning goes off.

NG

6 Check for short circuit in harness and connector between combination meter and skid control ECU, combination meter and DLC1 (See page IN-36).

	NG	Repair or replace harness or connector.
ОК		
Check and replace skid control ECU.		


DICAB-01

Brake Warning and VSC Buzzer Circuit

CIRCUIT DESCRIPTION

The brake warning and VSC buzzer sounds while the accumulator pressure is abnormally low or an abnormality casing low fluid pressure occurs VSC is activated.

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

Start the inspection from step 1 in case of using the hand-held tester and start from step 2 in case of not using the hand-held tester.

1

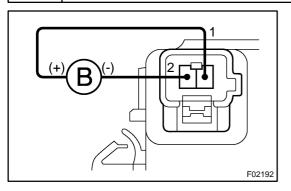
Check operation of the brake warning and VSC buzzer.

PREPARATION:

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester main switch ON.
- (c) Select the ACTIVE TEST mode on the hand-held tester.

CHECK:

Check that brake warning and VSC buzzer sounds "ON" and "OFF" with the hand-held tester.


 OK Check and replace skid control ECU.

NG

2004 LAND CRUISER (RM1071U)

2

Check brake warning and VSC buzzer.

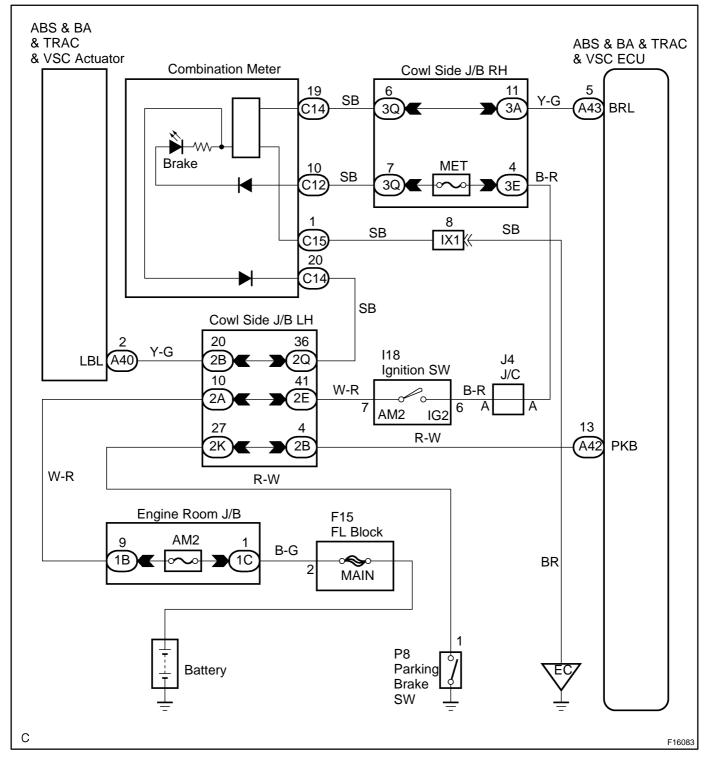
PREPARATION:

Disconnect the brake warning and VSC buzzer connector. **CHECK:**

Apply battery positive voltage to terminals 1 and 2 of the brake warning and VSC buzzer connector. Check that the brake warning light comes on and the VSC buzzer sounds.

Replace brake warning and VSC buzzer.

ОК	
3	Check for open and short circuit in harness and connector between skid control ECU and brake warning and VSC buzzer (See page IN-36).
	NG Repair or replace harness or connector.
ОК	
\searrow	
Checl	and replace skid control ECU.

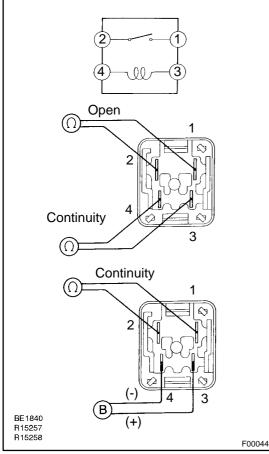

DI-635

DICA7-02

BRAKE Warning Light Circuit

CIRCUIT DESCRIPTION

The BRAKE warning light lights up while the brake fluid is insufficient and EBD is abnormal.



DIAGNOSTICS -

INSPECTION PROCEDURE 1 Check parking brake switch circuit (See page BE-63). NG Repair or replace parking brake switch circuit. OK 2 Check brake fluid level warning switch circuit (See page BE-63). NG Repair or replace brake fluid level warning switch circuit. OK 3 Is DTC output for ABS? YES Repair circuit indicated by the output code. NO 4 Do the warning lights other than BRAKE warning light come on? Go to step 6. YES NO

Check IG1 No. 1 relay.

5

PREPARATION:

Remove the IG1 No. 1 relay from the engine room J/B. CHECK:

Check continuity between the IG1 No. 1 relay terminals listed in the table below.

OK:

Terminals 3 and 4	Continuity
Terminals 1 and 2	Open

CHECK:

- Apply battery positive voltage between terminals 3 and 4. (a)
- (b) Check continuity between terminals.

<u>OK:</u>

NG

Terminals 1 and 2	Continuity
-------------------	------------

Replace IG1 No. 1 relay.

OK

Check for open circuit in harness and connector between IG1 No. 1 relay and combination meter (See page IN-36).

6	Check that the ECU connectors are securely connected to the ECU.	
	NO Connect the connector to the ECU.	
YES		

DIAGNOSTICS -

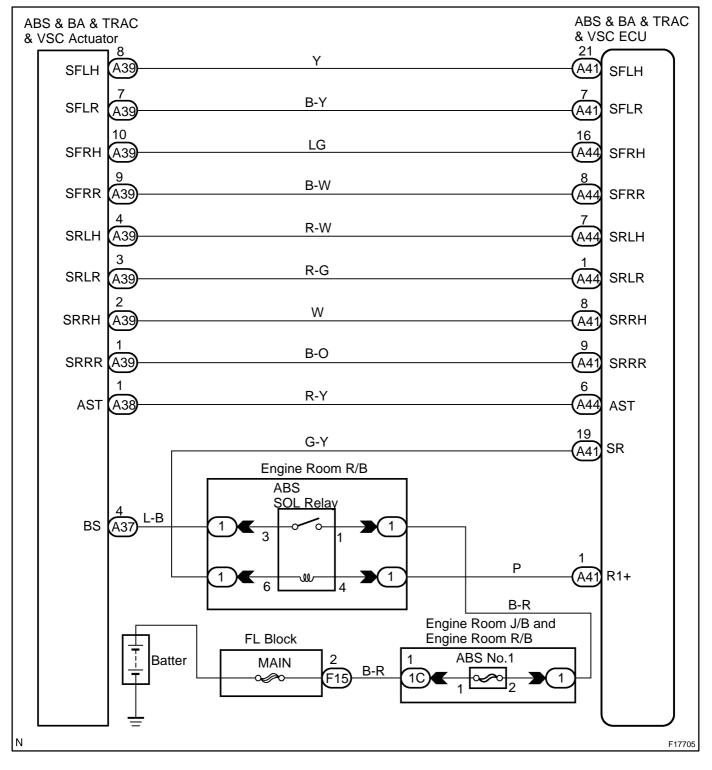
ABS & VEHICLE STABILITY CONTROL (VSC) & BRAKE ASSIST (BA) SYSTEM

7 Check BRAKE warning light. Check if that the open circuit in the combination meter circuit (See page BE-58). NG Repair brake warning light bulb or combination meter assembly. OK OK 8 Check for short circuit in harness and connector between brake warning light and skid control ECU (See page IN-36). NG Repair or replace harness or connector.

Check and repair skid control ECU.

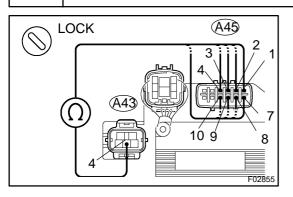
DTC

C0226 / 21 - C0256 / 24


ABS Solenoid Circuit

CIRCUIT DESCRIPTION

This solenoid goes on when signals are received from the ECU and controls the pressure acting on the wheel cylinders thus controlling the braking force.


DTC No.	DTC Detecting Condition	Trouble Area
C0226 / 21	Open or short in SFRH or SFRR circuit continues for 0.015 sec. or more.	₩ydraulic brake booster ★SFRH or SFRR circuit
C0236 / 22	Open or short in SFLH or SFLR circuit continues for 0.015 sec. or more.	₩ydraulic brake booster ★SFLH or SFLR circuit
C0246 / 23	Open or short in SRRH or SRRR circuit continues for 0.015 sec. or more.	₩ydraulic brake booster ★SRRH or SRRR circuit
C0256 / 24	Open or short in SRLH or SRLR circuit continues for 0.015 sec. or more.	₩ydraulic brake booster ★SRLH or SRLR circuit

ABS & VEHICLE STABILITY CONTROL (VSC) & BRAKE ASSIST (BA) SYSTEM

INSPECTION PROCEDURE

1 Check hydraulic brake booster solenoid.

٦

PREPARATION:

Disconnect the 2 connectors from the hydraulic brake booster. **CHECK:**

Check continuity between terminals A43 - 4 and A45 - 1, 2, 3, 4, 7, 8, 9 and 10 of the hydraulic brake booster connector. **OK:**

Continuity

HINT: Resistance of each solenoid at 20 °C (68 °F): SFRH, SFLH, SRRH, SRLH: 6.95 to 7.45 Ω SFRR, SFLR, SRRR, SRLR: 2.00 to 2.40 Ω

Replace hydraulic brake booster.

2	Check for open and short circuit in harness and connector between skid control ECU and actuator (See page IN-36).
	NG Repair or replace harness or connector.
ОК	

nection. If the connections are normal, the ECU may be defective.

DIC98-02

DTC

C0278 / 11, C0279 / 12

ABS Solenoid Relay Circuit

CIRCUIT DESCRIPTION

This relay supplies power to each ABS solenoid. After the ignition switch is turned ON, if the initial check is OK, the relay goes on.

DTC No.	DTC Detecting Condition	Trouble Area
C0278 / 11	 Conditions 1. and 2. continue for 0.2 sec. or more: ECU terminal IG1 voltage is 9.5 V to 17.0 V and the solenoid relay is ON, however, the contact point of the solenoid relay is OFF. With solenoid relay ON, ECU terminal IG1 voltage becomes 9.5 V or less and the contact point of the solenoid relay does not become ON. 	★ABS solenoid relay ★ABS solenoid relay circuit
C0279 / 12	Immediately after ECU terminal IG1 becomes ON, and solenoid relay is OFF, however, when the condition that the solenoid relay due to the contact point is ON continues for 0.2 sec. or more.	

WIRING DIAGRAM

Refer to DTC C0226/21 on page DI-528.

INSPECTION PROCEDURE

HINT:

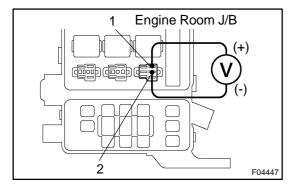
Start the inspection from step 1 in case of using the hand-held tester and start from step 2 in case of not using the hand-held tester.

1 Check ABS solenoid relay operation.

PREPARATION:

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester main switch ON.
- (c) Select the ACTIVE TEST mode on the hand-held tester.

CHECK:


Check the operation sound of the ABS solenoid relay when operating it with the hand-held tester. **OK:**

The operation sound of the ABS solenoid relay should be heard.

NG

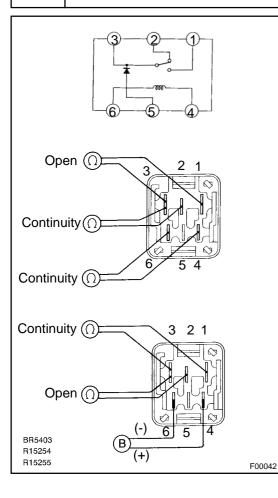
2 Check voltage between terminals 1 and 2 of engine room J/B (for ABS solenoid relay).

PREPARATION:

Remove the ABS solenoid relay from the engine room J/B. CHECK:

Measure the voltage between terminals 1 and 2 of the engine room J/B (for ABS solenoid relay).

<u>OK:</u>


Voltage: 10 to 14 V

Check and repair harness or connector.

OK

3

Check ABS solenoid relay.

CHECK:

Check continuity between each terminal of the ABS solenoid relay.

<u> 0K:</u>

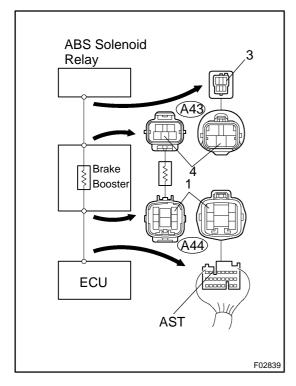
Terminals 4 and 6	Continuity (Reference value 80 Ω)
Terminals 2 and 3	Continuity
Terminals 1 and 3	Open

CHECK:

- (a) Apply battery positive voltage between terminals 4 and 6.
- (b) Check continuity between each terminal of the ABS solenoid relay.

<u>OK:</u>

NG


Terminals 2 and 3	Open
Terminals 1 and 3	Continuity
\sim	

 \rangle Replace ABS solenoid relay.

2004 LAND CRUISER (RM1071U)

OK

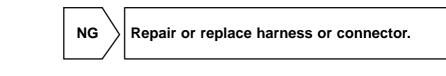
4 Check continuity between terminals 3 of ABS solenoid relay and terminal AST of skid control ECU.

CHECK:

Check continuity between terminal 3 of the ABS solenoid relay and terminal AST of the skid control ECU.

<u>OK:</u>

Continuity


There is resistance of $33 \pm 3 \Omega$ between terminals 4 of connector A43 and terminal 1 of connector A44.

NG \

Repair or replace harness, connector or hydraulic brake booster.

OK

5 Check for open and short circuit in harness and connector between ABS solenoid relay and skid control ECU (See page IN-36).

οκ

If the same code is still output after the DTC is deleted, check the contact condition of each connection. If the connections are normal, the ECU may be defective.

6	Check for open circuit in harness and connector between AST of hydraulic brake booster and AST of skid control ECU (See page IN-36).
	NG Repair or replace harness or connector.
ОК	
Repla trol E	ce hydraulic brake booster or skid con- CU.

ABS & VEHICLE STABILITY CONTROL (VSC) & BRAKE ASSIST (BA) SYSTEM

DIC99-01

DTC

C1201 / 51

Engine Control System Malfunction

CIRCUIT DESCRIPTION

If trouble occurs in the engine control system, the ECU prohibits TRAC and VSC control.

DTC No.	DTC Detecting Condition	Trouble Area
C1201 / 51	Conditions 1. and 2. continue for 5 sec.:1. Engine speed: 500 rpm or more.2. A trouble signal in the engine control system is input.	Engine control system

INSPECTION PROCEDURE

Check the DTC for the engine (See page DI-3).

*1 \

Repair engine control system according to the output code.

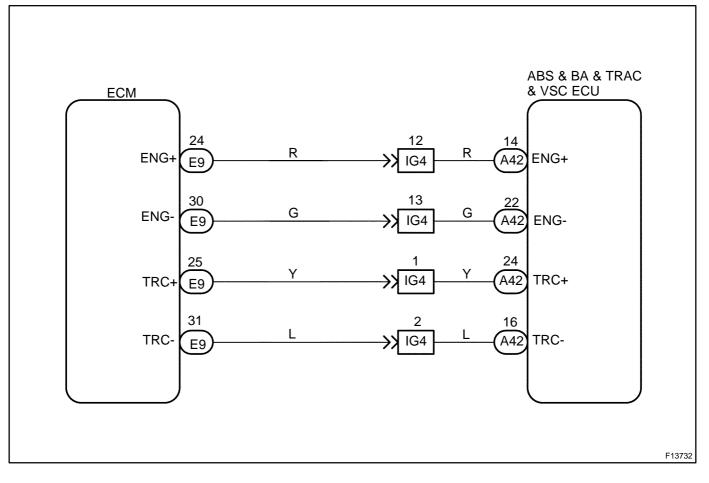
*2

Check for ECM connected to malfunction indicator light.

*1: Output NG code

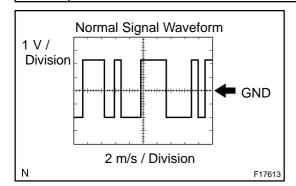
*²: Malfunction indicator light remains ON

DIC9A-01


DTC	C1203 / 53

ECM Communication Circuit Malfunction

CIRCUIT DESCRIPTION


The circuit is used to send TRAC & VSC control information from the skid control ECU to the ECM (TRC+, TRC-), and engine control information from the ECM to the skid control ECU (ENG+, ENG-).

DTC No.	DTC Detecting Condition	Trouble Area
C1203 / 53	 Either of the following 1. or 2. continues for 5 sec.: 1. ECU IG1 terminal voltage is 9.5 V to 17.0 V and data transmission to the ECM is impossible. 2. ECU IG1 terminal voltage is 9.5 V to 17.0 V, engine speed is 500 rpm or more or vehicle speed is 60 km/h (36 mph) or more and data receiving from the ECM is impossible. 	★TRC+ or TRC- circuit ★ENG+ or ENG- circuit ★ECM

INSPECTION PROCEDURE

1 Check skid control ECU communication.

(REFERENCE) INSPECTION USING OSCILLOSCOPE <u>PREPARATION:</u>

- (a) Remove the skid control ECU.
- (b) Connect the oscilloscope to each of terminal ENG+ or TRC+ and GND of the skid control ECU.

CHECK:

Start the engine, and check the signal waveform.

NG \rangle

Check and replace skid control ECU.

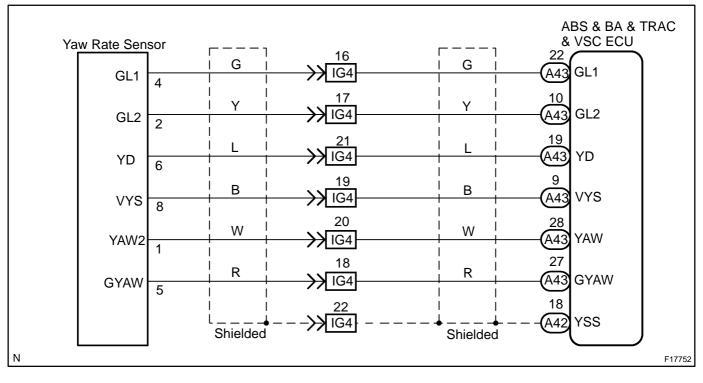
 2
 Check for open and short circuit in harness and connector between each of terminals ENG+, ENG-, TRC+, TRC- of skid control ECU and ECM (See page IN-36).

 NG
 Repair or replace harness or connector.

 OK

Check and replace ECM.

OK


DI-537

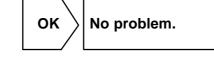
DIC9C-01

DTC	C1210 / 36	Zero Point Calibration of Yaw Rate Sensor Undone

CIRCUIT DESCRIPTION

DTC No.	DTC Detecting Condition	Trouble Area
C1210 / 36	 When either of the following 1. or 2. is detected: 1. After battery terminal was connected, when the shift lever was moved to other than P position within 15 sec. soon after ECU terminal IG1 becomes ON for the first time. 2. When the yaw rate sensor zero point recorded in ECU is deleted. 	★Yaw rate sensor ★Yaw rate sensor circuit ★PNP switch circuit (P position)

INSPECTION PROCEDURE


1

Check whether zero point calibration of yaw rate sensor has been done or not.

PREPARATION:

Shift the shift lever in the P position and turn the ignition switch ON. Repeat connecting and releasing Ts and E_1 terminals of the DLC1 4 times or more for 8 sec. After that do not move the vehicle for 15 sec. or more. **CHECK:**

Check that the"VSC TRAC" warning light and "VSC OFF" indicator light light up for 15 sec.

2	Check for open and short circuit in harness and connector between PNP switch (P position) and skid control ECU and ECM (See page IN-36).		
	NG Repair or replace harness or connector.		
ОК			
\checkmark			
3	Check for open and short circuit in harness and connector between yaw rate sensor and skid control ECU (See page IN-36).		
	NG Repair or replace harness or connector.		
OK			
\searrow			
4	Check yaw rate sensor (See page DI-553).		
	NG Replace yaw rate sensor.		
ОК			
\searrow			
Checl	and replace skid control ECU.		
2004 LAN	D CRUISER (RM1071U)		
	Author: Date: 732		

			DIC9E-01
DTC	C1223 / 43	ABS Control System Malfunction	

CIRCUIT DESCRIPTION

DTC No.	DTC Detecting Condition	Trouble Area
C1223 / 43	ABS control system is abnormal.	ABS control system

INSPECTION PROCEDURE

1 Check the DTC for the ABS (See page DI-505).

Repair ABS control system according to the code output.

*2

Check for ECU connected to malfunction indicator light.

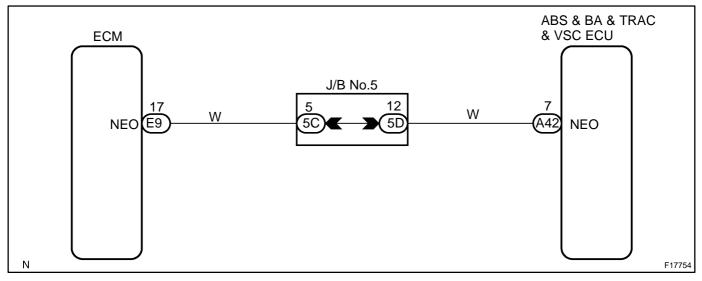
*1: Output NG code

*2: Malfunction indicator light remains ON

DIC9G-01

DTC

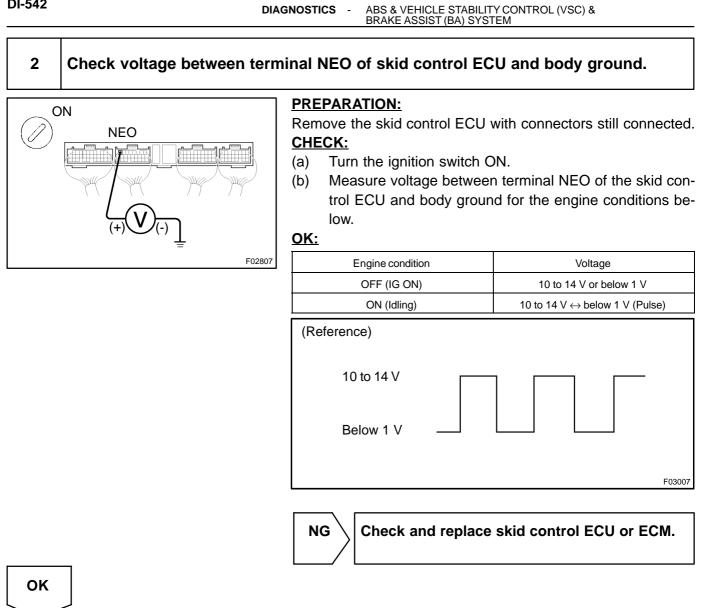
C1224 / 44


NE Signal Circuit

CIRCUIT DESCRIPTION

The skid control ECU receives engine revolution speed signals (NE signals) from the ECM.

DTC No.	DTC Detecting Condition	Trouble Area
C1224 / 44	 When either of the following 1. or 2. is detected: 1. At vehicle speed of 19 mph (30 km/h) or more, and when data received from the ECM is in normal condition, and open or short circuit for engine revolution signal circuit continues for 10 sec. or more. 2. While TRAC is operating, the conditions that open or short circuit in engine revolution signal circuit is detected, main throttle opening degree is 0 and IDL switch is OFF continue for 0.24 sec. or more. 	★NEO circuit ★ECM ★Skid control ECU


WIRING DIAGRAM

INSPECTION PROCEDURE

1	Check for open and short circuit in harness and connector between terminal NEO of skid control ECU and terminal NEO of ECM (See page IN-36).	
	NG Repair or replace harness and connector.	

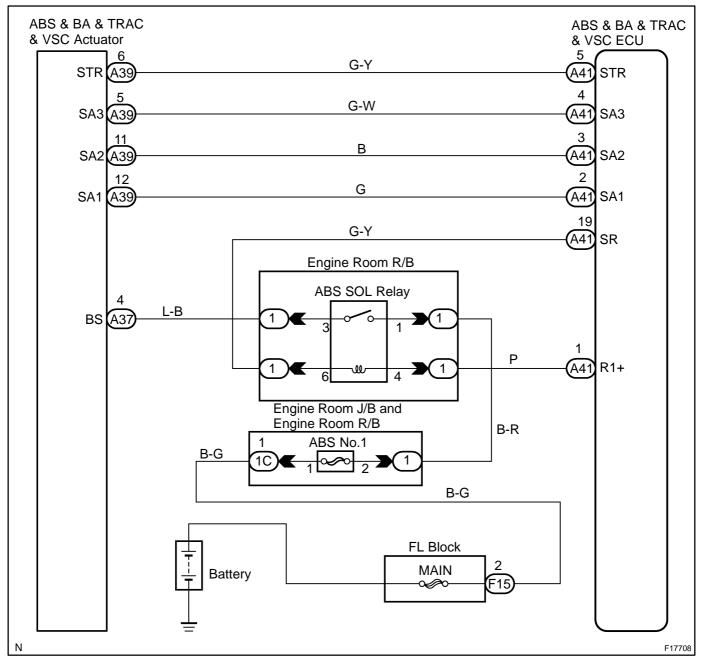
OK

If the same codes are still output after the DTC is deleted, check the contact condition of each connection.

DIC9H-02

DTC

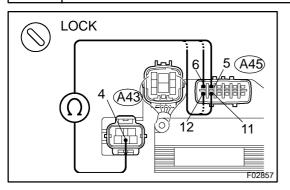
C1225 / 25 to C1228 / 28


TRAC & VSC Solenoid Circuit

CIRCUIT DESCRIPTION

The TRAC & VSC solenoid operates in accordance with signals from the ECU and raises the fluid pressure in and releases it from the brake cylinders.

DTC No.	DTC Detecting Condition	Trouble Area
C1225 / 25	Open or short in SA1 circuit continues for 0.015 sec. or more.	₩ydraulic brake booster ★SA1 circuit
C1226 / 26	Open or short in SA2 circuit continues for 0.015 sec. or more.	₩ydraulic brake booster ★SA2 circuit
C1227 / 27	Open or short in SA3 circuit continues for 0.015 sec. or more.	Hydraulic brake booster ★SA3 circuit
C1228 / 28	Open or short in STR circuit continues for 0.015 sec. or more.	₩ydraulic brake booster ★STR circuit


ABS & VEHICLE STABILITY CONTROL (VSC) & BRAKE ASSIST (BA) SYSTEM

INSPECTION PROCEDURE

Check TRAC & VSC solenoid.

PREPARATION:

Disconnect the 2 connectors from the hydraulic brake booster. **CHECK:**

Check continuity between terminals A43 - 4 and A45 - 5, 6, 11 and 12 of the hydraulic brake booster.

<u>OK:</u>

Continuity

HINT:

Resistance of each solenoid at 20 $^\circ\text{C}$ (68 $^\circ\text{F}):$ SA1, SA2, STR: 4.05 to 4.55 Ω

SA3: 6.95 to 7.45 Ω

Replace hydraulic brake booster.

 OK

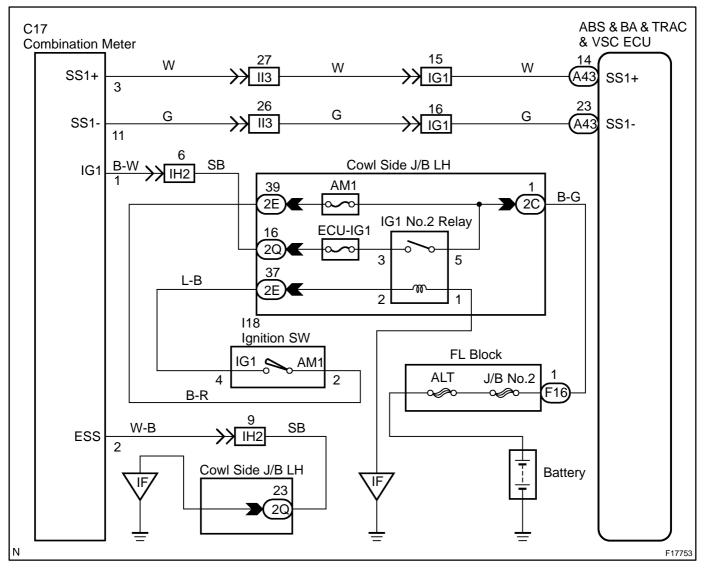
 2
 Check for open and short circuit in harness and connector between skid control ECU and hydraulic brake booster (See page IN-36).

 NG
 Repair or replace harness or connector.

 OK
 If the same code is still output after the DTC is deleted, check the contact condition of each con

If the same code is still output after the DTC is deleted, check the contact condition of each connection. If the connections are normal, the ECU may be defective.

DIC9J-02


DTC

C1231 / 31, C1335 / 35

Steering Angle Sensor Circuit

CIRCUIT DESCRIPTION

DTC No.	DTC Detecting Condition	Trouble Area
C1231 / 31	 Detection of any of the conditions 1. through 3.: When the condition that ECU terminal IG1 voltage is 9.5 V or more, and does not receive data from steering angle sensor continues for 1 sec. or more. When the steering angle sensor value changes by 360° or more with SSC signal from steering angle sensor remaining ON or OFF. When the condition that difference between the steering angle value at edge occurring in SSC signal and the value at edge occurring in SSC signal after turning the steering wheel one-turn is out of the range from 355.5° - 364.5° occurs 10 times or more. 	★Steering angle sensor ★Steering angle sensor circuit
C1335 / 35	When the ECU IG1 terminal voltage is 9.5 V or more, data transmission from the steering angle sensor is impossible for 1 sec. or more.	₭Steering angle sensor ₭Steering angle sensor circuit

HINT:

Start the inspection from step 1 in case of using the hand-held tester and start from step 2 in case of not using the hand-held tester.

Check output value of the steering angle sensor.

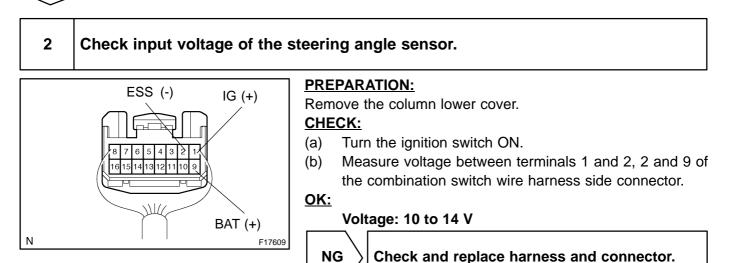
PREPARATION:

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester main switch ON.
- (c) Select the DATALIST mode on the hand-held tester.

CHECK:

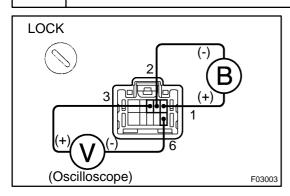
Check that the steering wheel turning angle value of the steering angle position sensor displayed on the hand-held tester is changing when turning the steering wheel.

HINT:


After certifying "Zero" point calibration of the steering angle sensor (Speed: 21 mph (35 km/h), driving straight ahead for 10 sec. or more), the value will change.

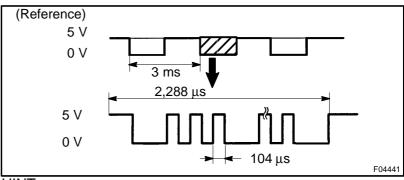
<u> 0K:</u>

Steering wheel turning angle value must be changing.


NG

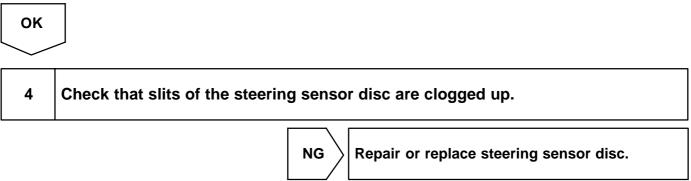
OK

3


Check steering angle sensor.

PREPARATION:

- Remove the steering wheel lower No. 2 and No. 3 covers, steering wheel pad, steering wheel column upper and lower covers (See page SR-29).
- (b) Disconnect the combination switch connector (for steering angle sensor).
- (c) Connect the oscilloscope to terminals 3 and 6 of the combination switch connector (for steering angle sensor).
- (d) Apply battery positive voltage between terminals 1 and 2. **CHECK:**


Turn the steering wheel slowly and check the signal waveform. **OK:**

HINT:

The above signal waveform does not repeat ON and OFF regularly and this combination changes case by case according to the data.

ОК

5	Check for open and short circuit in harness and connector between steering position sensor and ABS & BA & TRAC & VSC ECU (See page IN-36).	
	NG Repair or replace harness or connector.	
ОК		
Cheo ECU	k and replace ABS & BA & TRAC & VSC	

Deceleration Sensor Circuit

DIC9K-02

CIRCUIT DESCRIPTION

C1232 / 32

DTC

DTC No.	DTC Detecting Condition	Trouble Area
C1232 / 32	 Detection of either of the conditions 1. or 2.: 1. At a vehicle speed of 6 mph (10 km/h) or more, when the condition that ECU terminal GL1 signal change range is less than 20 mV, and ECU terminal GL2 signal change range swings by 468 mV or more occurs for 30 sec. or more. 2. At a vehicle speed of 6 mph (10 km/h) or more, when the condition that ECU terminal GL2 signal change range is less than 20 mV, and ECU terminal GL1 signal change range is less than 20 mV, and ECU terminal GL1 signal change range swings by 468 mV or more occurs for 30 sec. or more. 	★Deceleration sensor ★Deceleration sensor circuit

INSPECTION PROCEDURE

HINT:

Start the inspection from step 1 in case of using the hand-held tester and start from step 2 in case of not using the hand-held tester.

Check output value of the yaw rate (deceleration) sensor.

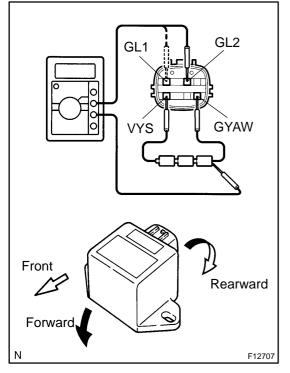
PREPARATION:

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester main switch ON.
- (c) Select the DATALIST mode on the hand-held tester.

CHECK:

Check that the deceleration value of the deceleration sensor displayed on the hand-held tester is changing when tilting the vehicle.

<u>OK:</u>


Deceleration value must be changing.

Check and replace ABS & BA & TRAC & VSC ECU.

NG

2 Check yaw rate (deceleration) sensor.

PREPARATION:

(a) Connect 3 dry batteries of 1.5 V in series.

(b) Connect VYS terminal to the batteries' positive (+) terminal, and GYAW terminal to the batteries' negative (-) terminal. Apply about 4.5 V between VYS and GYAW terminals.

NOTICE:

Do not apply voltage of 6 V or more to terminals VYS and GYAW.

CHECK:

Check the output voltage of GL1 and GL2 terminals when the sensor is tilted forward and rearward.

<u>OK:</u>

Symbols	Condition	Standard Value
GL1	Horizontal	About 2.3 V
GL1	Lean rearward	1.0 V to about 2.3 V
GL1	Lean forward	About 2.3 V to 3.5 V
GL2	Horizontal	About 2.3 V
GL2	Lean rearward	About 2.3 V to 3.5 V
GL2	Lean forward	1.0 V to about 2.3 V

HINT:

- ★ If the sensor is tilted too much, it may show the wrong value.
- \star If dropped, the sensor should be replaced with a new one.
- ★ The sensor removed from the vehicle should not be placed upside down.

NG Replace yaw rate sensor.

OK

3 Check for open or short circuit in harness and connector between yaw rate (deceleration) sensor and ABS & BA & TRAC & BA & VSC ECU (See page IN-36).

NG

Repair or replace harness and connector.

OK

Check and replace ABS & BA & TRAC & VSC ECU.

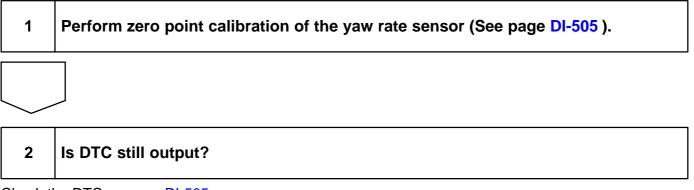
2004 LAND CRUISER (RM1071U)

DIC9L-01

DTC

C1233 / 33, C1234 / 34

Yaw Rate Sensor Circuit


CIRCUIT DESCRIPTION

DTC No.	DTC Detecting Condition	Trouble Area
C1233 / 33	 When any of the following 1. through 4. is detected: 1. ECU terminal IG1 voltage is 9.5 V to 17.0 V, and the condition that yaw rate sensor voltage is out of the range from 0.25 V to 4.75 V continues for 1 sec. or more. 2. The conditions that yaw rate sensor open detect circuit signal is ON and the voltage of ECU terminal IG1 is 9.5 V to 17 V continue for 1 sec. or more. 3. The conditions that yaw rate sensor power source voltage is out of the range from 4.4 V to 5.6 V and the voltage of ECU terminal IG1 is 9.5 V to 17 V continue for 1 sec. or more. 4. When the condition that yaw rate sensor signal is momentarily open occurs 10 times or more and the voltage of ECU terminal IG1 is 9.5 V to 17 V. 	★Yaw rate sensor ★Yaw rate sensor circuit
C1234 / 34	 Condition 1. or 2. is detected: 1. When the conditions that yaw rate sensor VYS terminal voltage is 4.75 V to 5.25 V and YD malfunction signal of yaw rate sensor is ON continue for 5 sec. or more. 2. Shift lever is in P position and output voltage of yaw rate sensor is out of the range from 2.4 V to 2.6 V or after the difference from zero point calibration voltage of yaw rate sensor becomes 0.08 V or more and when the condition that the vehicle speed exceeds more than 9 mph (15 km/h) while output condition of yaw rate sensor is repeated more than 3 times. 	

ABS & BA & TRAC Y1 & VSC ECU Yaw Rate Sensor _ _ 22 16 G G GL1 IG4 A43 GL1 4 17 10 Y Y → IG4 GL2 A43 GL2 2 19 21 L L → IG4 A43 YD YD 6 9 19 В В A43 VYS }}וG4 VYS 8 20 28 W W → IG4 A43 YAW YAW2 1 27 18 R R A43 GYAW HG4 וG4 GYAW 5 18 22 YSS → IG4 A42 Shielded Shielded Ν F17752

WIRING DIAGRAM

INSPECTION PROCEDURE

Check the DTC on page DI-505 .

NO END.

YES

DI-555

Check output value of the yaw rate sensor.

In case of using the hand-held tester: <u>PREPARATION:</u>

- (a) Remove the 2 bolts and yaw rate sensor with connectors still connected.
- (b) Connect the hand-held tester to the DLC3.
- (c) Turn the ignition switch ON and push the hand-held tester main switch ON.
- (d) Select the DATALIST mode on the hand-held tester.

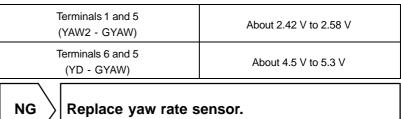
<u>CHECK:</u>

Check that the yaw rate value of the yaw rate sensor displayed on the hand-held tester changes. Place the yaw rate sensor vertically to the ground and turn the sensor pivoted on its center. <u>OK:</u>

Yaw rate value must be changing.

In case of not using the hand-held tester:

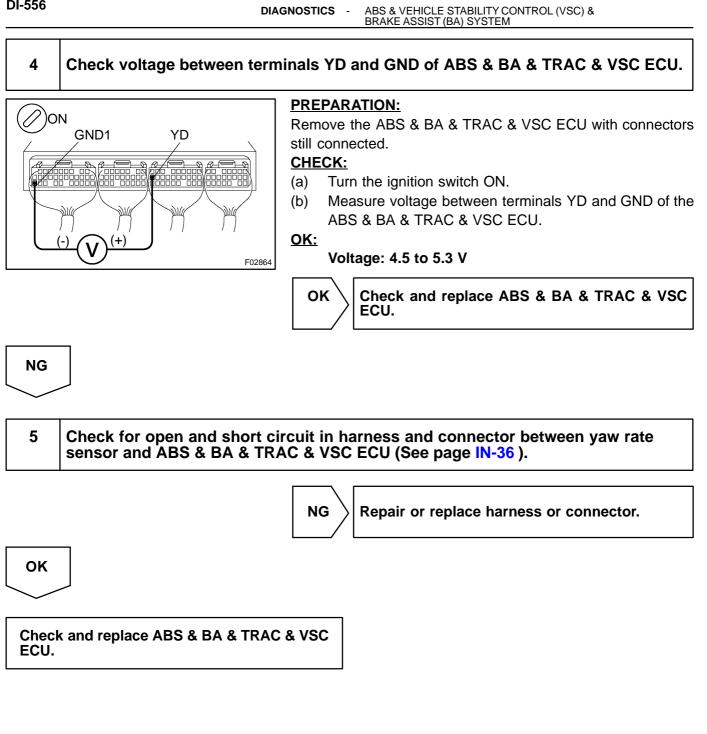
PREPARATION:


- (a) Remove the yaw rate sensor with the connector still connected to it.
- (b) Turn the ignition switch to ON.

CHECK:

Measure voltage between terminals YAW2 (1) - GYAW (5), and terminals YD (6) - GYAW (5) of the yaw rate sensor.

<u>OK:</u>


F13720

ОК

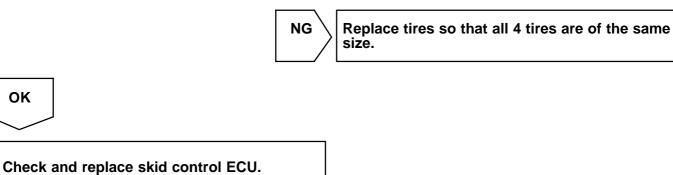
3

Date :

DIC9M-01	

DTC	C1237 / 37	Tires of Different Size

CIRCUIT DESCRIPTION


DTC No.	DTC Detecting Condition	Trouble Area
C1237 / 37	Driving at more than 19 mph (30 km/h) for more than 20 seconds with 1 or 2 tires of different size 3 times continu- ously.	⊀ Tire size ★Skid control ECU

INSPECTION PROCEDURE

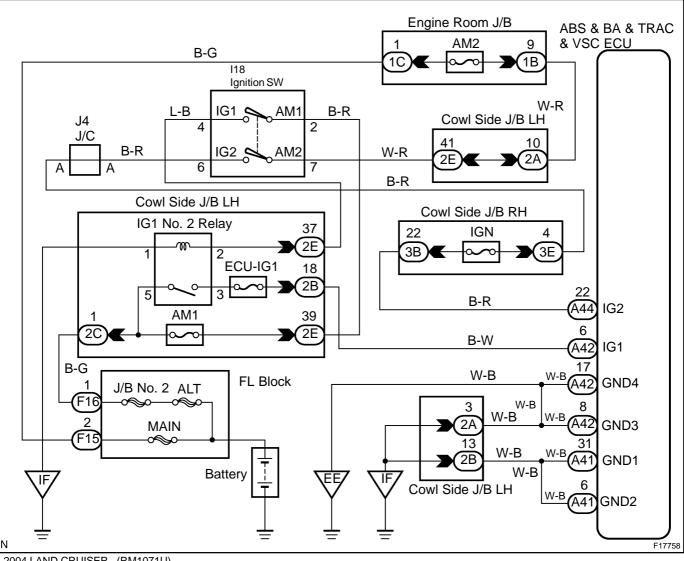
Check tire size.

CHECK:

Check the size and condition of all 4 wheels.

DTC

IG Power Source Circuit


DIC9N-01

CIRCUIT DESCRIPTION

C1241 / 41

DTC No.	DTC Detecting Condition	Trouble Area
C1241 / 41	 Detection of any of the conditions 1. through 4.: Vehicle speed is 1.9 mph (3 km/h) or more and voltage of ECU terminal IG remains below 9.5 V for more than 10 sec. While the condition that the solenoid relay is ON continues, ECU terminal IG1 voltage becomes 9.5 V or less, and the condition that the contact point of the solenoid relay is OFF continues for 0.2 sec. or more. The condition that ECU terminal IG1 voltage is more than 17.0 V continues for 1.2 sec. or more. While the solenoid relay outputs ON signal, ECU terminal IG1 voltage becomes more than 17.0 V, and the condition that the contact point of the solenoid relay is OFF continues for 0.2 sec. or more. 	★Battery ★IC regulator ★Power source circuit

WIRING DIAGRAM

2004 LAND CRUISER (RM1071U)

ABS & VEHICLE STABILITY CONTROL (VSC) & BRAKE ASSIST (BA) SYSTEM

INSPECTION PROCEDURE

1 Check battery positive voltage.

<u>OK:</u>

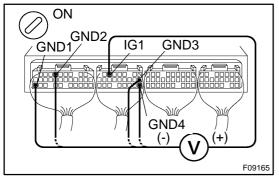
Voltage: 10 to 14 V

angle Check and repair the charging system.

OK

2

Check voltage of the ECU IG power source.


In case of using the hand-held tester: <u>PREPARATION:</u>

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester main switch ON.
- (c) Select the DATALIST mode on the hand-held tester.

CHECK:

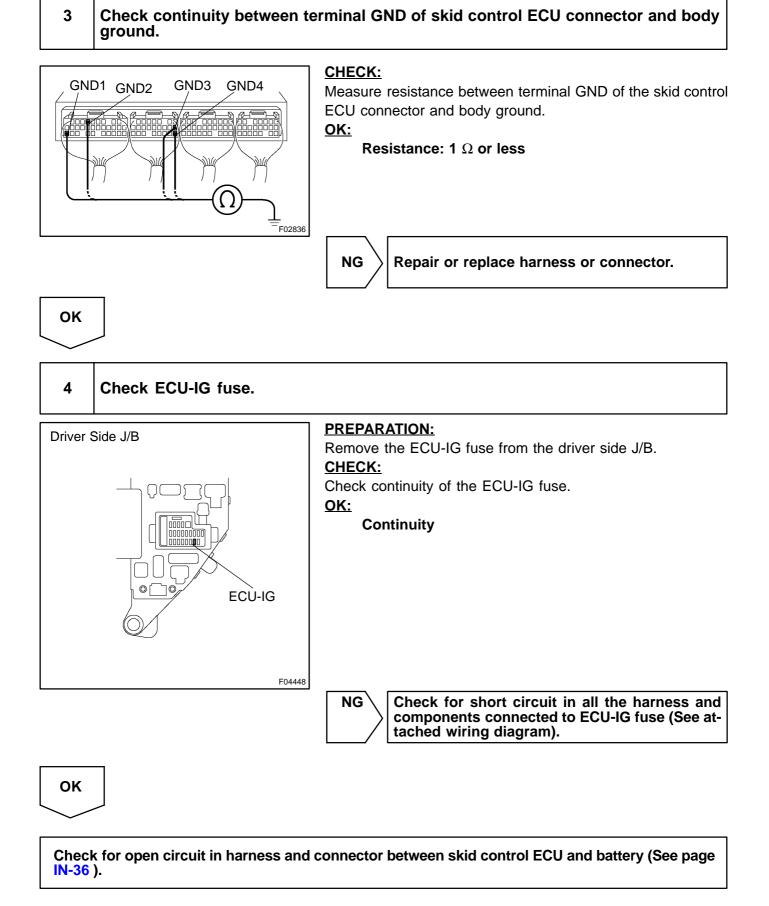
Check the voltage condition output from the ECU displayed on the hand-held tester. **OK:**

"Normal" is displayed.

In case of not using the hand-held tester: <u>PREPARATION:</u>

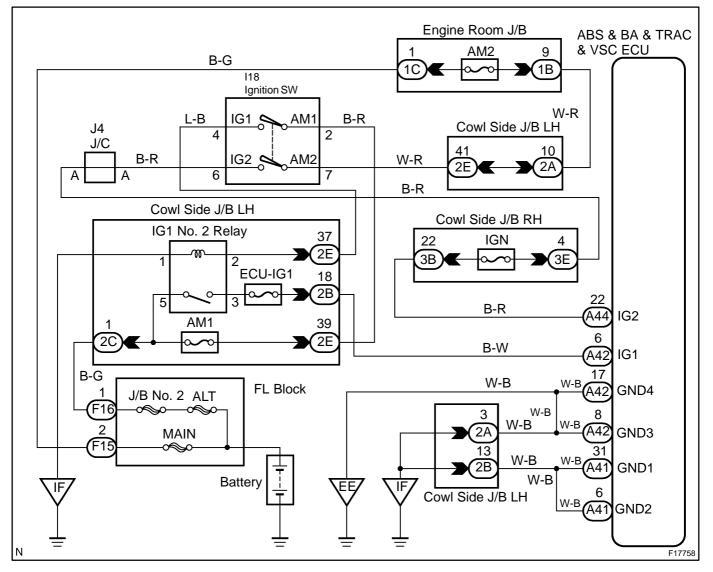
Remove the skid control ECU with connectors still connected. **CHECK:**

- (a) Turn the ignition switch ON.
- (b) Measure voltage between terminals IG1 and GND of the skid control ECU connector.


<u> 0K:</u>

Voltage: 10 to 14 V

Turn ignition switch OFF, check and replace skid control ECU.


NG

DTC C1242 / 42 IG2 Power Source Circuit

CIRCUIT DESCRIPTION

DTC No.	DTC Detecting Condition	Trouble Area
C1242 / 42	With the vehicle running, open circuit in IG2 is detected for more than 7 sec.	₩Battery
		HC regulator

ABS & VEHICLE STABILITY CONTROL (VSC) & BRAKE ASSIST (BA) SYSTEM

INSPECTION PROCEDURE

1 Check battery positive voltage.

<u> 0K:</u>

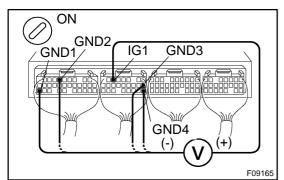
Voltage: 10 to 14 V

Check and repair the charging system.

OK

2

Check voltage of the ECU IG power source.


In case of using the hand-held tester: <u>PREPARATION:</u>

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester main switch ON.
- (c) Select the DATALIST mode on the hand-held tester.

CHECK:

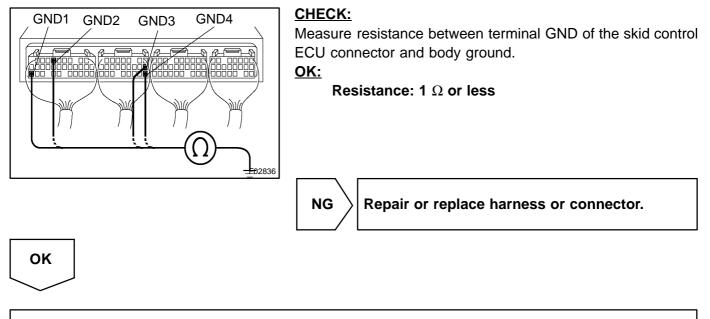
Check the voltage condition output from the ECU displayed on the hand-held tester. **OK:**

"Normal" is displayed.


In case of not using the hand-held tester: <u>PREPARATION:</u>

Remove the skid control ECU with connectors still connected. **CHECK:**

- (a) Turn the ignition switch ON.
- (b) Measure voltage between terminals IG2 and GND of the skid control ECU connector.


<u>OK:</u>

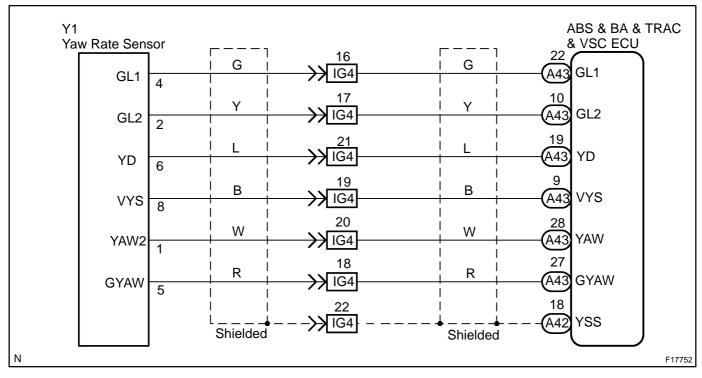
Voltage: 10 to 14 V

NG

3 Check continuity between terminal GND of skid control ECU connector and body ground.

Check for open circuit in harness and connector between skid control ECU and battery (See page IN-36).

DIC9P-01


DTC

C1243 / 43, C1245 / 45

Malfunction in Deceleration Sensor

CIRCUIT DESCRIPTION

DTC No.	DTC Detecting Condition	Trouble Area
C1243 / 43	While vehicle speed becomes 0 mph (0 km/h) from 30 km/h (18 mph), and the condition that GL1 and GL2 signals of ECU terminals did not change 40 mV or less continued in a sequence 16 times.	
C1245 / 45	At the vehicle speed of 18 mph (30 km/h) or more, and the condition that the difference between acceleration and deceleration values of computation from deceleration sensor and vehicle speed becomes more than 0.35 G continues for 60 sec. or more.	★Deceleration sensor ★Wire harness for deceleration sensor system

HINT:

Start the inspection from step1 in case of using the hand-held tester and start from step 2 in case of not using the hand-held tester.

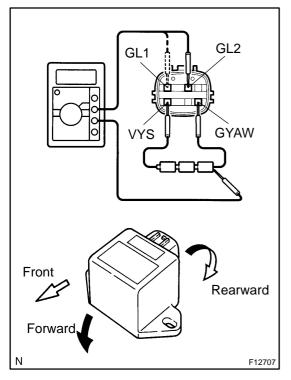
Check output value of the yaw rate (deceleration) sensor.

PREPARATION:


- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester main switch ON.
- (c) Select the DATALIST mode on the hand-held tester.

CHECK:

Check that the deceleration value of the deceleration sensor displayed on the hand-held tester is changing when tilting the vehicle.


<u>OK:</u>

Deceleration value must be changing.

PREPARATION:

(a) Connect 3 dry batteries of 1.5 V in series.

(b) Connect VYS terminal to the batteries' positive (+) terminal, and GYAW terminal to the batteries' negative (-) terminal. Apply about 4.5 V between VYS and GYAW terminals.

NOTICE:

Do not apply voltage of 6 V or more to terminals VYS and GYAW.

CHECK:

Check the output voltage of GL1 and GL2 terminals when the sensor is tilted forward and rearward.

<u> 0K:</u>

Symbols	Condition	Standard Value
GL1	Horizontal	About 2.3 V
GL1	Lean rearward	1.0 V to about 2.3 V
GL1	Lean forward	About 2.3 V to 3.5 V
GL2	Horizontal	About 2.3 V
GL2	Lean rearward	About 2.3 V to 3.5 V
GL2	Lean forward	1.0 V to about 2.3 V

HINT:

- ★ If the sensor is tilted too much, it may show the wrong value.
- \star If dropped, the sensor should be replaced with a new one.
- ★ The sensor removed from the vehicle should not be placed upside down.

NG Replace yaw rate sensor.

OK

3 Check for open or short circuit in harness and connector between yaw rate (deceleration) sensor and skid control ECU (See page IN-36).

Repair or replace harness or connector.

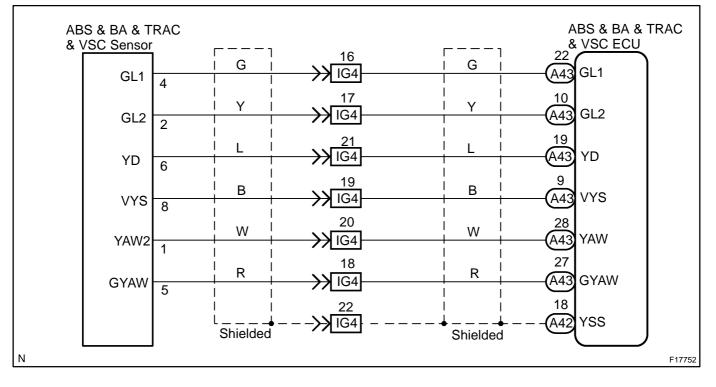
OK

Check and replace skid control ECU.

2004 LAND CRUISER (RM1071U)

DIC9Q-01

DTC


C1244 / 44

Deceleration Sensor Circuit

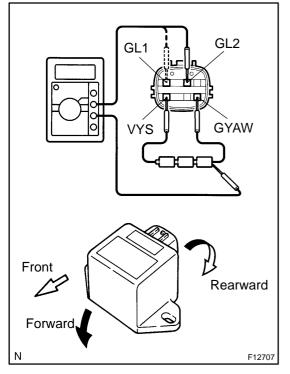
CIRCUIT DESCRIPTION

This sensor detects vehicle deceleration. The sensor signal is used in ABS & BA & TRAC & VSC control. If the sensor functions abnormally, the ABS warning light comes on.

DTC No.	DTC Detecting Condition	Trouble Area
C1244 / 44	 Either of the following 1., 2., 3. or 4. is detected: 1. The condition that ECU terminals GL1 and GL2 values are -1.5 G or less or 1.5 G or more continues for 1.2 sec. or more. 2. The condition that the deceleration sensor terminal VGS voltage is 4.4 V or less or 5.6 V or more continues for 1.2 sec. or more. 3. At a vehicle speed of 0 mph (0 km/h), after the difference of output value between deceleration sensor terminals GL1 and GL2 becomes 0.6 G or more, and the condition that does not become 0.4 G or less continues for 60 sec. or more. 4. Deceleration sensor signal momentary open occurs for 7 times or more. 	★Deceleration sensor ★Deceleration sensor circuit

1	Check for open and short circuit in harness and connector between yaw rate (deceleration) sensor and skid control ECU (See page IN-36).
---	---

NG


Repair or replace harness or connector.

ОК

ABS & VEHICLE STABILITY CONTROL (VSC) & BRAKE ASSIST (BA) SYSTEM

Check yaw rate (deceleration) sensor.

PREPARATION:

(a) Connect 3 dry batteries of 1.5 V in series.

(b) Connect VYS terminal to the batteries' positive (+) terminal, and GYAW terminal to the batteries' negative (-) terminal. Apply about 4.5 V between VYS and GYAW terminals.

NOTICE:

Do not apply voltage of 6 V or more to terminals VYS and GYAW.

CHECK:

Check the output voltage of GL1 and GL2 terminals when the sensor is tilted forward and rearward.

OK:

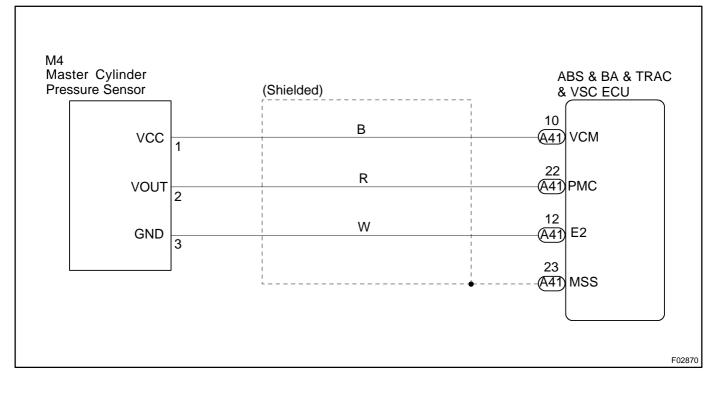
Symbols	Condition	Standard Value
GL1	Horizontal	About 2.3 V
GL1	Lean rearward	1.0 V to about 2.3 V
GL1	Lean forward	About 2.3 V to 3.5 V
GL2	Horizontal	About 2.3 V
GL2	Lean rearward	About 2.3 V to 3.5 V
GL2	Lean forward	1.0 V to about 2.3 V

HINT:

- If the sensor is tilted too much, it may show the wrong val- \star ue.
- If dropped, the sensor should be replaced with a new one. ★
- The sensor removed from the vehicle should not be ★ placed upside down.

Replace yaw rate sensor.

OK


Check and replace skid control ECU.

DIC9R-01

DTC C1246 / 46 Master Cylinder Pressure Sensor Circuit

CIRCUIT DESCRIPTION

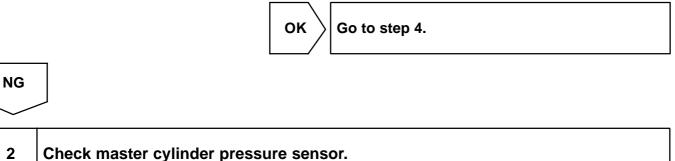
DTC No.	DTC Detecting Condition	Trouble Area
C1246 / 46	 Either of the following 1., 2., 3., 4. or 5. is detected: At a vehicle speed of 4 mph (7 km/h) or more, PMC terminal voltage does not change by more than 0.005 V once it exceeds 0.86 V continues for at least 30 secs. Interference occurs to ECU terminal PMC 7 times or more for 5 sec. ECU terminal STP is OFF, and the condition that terminal PMC voltage becomes more than 0.86 V or less than 0.3 V continues for 5 sec. or more. The condition that ECU terminal IG1 voltage is 9.5 V to 17.0 V, and terminal VCM voltage other than the range from 4.4 V to 5.6 V continues for 1.2 sec. or more. The condition that ECU terminal VCM voltage is 4.4 V to 5.6 V, and terminal PMC voltage other than the range from 0.14 V to 4.85 V continues for 1.2 sec. or more. 	★Master cylinder pressure sensor ★Master cylinder pressure sensor circuit

HINT:

Start the inspection from step 1 in case of using the hand-held tester and start from step 2 in case of not using the hand-held tester.

Check output value of the master cylinder pressure sensor.

PREPARATION:


- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester main switch ON.
- (c) Select the DATA LIST mode on the hand-held tester.

CHECK:

Check that the brake fluid pressure value of the master cylinder pressure sensor displayed on the hand-held tester is changing when depressing the brake pedal.

<u>OK:</u>

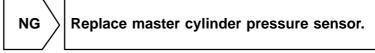
Brake fluid pressure value must be changing.

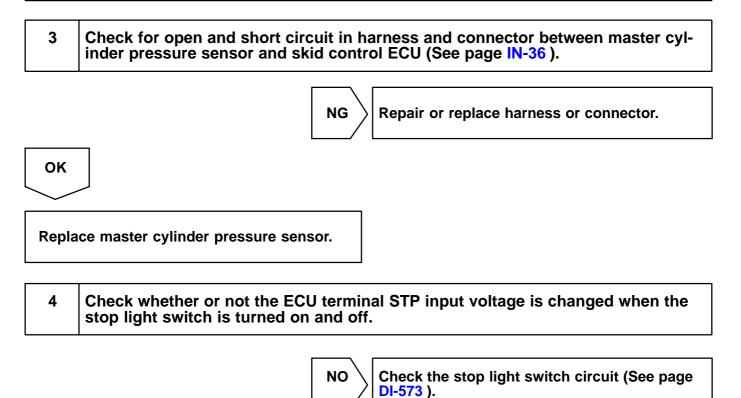
PREPARATION:

- (a) Install the LSPV gauge to the front caliper bleeder plug portion, and bleed the LSPV gauge. SST 09709-29018
- (b) Remove the air cleaner inlet and battery clamp cover.

CHECK:

Start the engine and depress the brake pedal, then check the relation between the fluid pressure and voltage of PMC and E2 terminals of the skid control ECU with connectors still connected.


<u> 0K:</u>


Front brake caliper fluid pressure	Voltage
0 kPa (0 Kgf/cm ² , 0 psi)	0.37 to 0.63 V
5,883 kPa (60 kgf/cm ² , 853 psi)	1.57 to 1.83 V
11,768 kPa (120 kgf/cm ² , 1,706 psi)	2.77 to 3.03 V

HINT:

OK

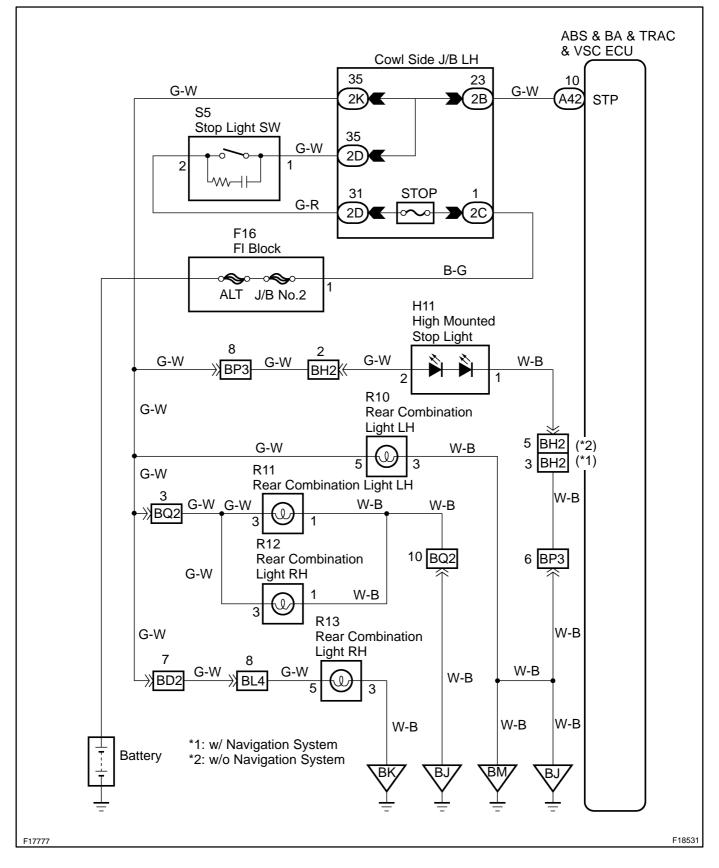
Voltage between terminals VCM and E2: 4.7 to 5.3 V

YES

Check and replace skid control ECU.

DIC9S-02	

DTC

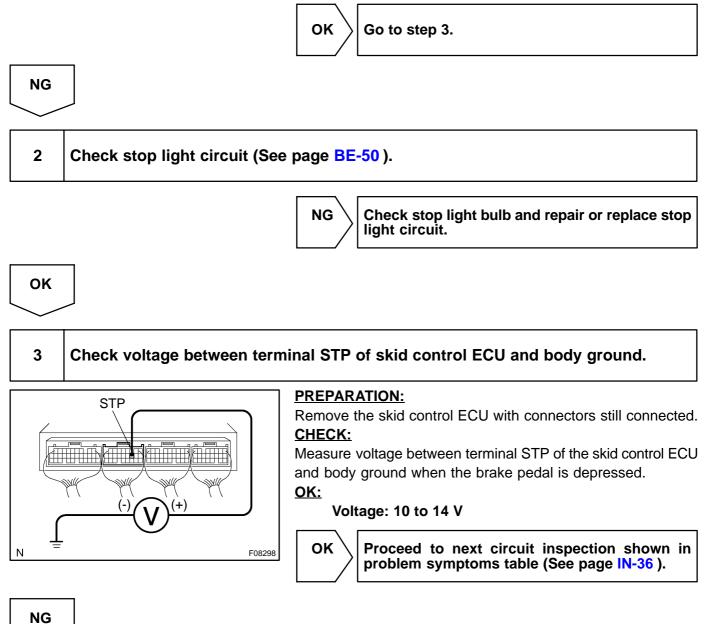

C1249 / 49

Stop Light Switch Circuit

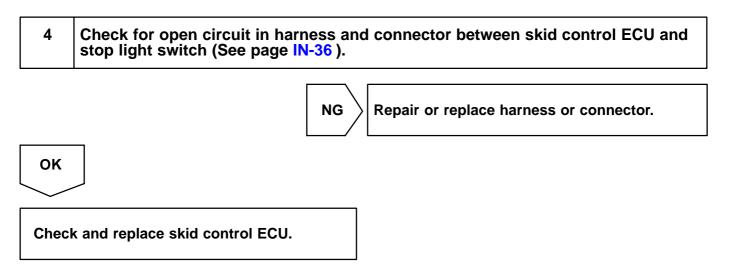
CIRCUIT DESCRIPTION

DTC No.	DTC Detecting Condition	Trouble Area
C1249 / 49	ECU terminal IG1 voltage is 9.5 to 17.2 V, ABS is in non- operation, and an open in stop light switch circuit continues for 0.3 sec. or more.	★Stop light bulb ★Stop light switch circuit

ABS & VEHICLE STABILITY CONTROL (VSC) & BRAKE ASSIST (BA) SYSTEM



1

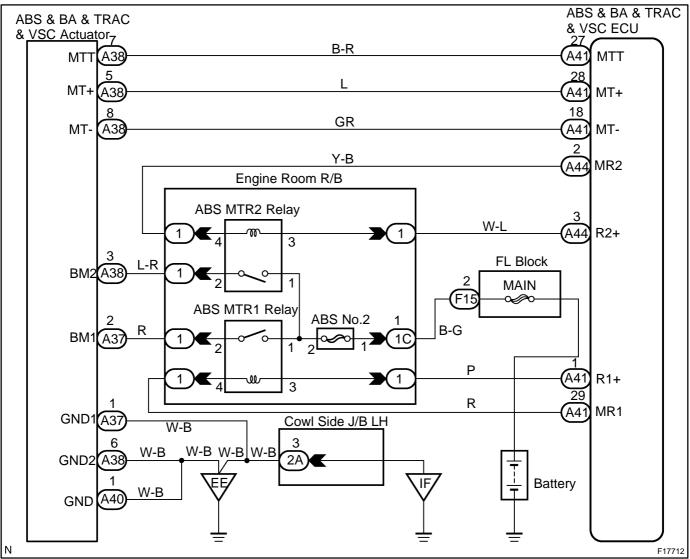

Check operation of the stop light switch.

CHECK:

Check that the stop light lights up when the brake pedal is depressed and goes OFF when the brake pedal is released.

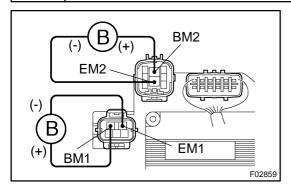
2004 LAND CRUISER (RM1071U)

DIC9T-02


DTC

C1251 / 51

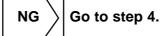
Hydraulic Brake Booster Pump Motor Malfunction


CIRCUIT DESCRIPTION

DTC No.	DTC Detecting Condition	Trouble Area
C1251 / 51	 Either of the following 1. or 2. is detected: 1. After turning the ignition switch ON, the current of more than 30 A flows to the motor for more than 1 sec. 2. After turning the ignition switch ON, less than 7 A change in current is detected more than 3 times in a row when the motor is ON. 	Hydraulic brake booster pump motor

1

Check operation of hydraulic brake booster pump motor.


PREPARATION:

Disconnect the 2 connectors from the hydraulic brake booster. **CHECK:**

Connect the battery positive \pm lead to terminal BM1 or BM2 and the battery negative \geq lead to terminal EM1 or EM2 of the hydraulic brake booster (pump motor) connector.

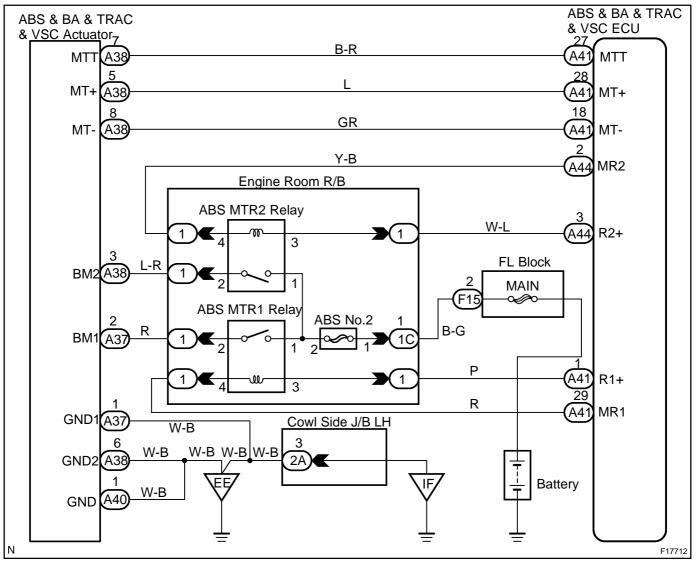
<u>OK:</u>

The operation sound of the pump motor should be heard.

ОК

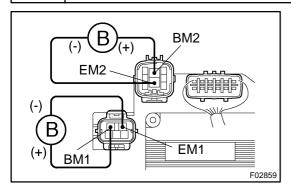
2 Check hydraulic brake booster resistance. **PREPARATION:** BM2 MT+ EM2 Disconnect the 2 connectors from the hydraulic brake booster. MT-CHECK: Check resistance between terminals MT+ and MT-, BM1 and BM1 MT, BM2 and MT, EM1 and MT+, EM2 and MT+ of the hydraulic \bigcirc ്റ Мт brake booster connector. OK: EM1 **30 to 36** Ω F04505 NG Replace the hydraulic brake booster assembly.

ΟΚ


DI-579

3 Check for open circuit in harness and connector between hydraulic brake booster (MT+, MT-) and skid control ECU (See page IN-36). Repair or replace harness or connector. NG OK Check and replace skid control ECU. Check for open or short circuit in harness and connector between hydraulic 4 brake booster and skid control ECU (See page IN-36). NG Replace wire harness. OK 5 Check hydraulic brake booster pump motor (See page BR-64). NG Replace hydraulic brake booster pump motor. OK Replace hydraulic brake booster.

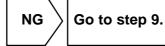
DTC	C1252 / 52	Hydraulic Brake Booster Pump Motor
		ON Time Abnormally Long


CIRCUIT DESCRIPTION

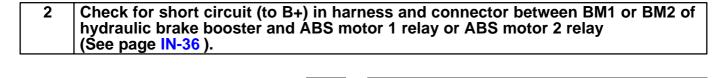
DTC No.	DTC Detecting Condition	Trouble Area
C1252 / 52	After the ignition switch is turned ON, the power is supplied to the pump motor for more than 5 minutes.	 ₩Hydraulic brake booster pump motor ₩Hydraulic brake booster pump motor circuit ₩Pressure switch (PH or PL)

1

Check operation of hydraulic brake booster pump motor.


PREPARATION:

Disconnect the 2 connectors from the hydraulic brake booster. **CHECK:**


Connect the battery positive \pm lead to terminal BM1 or BM2 and the battery negative \geq lead to terminal EM1 or EM2 of the hydraulic brake booster (pump motor) connector.

<u>OK:</u>

The operation sound of the pump motor should be heard.

οκ

NG

 \rangle Repair or replace harness or connector.

 OK

 3
 Check for short circuit (to B+) in harness and connector between MT of hydraulic brake booster and skid control ECU (See page IN-36).

 NG
 Repair or replace harness or connector.

OK

ABS & VEHICLE STABILITY CONTROL (VSC) & BRAKE ASSIST (BA) SYSTEM

4 Check pressure switch (PH).

In case of using the hand-held tester:

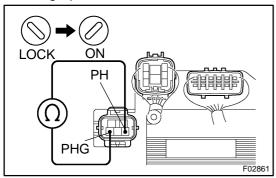
PREPARATION:

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester main switch ON.
- (c) Select the DATA LIST mode on the hand-held tester.

CHECK:

Depress the brake pedal more than 40 times with the ignition switch OFF, then turn the ignition switch ON and check the pressure switch (PH) condition.

HINT:


When pressure in the power supply system is released, reaction force becomes light and stroke becomes longer.

OK:

"OFF" turns to "ON".

HINT: OFF: Low pressure

ON: High pressure

In case of not using the hand-held tester: <u>PREPARATION:</u>

- (a) Disconnect the connector (5P) from the hydraulic brake booster.
- (b) With the ignition switch OFF, depress the brake pedal more than 40 times to decrease the accumulator pressure.

HINT:

When pressure in the power supply system is released, reaction force becomes light and stroke becomes longer.

CHECK:

Measure resistance between terminals PH and PHG of the hydraulic brake booster connector.

<u>OK:</u>

Resistance: 1.0 k Ω

PREPARATION:

- (a) Connect the connector (5P) to the hydraulic brake booster.
- (b) Disconnect the connector (5P) after the ignition switch is turned ON and the pump motor is stopped.

CHECK:

Measure resistance between terminals PH and PHG of the hydraulic brake booster connector.

<u>OK:</u>

Resistance: 0 Ω

HINT:

NG

After inspection, connect the connector and clear the DTC (See page DI-505).

Replace hydraulic brake booster assembly.

OK

5

Check pressure switch (PL).

In case of using hand-held tester: <u>PREPARATION:</u>

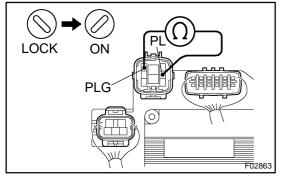
- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester main switch ON.
- (c) Select the DATA LIST mode on the hand-held tester.

CHECK:

Depress the brake pedal more than 40 times with the ignition switch OFF, then turn the ignition switch ON and check the pressure switch (PL) condition.

HINT:

When pressure in the power supply system is released, reaction force becomes light and stroke becomes longer.


<u> 0K:</u>

"OFF" turns to "ON".

HINT:

OFF: Low pressure

ON: High pressure

In case of not using hand-held tester: <u>PREPARATION:</u>

- (a) Disconnect the connector (8P) from the hydraulic brake booster.
- (b) With the ignition switch OFF, depress the brake pedal more than 40 times to decrease the accumulator pressure.

HINT:

When pressure in the power supply system is released, reaction force becomes light and stroke becomes longer.

CHECK:

Measure resistance between terminals PL and PLG of the hydraulic brake booster connector.

<u>OK:</u>

Resistance: 5.7 k Ω

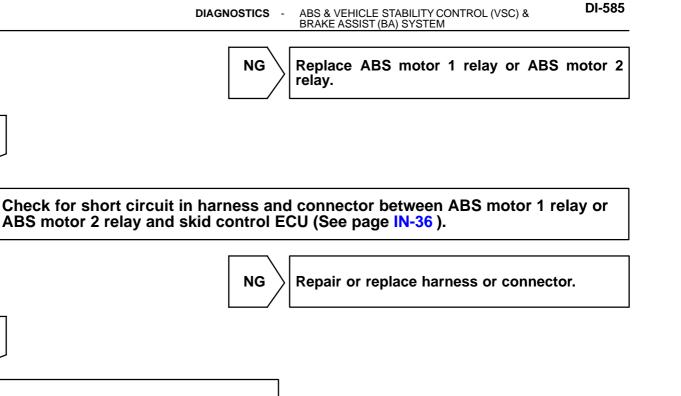
PREPARATION:

- (a) Connect the connector (8P) to the hydraulic brake booster.
- (b) Disconnect the connector (8P) after the ignition switch is turned ON and the pump motor is stopped.

CHECK:

Measure resistance between terminals PL and PLG of the hydraulic brake booster connector.

<u>OK:</u>


Resistance: 1.0 k Ω

HINT:

After inspection, connect the connector and clear the DTC (See page DI-505).

ОК 6 Check for short circuit (t	• P.) in homeon and connector	
switch and skid control l	o B+) in harness and connector ECU (See page <mark>IN-36</mark>).	between pressure
	NG Repair or replace ha	rness or connector.
ОК		
7 Check ABS motor 1 relay	/ and ABS motor 2 relay.	
$ \begin{array}{c} 2 & - & 1 \\ 4 & 1 & 3 \\ \hline Open \\ \hline 1 $	PREPARATION: Remove the ABS motor 1 relay a engine room J/B. <u>CHECK:</u> Check continuity between the mo table below. OK:	
	Terminals 3 and 4	Continuity (Reference value * ¹)
	Terminals 1 and 2	Open
Continuity 4	*1: ABS motor 1 relay: 54 Ω ABS motor 2 relay: 62 Ω	
Continuity 1 Continuity		
	CHECK:(a)Apply battery positive voltage(b)Check continuity betweenOK:	ge between terminals 3 and 4 terminals.
BE 1840 B 15057	Terminals 1 and 2	Continuity
B15258	0044	

Check and replace skid control ECU.

OK

8

OK

9	Check for open or short circuit in harness and connector between hydraulic
	brake booster and skid control ECU (See page IN-36).

	\mathbf{X}	
NG		R

Г

 \rangle Replace wire harness.

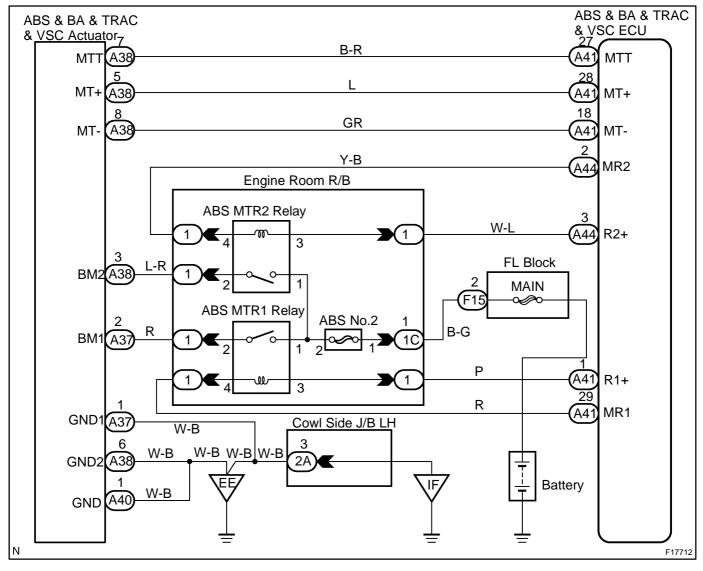
ок	
\searrow	
10	Check hydraulic brake booster pump motor (See page BR-64).
	NG Replace hydraulic brake booster pump motor.
ОК	
Repla	ce hydraulic brake booster.

DIC9V-02

DTC

C1253 / 53

Motor Relay Circuit


CIRCUIT DESCRIPTION

The ABS motor 1 relay and ABS motor 2 relay supply power to the hydraulic brake booster pump motor. While the ABS & BA & TRAC & VSC are activated, the ECU switches the motor relay ON and operates the hydraulic brake booster pump motor.

DTC No.	DTC Detecting Condition	Trouble Area
C1253 / 53	 When any of the following 1. through 4. is detected: 1. After turning the ignition switch ON, open in the relay coil is detected for more than 1 sec. 2. When the pressure switch does not control motor driving, the condition that the motor relay is always ON continues for more than 1 sec. due to short circuit. 3. When the pressure switch (PH) detects the low pressure or while the pump motor operates to increase the pressure, the condition that the motor relay does not turn ON continues for more than 0.2 sec. 4. When pressure switch does not control motor driving, the condition that the motor relay is always ON due to the welded contact continues for more than 2 sec. 	 ★ABS motor 1 or ABS motor 2 relay ★ABS motor 1 or ABS motor 2 relay circuit ★Hydraulic brake booster pump motor circuit

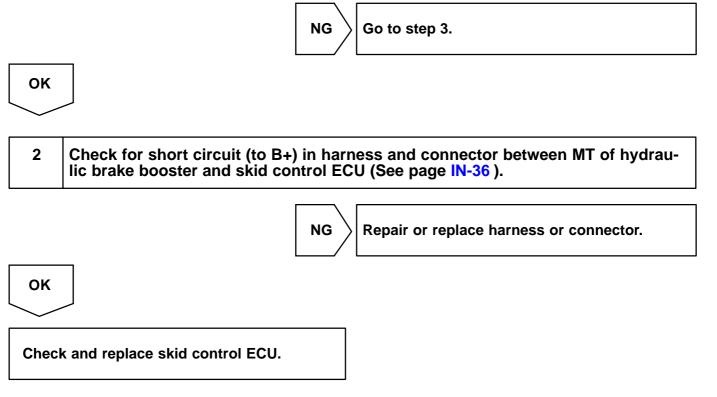
ABS & VEHICLE STABILITY CONTROL (VSC) & BRAKE ASSIST (BA) SYSTEM

INSPECTION PROCEDURE

HINT:

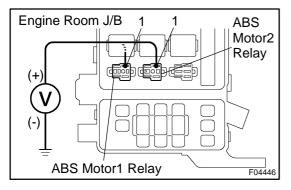
Start the inspection from step 1, in case of using the hand-held tester and start from step 3, in case of not using hand-held tester.

Check ABS motor 1 and ABS motor 2 relay operation.


PREPARATION:

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester main switch ON.
- (c) Select the ACTIVE TEST mode on the hand-held tester.

CHECK:


Check the operation sound of the ABS motor relays individually when operating it with the hand-held tester. **OK:**

The operation sound of the ABS motor 1 relay and ABS motor 2 relay should be heard.

Check voltage between terminal 1 of engine room J/B (for ABS motor 1 relay and

3

ABS motor 2 relay) and body ground.

PREPARATION:

Remove the ABS motor 1 relay and ABS motor 2 relay from the engine room J/B.

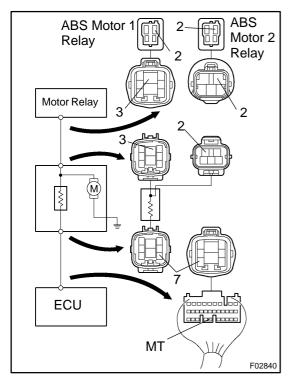
CHECK:

Measure voltage between terminal 1 of the engine room J/B (for ABS motor 1 relay and ABS motor 2 relay) and body ground. **OK:**

Voltage: 10 to 14 V

Check and repair harness or connector.

ОК


4	Check ABS motor 1 re	elay and	ABS motor 2 relay.	
	2 1 4 1 4 1 4 1 1 1 		engine room J/B. CHECK:	and ABS motor 2 relay from the notor relay terminals listed in the
			Terminals 3 and 4	Continuity (Reference value *1)
			Terminals 1 and 2	Open
			^{*1} : ABS motor 1 relay: 54 Ω	
c	Continuity 4		ABS motor 2 relay: 62 Ω	
	Continuity			
BE 1840 R15257	2 (-) 4 3 (+)		CHECK: (a) Apply battery positive volt (b) Check continuity betweer OK:	age between terminals 3 and 4. n terminals.
R15258		F00044	Terminals 1 and 2	Continuity

NG

Replace ABS motor 1 relay or ABS motor 2 relay.

OK

5 Check continuity between terminal MT of the ABS & BA & TRAC & VSC ECU and terminals BM1 and BM2, respectively.

PREPARATION:

Disconnect the 2 connectors from the hydraulic brake booster. **CHECK:**

- (a) Check continuity between terminal BM1 of the ABS motor 2 relay and terminal MT of the ABS & BA & TRAC & VSC ECU.
- (b) Check continuity between terminal BM2 of the ABS motor 1 relay and terminal MT of the ABS & BA & TRAC & VSC ECU.

Continuity

HINT:

There is resistance of $33 \pm 3 \Omega$ between terminal BM1or BM2 and MT of the hydraulic brake booster.

NG

Repair or replace harness, connector or hydraulic brake booster.

ОК

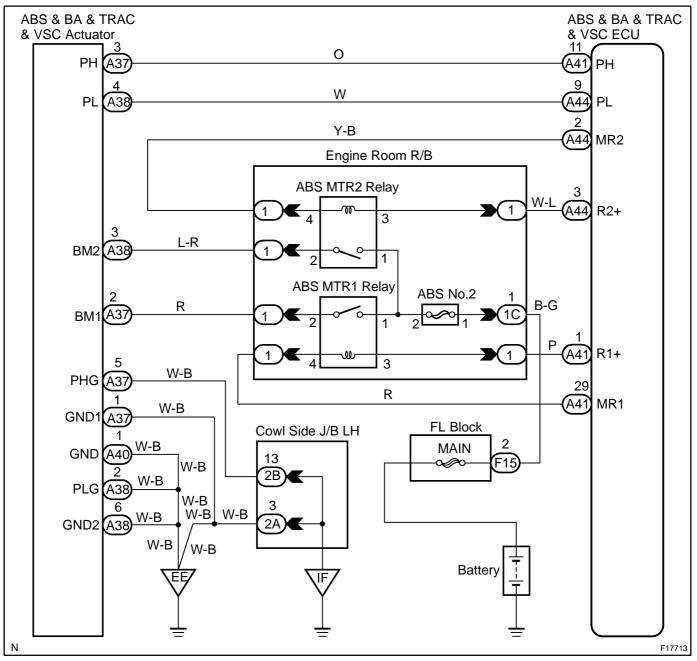
6 Check for open and short circuit in harness and connector between ABS motor1 and ABS motor2 relay and ABS & BA & TRAC & VSC ECU (See page IN-36).

Repair or replace harness or connector.

Check and replace ABS & BA & TRAC & VSC ECU.

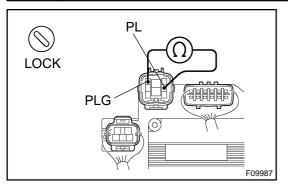
DTC

Pressure Switch Circuit


DIC9W-01

CIRCUIT DESCRIPTION

C1254 / 54


DTC No.	DTC Detecting Condition	Trouble Area
C1254 / 54	 Either of the following 1. or 2. is detected: 1. After turning the ignition switch ON, short or open circuit in pressure switch (PL) continued for more than 1 sec. 2. After turning the ignition switch ON, open in pressure switch (PH) continued for more than 1 sec. 	₩Pressure switch (PH or PL) ₩Pressure switch circuit

WIRING DIAGRAM

INSPECTION PROCEDURE

Check pressure switch (PL) resistance.

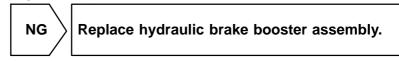
PREPARATION:

- (a) Disconnect the connector (8P) from the hydraulic brake booster.
- (b) With the ignition switch OFF, depress the brake pedal more than 40 times to decrease the accumulator pressure.

HINT:

When pressure in the power supply system is released, reaction force becomes light and stroke becomes longer.

CHECK:

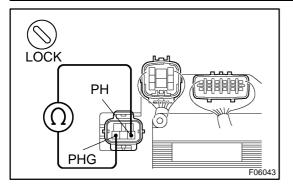

Measure resistance between terminals PL and PLG of the hydraulic brake booster connector.

<u>OK:</u>

Resistance: 5.1 to 6.3 k Ω

HINT:

After inspection, connect the connector and clear the DTC (See page DI-505).



OK

1

2

Check pressure switch (PH) resistance.

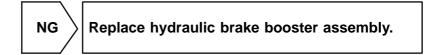
PREPARATION:

- (a) Disconnect the connector (5P) from the hydraulic brake booster.
- (b) With the ignition switch OFF, depress the brake pedal more than 40 times to decrease the accumulator pressure.

HINT:

When pressure in the power supply system is released, reaction force becomes light and stroke becomes longer.

CHECK:


Measure resistance between terminals PH and PHG of the hydraulic brake booster connector.

<u>OK:</u>

Resistance: 0.9 to 1.1 k Ω

HINT:

After inspection, connect the connector and clear the DTC (See page DI-505).

OK

3 Check for open and short circuit in harness and connector between pressure switch and skid control ECU (See page IN-36).

Repair or replace harness or connector.

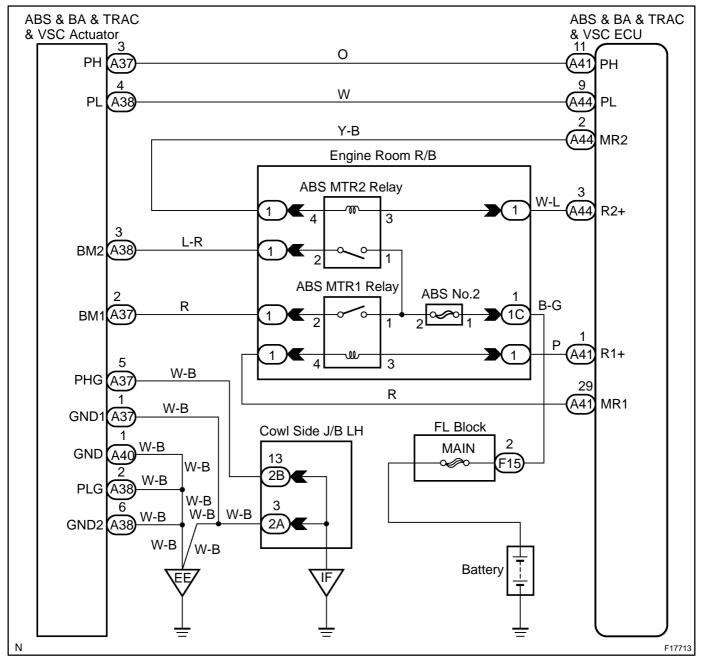
ΟΚ

Check and replace skid control ECU.

DIC9X-02

DTC

C1256 / 56


Accumulator Low Pressure Malfunction

CIRCUIT DESCRIPTION

DTC No.	DTC Detecting Condition	Trouble Area
C1256 / 56	 Any of the following 1. through 7. is detected: 1. With the vehicle running, when the pressure switch (PL) detects high pressure, although ABS, TRAC or VSC does not control, the pressure switch (PL) detects low pressure for more than 1.4 sec. 2. With the vehicle running, when the pressure switch (PL) detects high pressure, although ABS, TRAC or VSC controls, the pressure switch (PL) detects low pressure for more than 0.2 sec. 3. After the ignition switch is turned ON, the pressure switch (PL) detects low pressure for more than 0.2 sec. 4. With the vehicle running, after ignition switch has been ON, the pressure switch (PL) detects low pressure for more than 0.2 sec. although ABS, TRAC, or VSC does not control and when the pressure switch is ON and stuck under high pressure. 5. With the vehicle running, after ignition switch is ON, the pressure switch (PL) detects low pressure for more than 0.2 sec. when ABS, TRAC or VSC controls, the pressure switch (PL) detects low pressure. 6. With the vehicle running, after ignition switch is ON, the pressure switch (PL) is stuck to under low pressure although ABS, TRAC or VSC does not control for more than 1.4 sec. 7. With the vehicle running, after ignition switch is ON, the pressure switch (PL) is stuck under low pressure although ABS, TRAC or VSC does not control for more than 1.4 sec. 	★Accumulator ★Pressure switch (PH or PL) ★Hydraulic brake booster pump motor

ABS & VEHICLE STABILITY CONTROL (VSC) & BRAKE ASSIST (BA) SYSTEM

WIRING DIAGRAM

ABS & VEHICLE STABILITY CONTROL (VSC) & BRAKE ASSIST (BA) SYSTEM

INSPECTION PROCEDURE

1

Check accumulator operation.

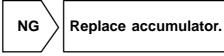
PREPARATION:

(a) Turn the ignition switch OFF, and depress the brake pedal 40 times or more.

HINT:

When pressure in the power supply system is released, reaction force becomes light and stroke becomes longer.

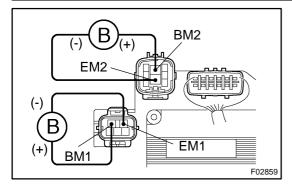
- (b) Install the LSPV gauge (SST) to the rear brake caliper and bleed air.
- SST 09709-29018


CHECK:

Depress the brake pedal with a force of more than 294 N (30 kgf, 66 lbf) and turn the ignition switch ON, then check the rear brake caliper pressure when an increase of pressure changes from acutely to mildly. **OK:**

5,099 to 8,924 kPa (52 to 91 kgf/cm², 740 to 1,294 psi) at 20°C (68°F)

HINT:


If the value is not within the standard, cool the engine room and check it again.

OK

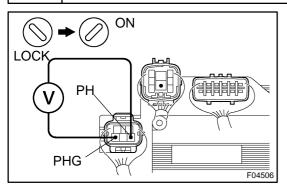
2

PREPARATION:

Disconnect the 2 connectors from the hydraulic brake booster. **CHECK:**

Connect the battery positive \pm lead to BM1 or BM2 terminal and the battery negative \geq lead to EM1 or EM2 terminal of the hydraulic brake booster (pump motor) connector.

<u>OK:</u>


The operation sound of the pump motor should be heard.

NG Go to step 7.

ΟΚ

3

Check pressure switch (PH) operation.

PREPARATION:

(a) Turn the ignition switch OFF, and depress the brake pedal 40 times or more.

HINT:

When pressure in the power supply system is released, reaction force becomes light and stroke becomes longer.

- (b) Install the LSPV gauge (SST) to the rear brake caliper and bleed air.
 - SST 09709-29018

CHECK:

While checking the voltage between terminals PH and PHG of the hydraulic brake booster, depress the brake pedal with a force of more than 294 N (30 kgf, 66 lbf) and turn the ignition switch ON, then check the rear wheel cylinder pressure when voltage changes from 6 V to 0 V.

<u>OK:</u>

12,553 to 20,104 kpa (128 to 205 kgf-cm², 1,820 to 2,916 psi)

PREPARATION:

Turn the ignition switch OFF and disconnect the connector (5P) from the hydraulic brake booster.

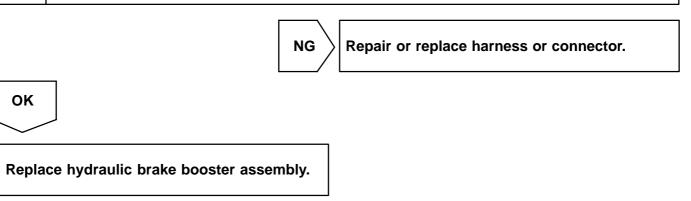
CHECK:

While checking the resistance between terminals PH and PHG, depress the brake pedal changing the force in a range of 197 N (20 kgf, 44 lbf) to 294 N (30 kgf, 66 lbf) and check the rear wheel cylinder pressure when resistance changes from 0 k Ω to 1 k Ω between PH and PHG.

<u> 0K:</u>

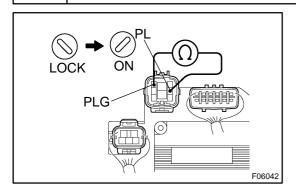
11,964 to 18,240 kpa (122 to 186 kgf·cm², 1,735 to 2,645 psi)

HINT:


After inspection, connect the connector, fill brake reservoir with brake fluid and clear the DTC (See page DI-505).

LOCK PH PHG F06043

NG


DI-599

5

4

Check pressure switch (PL) operation.

PREPARATION:

(a) Turn the motor switch OFF, and depress the brake pedal 40 times or more.

HINT:

When pressure in the power supply system is released, reaction force becomes light and stroke becomes longer.

- (b) Install the LSPV gauge (SST) to the rear brake caliper and bleed air.
 - SST 09709 -29018
- (c) Disconnect the connector (8P) from the hydraulic brake booster.

CHECK:

While checking the resistance between terminals PL and PLG of the hydraulic brake booster, depress the brake pedal with a force of more than 294 N (30 kgf, 66 lbf) and turn the ignition switch ON, then check the rear wheel cylinder pressure when the resistance changes from 5.7 k Ω to 1.0 k Ω .

<u>OK:</u>

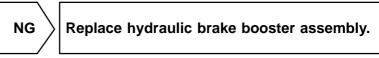
9,022 to 15,102 kpa (92 to 154 kgf-cm², 1,308 to 2,190 psi)

PREPARATION:

Turn the ignition switch OFF and disconnect the connector (8P) from the hydraulic brake booster.

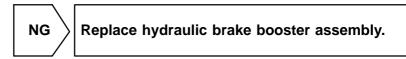
CHECK:

While checking the resistance between terminals PL and PLG of the hydraulic brake booster, depress the brake pedal changing the force in a range of 197 N (20 kgf, 44 lbf) to 294 N (30 kgf, 66 lbf) and check the rear wheel cylinder pressure when resistance changes from 1.0 k Ω to 5.7 k Ω .


<u>OK:</u>

8,532 to 13,337 kpa (87 to 136 kgf-cm², 1,237 to 1,934 psi)

Date :


HINT:

After inspection, connect the connector, fill brake reservoir with brake fluid and clear the DTC (See page DI-505).

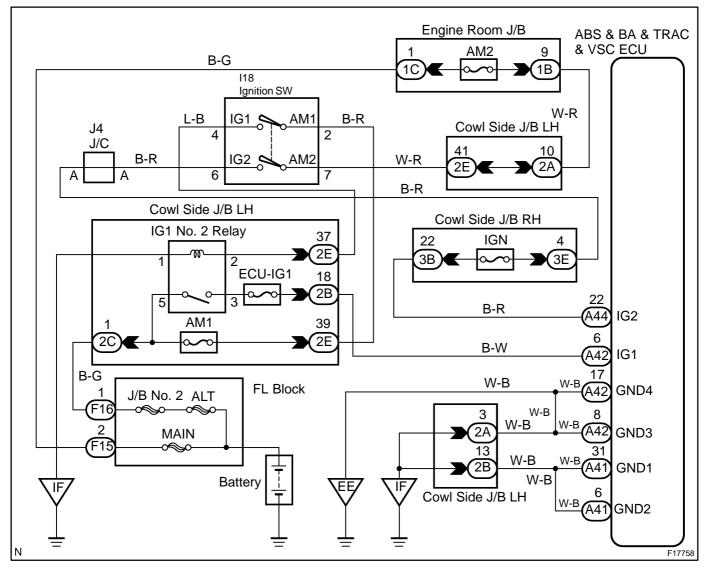
ОК	
6	Check pressure switch (PH) and pressure switch (PL)
•	the pressure value of the rear wheel cylinder measured in check pressure switch (PL) operation one measured in check pressure switch (PH) operation.
	essure when the voltage between PH and PHG becomes 6 to 0 V > pressure when the resisnce between PL and PLG becomes 5.7 k Ω to 1.0 k Ω .

★ Pressure when the resistance between PH and PHG becomes 0 kΩ to 1 kΩ > pressure when the resistance between PL and PLG becomes 1.0 kΩ to 5.7 kΩ.

Check and replace skid control ECU.

7 Check for open or short circuit in harness and connector between hydraulic brake booster pump motor and hydraulic brake booster (See page IN-36).

ΟΚ


8	Check hydraulic brake booster pump motor (See page BR-64).		
	•	NG	Replace hydraulic brake booster pump motor.
ОК			
Repla	ace hydraulic brake booster.		

DTC	C1257 / 57	Power Supply Drive Circuit
-----	------------	----------------------------

CIRCUIT DESCRIPTION

DTC No.	DTC Detecting Condition	Trouble Area
C1257 / 57	When a malfunction inside ECU is detected.	₩Battery ₩Power source circuit
Viter a manufacturin inside 200 is detected.		★Skid control ECU

WIRING DIAGRAM

DIC9Y-01

ABS & VEHICLE STABILITY CONTROL (VSC) & BRAKE ASSIST (BA) SYSTEM

INSPECTION PROCEDURE

1 Check battery positive voltage.

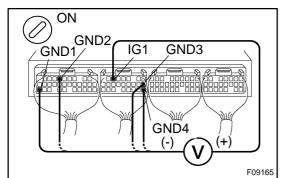
<u>OK:</u>

Voltage: 10 to 14 V

angle Check and repair the charging system.

ОК

- 2
- Check voltage of the ECU IG power source.

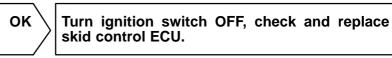

In case of using the hand-held tester: <u>PREPARATION:</u>

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester main switch ON.
- (c) Select the DATA LIST mode on the hand-held tester.

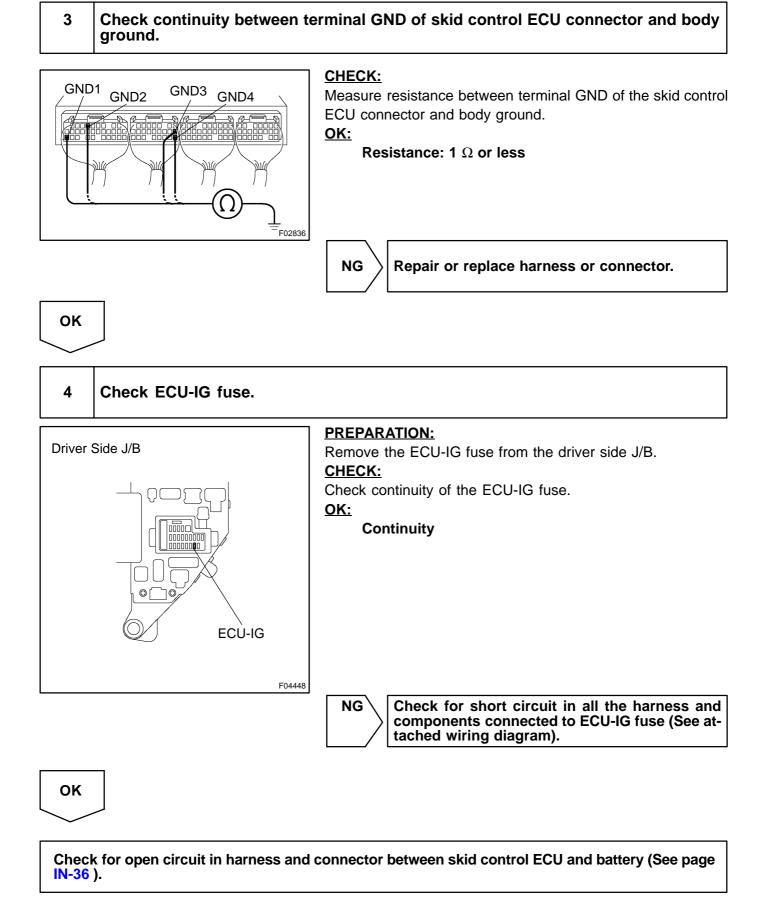
CHECK:

Check the voltage condition output from the ECU displayed on the hand-held tester. **OK:**

"Normal" is displayed.


In case of not using the hand-held tester: <u>PREPARATION:</u>

Remove the skid control ECU with connectors still connected. CHECK:

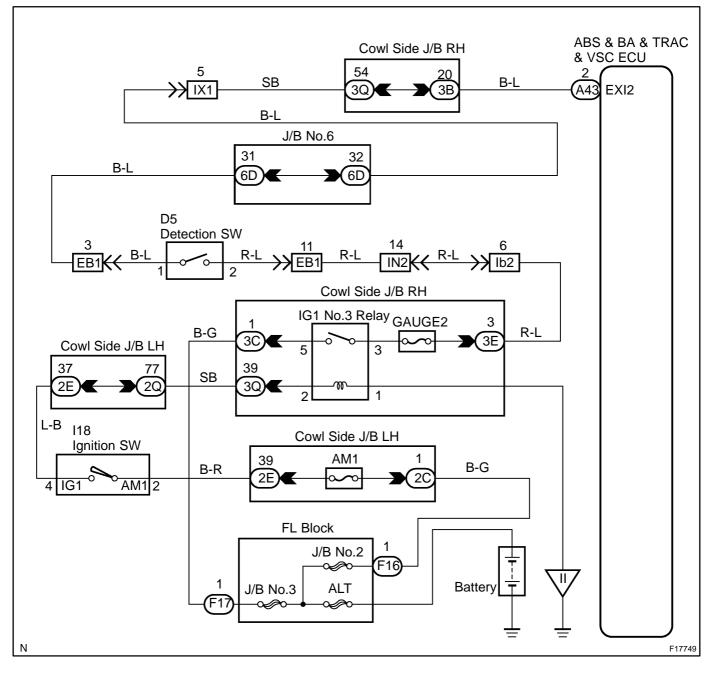

- (a) Turn the ignition switch ON.
- (b) Measure voltage between terminals IG1 and GND of the skid control ECU connector.

<u>OK:</u>

Voltage: 10 to 14 V

NG

Transfer L4 Position Switch Circuit

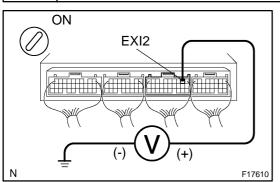

CIRCUIT DESCRIPTION

C1268 / 68

DTC No.	DTC Detecting Condition	Trouble Area
C1268 / 68	Open or short circuit in transfer L4 position switch.	★Transfer L4 position switch
01200/00		★Transfer L4 position switch circuit

WIRING DIAGRAM

DTC



DI-606

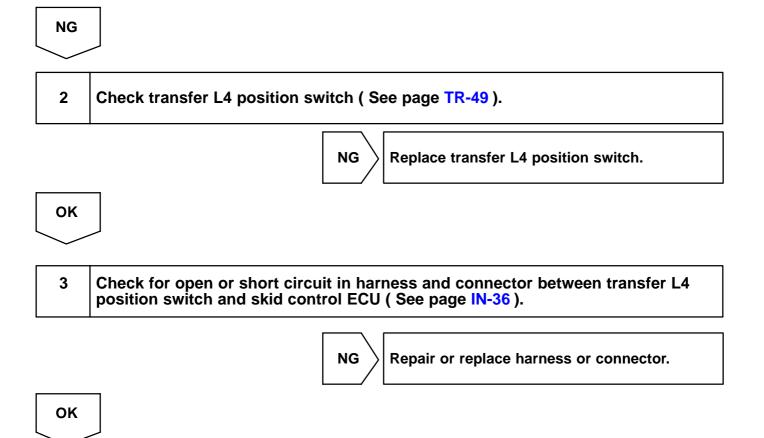
INSPECTION PROCEDURE

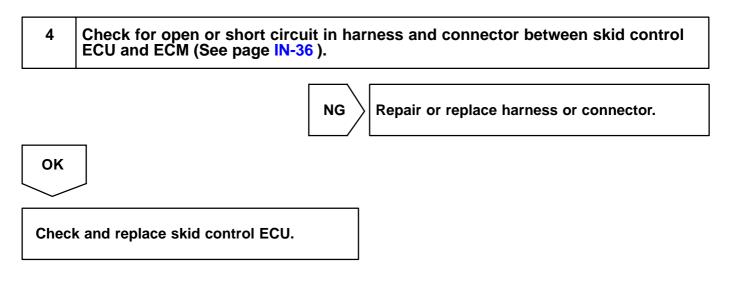
1

Check voltage between terminal EXI2 of skid control ECU and body ground.

PREPARATION:

Remove the skid control ECU with connectors still connected. CHECK:


- (a) Turn the ignition switch ON.
- (b) Measure voltage between terminal EXI2 of the skid control ECU and body ground when the transfer is in the L4 position.


<u>OK:</u>

Voltage: 10 to 14 V

Proceed to next circuit inspection shown in problem symptoms chart (See page DI-526).

DICA0-01

DTC	Zero Point Calibration of Steering Sen-
	sor Undone

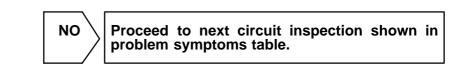
CIRCUIT DESCRIPTION

DTC No.	DTC Detecting Condition	Trouble Area
C1290 / 66	The steering sensor zero point calibration position vastly differs from the recorded value. (The angle becomes larger)	★Yaw rate sensor zero point calibration undone ★Steering angle sensor zero point calibration undone

INSPECTION PROCEDURE

Perform zero point calibration. (See page DI-505)

HINT:


This code is output when a problem occurs in a zero point calibration of the steering angle sensor and yaw rate sensor.

- Therefore, clear the stored zero point calibration data and correct the zero points.
- (a) Clear the zero point calibration data.
- (b) Perform a zero point calibration of the steering sensor and yaw rate sensor.

NE	ХТ
	/

2	ls	DTC	output?

- (a) Clear the DTCs.
- (b) Turn the ignition switch to the ON position.
- (c) Are the same DTCs detected?

YES

No problem.

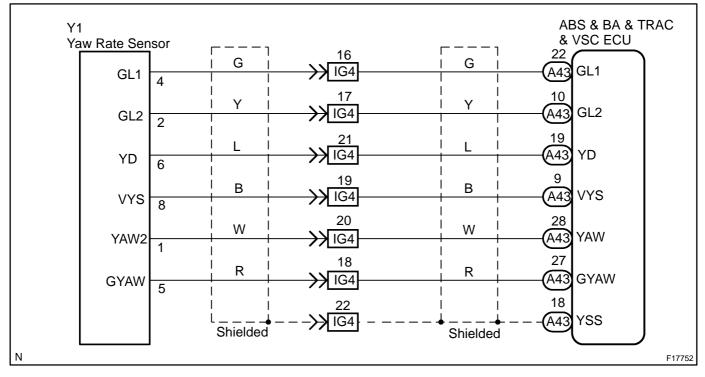
HINT:

When the registered data is not equal to the input data, the DTC will be output.

Zero Point Calibration of Deceleration

DICA1-01

CIRCUIT DESCRIPTION


DTC

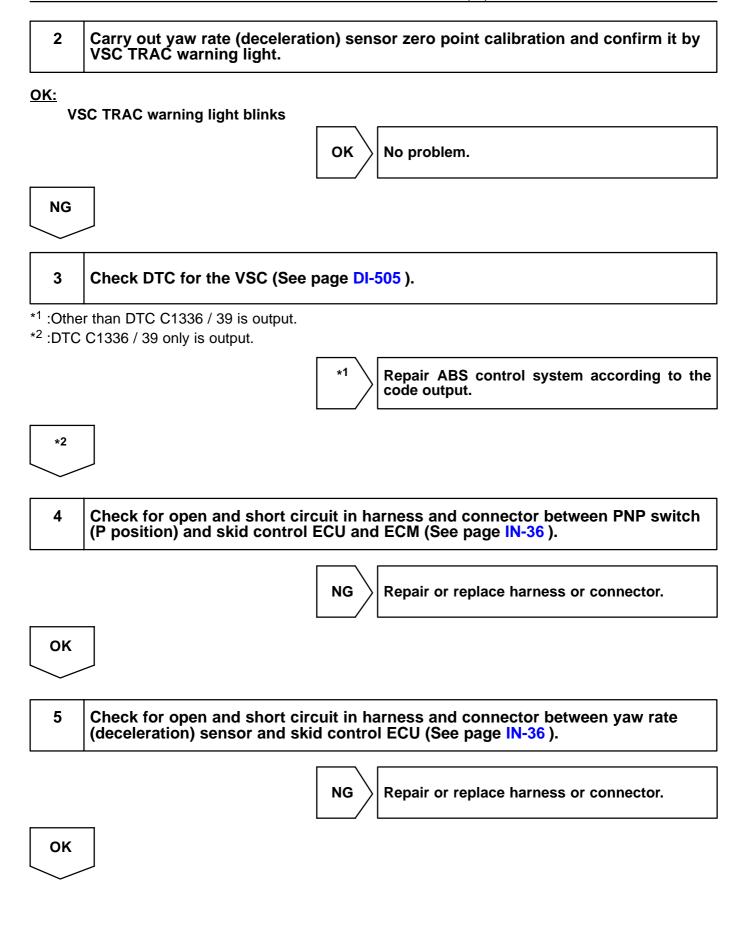
C1336 / 39

DTC No.	DTC Detecting Condition	Trouble Area
C1236 / 39	 When either of the following 1. or 2. is detected: 1. In TEST mode, the shift lever is shifted to other than P position within 2 sec. after ECU terminal IG1 is turned ON for the first time. When the deceleration sensor zero point recorded in ECU is deleted. 	★Deceleration sensor ★Deceleration sensor circuit ★PNP switch circuit (R position)

Sensor Undone

WIRING DIAGRAM

INSPECTION PROCEDURE

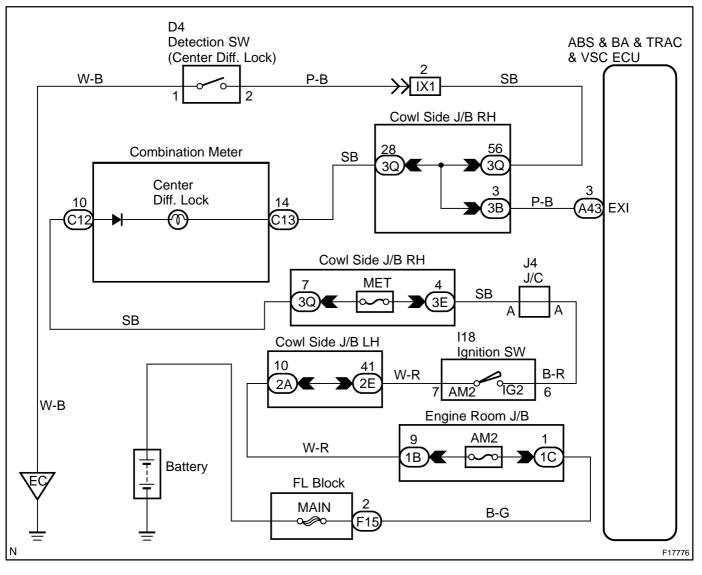

1 Check whether zero point calibration of yaw rate (deceleration) sensor has been done or not.

PREPARATION:

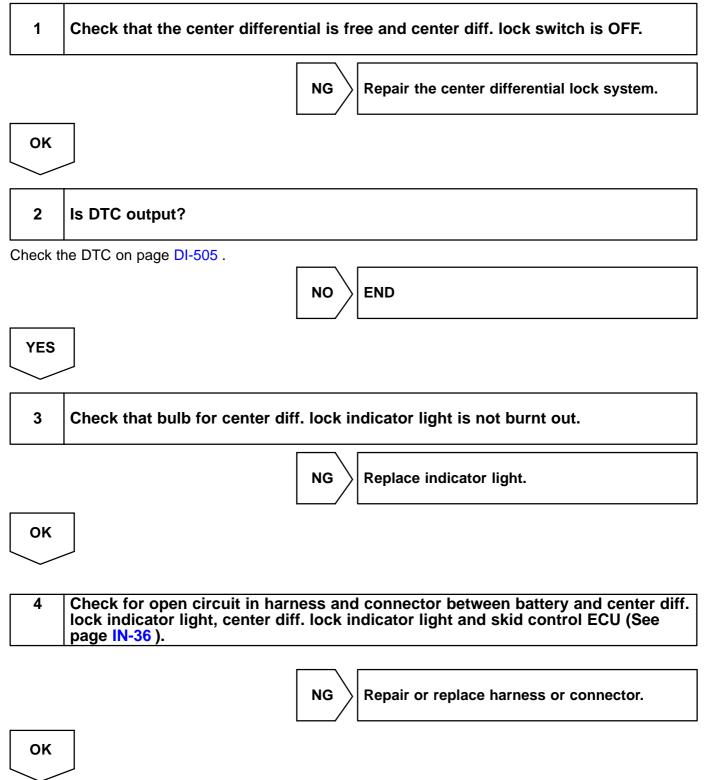
Shift the shift lever in the P position and turn the ignition switch ON. Repeat connecting and releasing Ts and E_1 terminals of the DLC1 4 times or more for 8 sec. After this, turn the ignition switch OFF and after connecting terminals Ts and E_1 , turn it ON again.

-

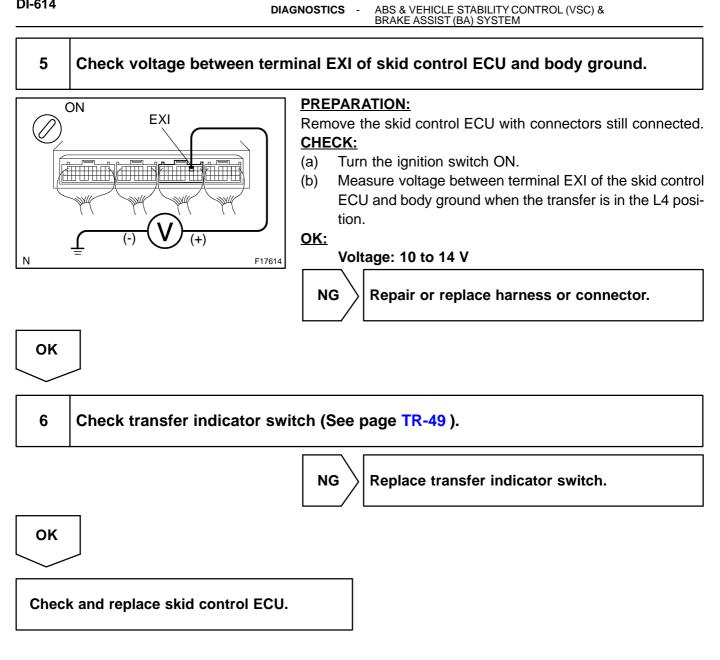
6	Check yaw rate (deceleration) sensor (See page DI-505).	
	NG Replace yaw rate sensor.	
ОК		
Checl	k and replace skid control ECU.	


DICA2-01

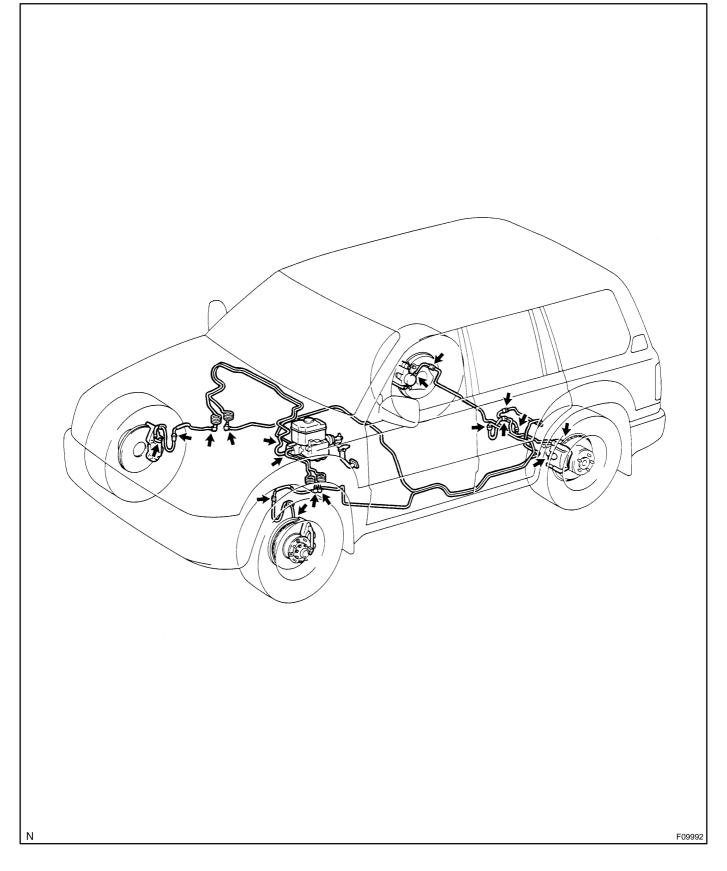
DTC	C1340 / 47	Center Differential Lock Circuit


CIRCUIT DESCRIPTION

DTC No.	DTC Detecting Condition	Trouble Area
01040 / 47	Open or abort in center differential look size it	★Center differential lock system
C1240 / 47 Open or short in center differential lock circuit.	Open of short in center differential lock circuit.	★Center differential lock circuit


WIRING DIAGRAM

INSPECTION PROCEDURE

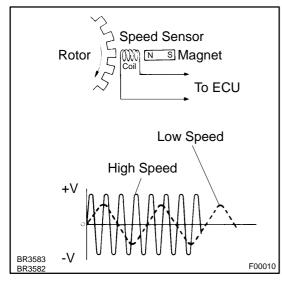

DI-614

DICAE-01

Check for Fluid Leakage

Check for fluid leakage from the actuator or hydraulic lines.

ABS & VEHICLE STABILITY CONTROL (VSC) & BRAKE ASSIST (BA) SYSTEM


DI-615

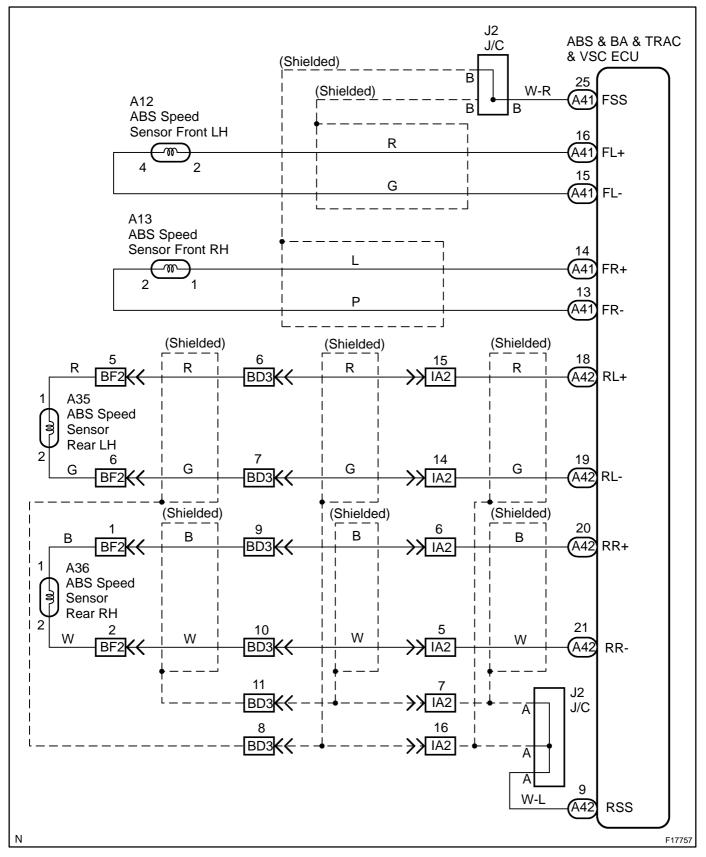
DIC94-02

CIRCUIT INSPECTION

DTC	C0200 / 31 - C1239 / 39	Speed Sensor Circuit

CIRCUIT DESCRIPTION

The speed sensor detects wheel speed and sends the appropriate signals to the ECU. These signals are used for control of the ABS & BA & TRAC & VSC control system. The front and rear rotors each have 48 serrations.


When the rotors rotate, the magnetic field emitted by the permanent magnet in the speed sensor generates AC voltage. Since the frequency of this AC voltage changes in direct proportion to the speed of the rotor, the frequency is used by the ECU to detect the speed of each wheel.

DTC No.	DTC Detecting Condition	Trouble Area
C0200 / 31 C0205 / 32 C0210 / 33 C0215 / 34	 Detection of any of the conditions 1. through 4.: 1. At a vehicle speed of 6 mph (10 km/h) or more, pulses are not input for 15 sec. 2. Momentary interruption of the speed sensor signal occurs at least 7 times in the time between switching the ignition switch ON and switching it OFF. 3. Continuous noise occurs into the speed sensor signals with a vehicle speed at 12 mph (20 km/h) or more. 4. The condition that the speed sensor signal circuit is open continues for 0.12 sec. or more. *ABS does not function *Brake pedal is not depressed *Parking brake is not set *Rear differential does not lock Under the above conditions, when the difference in velocity between the highest rotating and the second highest rotating wheels is within 1 mph (2 km/h), the slowest wheel rotates at 0 mph (0 km/h), and the second or more. 	★Right front, left front, right rear and left rear speed sensor ★Each speed sensor circuit ★Sensor rotor
C1235 / 35 C1236 / 36 C1238 / 38 C1239 / 39	Continuous noise occurs into the speed sensor signals with a vehicle speed at 12 mph (20 km/h) or more continues for 5 sec or more.	ℜRight front, left front, right rear, left rear speed sensorℜSpeed sensor rotor

HINT:

- ★ DTC No. C0200 / 31 and C1235 / 35 are for the right front speed sensor.
- ★ DTC No. C0205 / 32 and C1236 / 36 are for the left front speed sensor.
- ★ DTC No. C0210 / 33 and C1238 / 38 are for the right rear speed sensor.
- ★ DTC No. C0215 / 34 and C1239 / 39 are for the left rear speed sensor.

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

Start the inspection from step 1 in case of using the hand-held tester and start from step 2 in case of not using the hand-held tester.

Check output value of speed sensor.

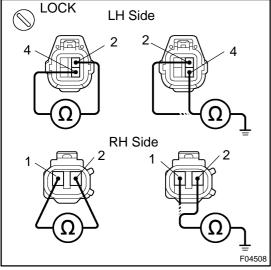
PREPARATION:

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester main switch ON.
- (c) Select the DATALIST mode on the hand-held tester.


CHECK:

Check that there is no difference between the speed value output from the speed sensor displayed on the hand-held tester and the speed value displayed on the speedometer when driving the vehicle. **OK:**

There is almost no difference from the displayed speed value.


HINT:

There is tolerance of \pm 10 % in the speedometer indication.

NG

2 Check speed sensor.

Front: PREPARATION:

- (a) Make sure that there is no looseness at the connector's locking part and connecting part of the connector.
- (b) Disconnect the speed sensor connector.

CHECK:

★ LH side:

Measure resistance between terminals 2 and 4 of the speed sensor connector.

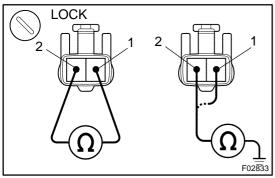
★ RH side:

Measure resistance between terminals 1 and 2 of the speed sensor connector.

<u>OK:</u>

Resistance: 0.92 to 1.22 k Ω

CHECK:


★ LH side:

Measure resistance between terminals 2 and 4 of the speed sensor connector and body ground.

★ RH side:

Measure resistance between terminals 1 and 2 of the speed sensor connector and body ground.

<u>OK:</u>

Resistance: 1 M Ω or higher

Rear:

PREPARATION:

- (a) Make sure that there is no looseness at the connector's locking part and connecting part of the connector.
- (b) Disconnect the speed sensor connector.

CHECK:

Measure resistance between terminals 1 and 2 of the speed sensor connector.

<u>OK:</u>

Resistance: 1.0 to 1.4 k Ω

CHECK:

Measure resistance between terminal 1 or 2 of the speed sensor connector and body ground.

<u>OK:</u>

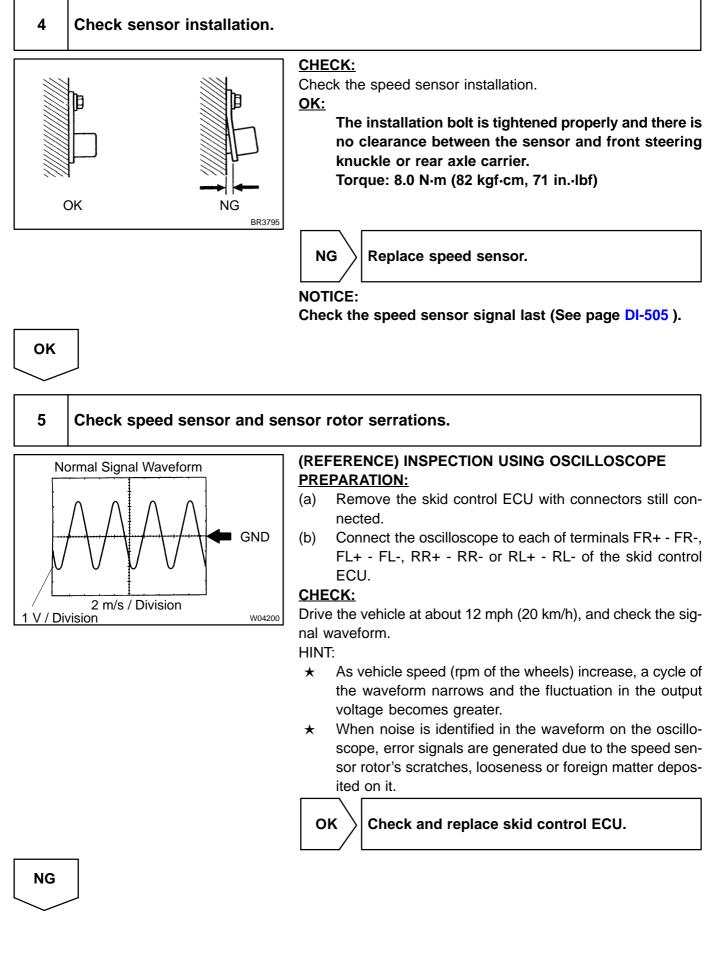
Resistance: 1 M Ω or higher

NOTICE:

Check the speed sensor signal last (See page DI-505).

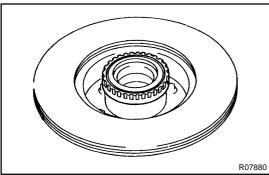
Repair or replace harness or connector.

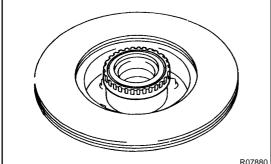
OK

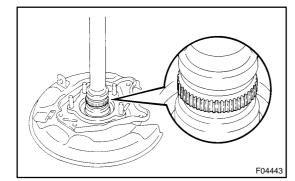

3	Check for open and short circuit in harness and connector between each speed sensor and ECU (See page IN-36).

NG

OK


DIAGNOSTICS -


ABS & VEHICLE STABILITY CONTROL (VSC) & BRAKE ASSIST (BA) SYSTEM



ABS & VEHICLE STABILITY CONTROL (VSC) & BRAKE ASSIST (BA) SYSTEM

6 Check sensor rotor and sensor tip.

Front: **PREPARATION:**

Remove the front axle hub (See page SA-12).

CHECK:

Check the sensor rotor serrations.

OK:

No scratches, missing teeth or foreign matter. **PREPARATION:**

Remove the front speed sensor (See page BR-69).

CHECK:

Check the sensor tip.

OK:

No scratches or foreign matter on the sensor tip.

HINT:

If foreign matter (including that on the sensor rotor side) is identified, remove it and after reassembling, check the output wareform.

Rear:

PREPARATION:

Remove the rear axle shaft (See page SA-84).

CHECK:

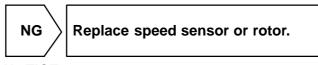
Check the sensor rotor serrations.

OK:

No scratches, missing teeth or foreign matter. **PREPARATION:**

Remove the rear speed sensor (See page BR-72).

CHECK:


Check the sensor tip.

OK:

No scratches or foreign matter on the sensor tip.

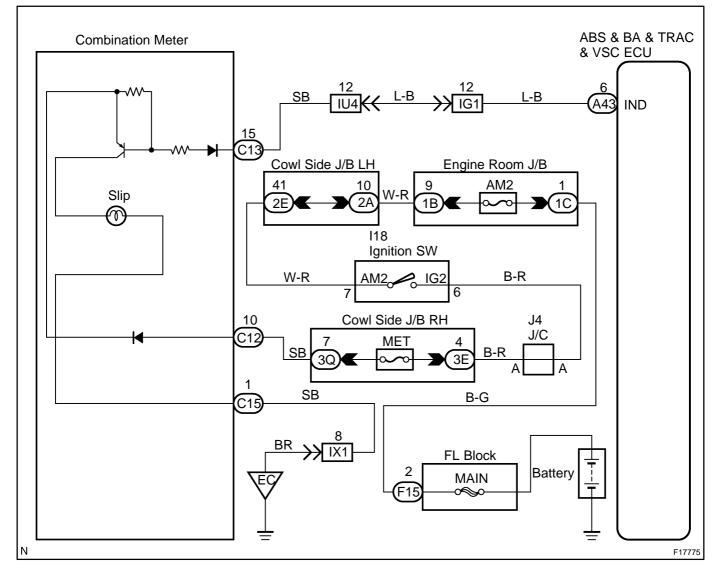
HINT:

If foreign matter (including that on the sensor rotor side) is identified, remove it and after reassembling, check the output wareform.

NOTICE:

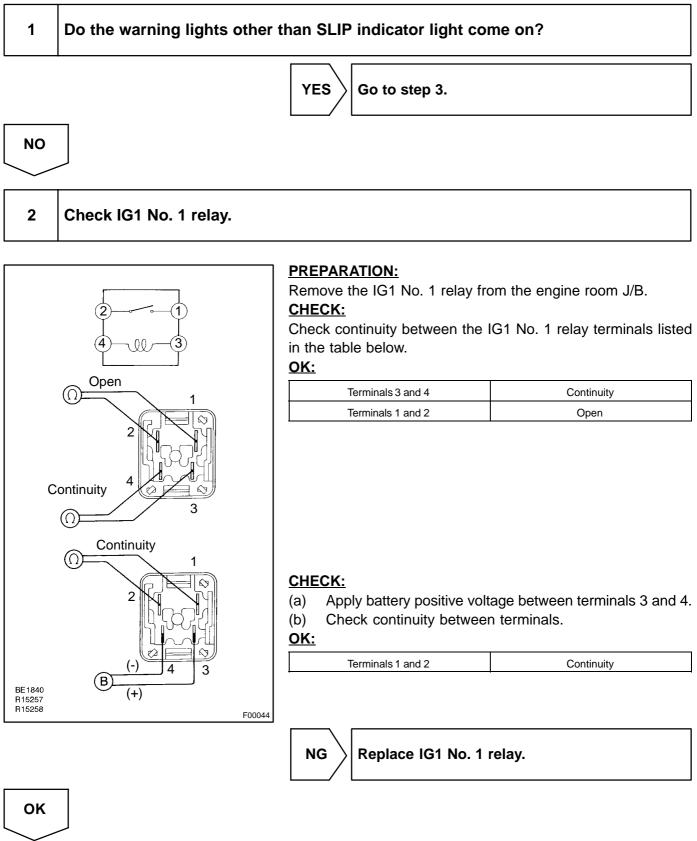
Check the speed sensor signal last (See page DI-505).

OK

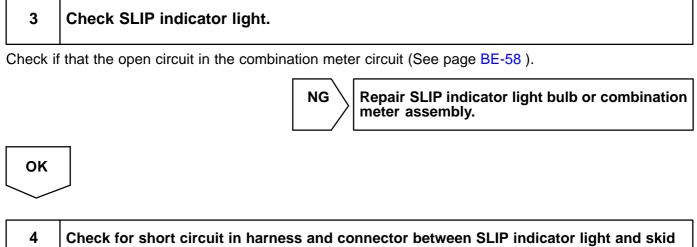

Check and replace skid control ECU.

SLIP Indicator Light Circuit

CIRCUIT DESCRIPTION


The SLIP indicator blinks during VSC operation.

WIRING DIAGRAM


DICA8-02

INSPECTION PROCEDURE

Check for open circuit in harness and connector between IG1 No. 1 relay and combination meter (See page IN-36).

ABS & VEHICLE STABILITY CONTROL (VSC) & BRAKE ASSIST (BA) SYSTEM

control ECU (See page IN-36).

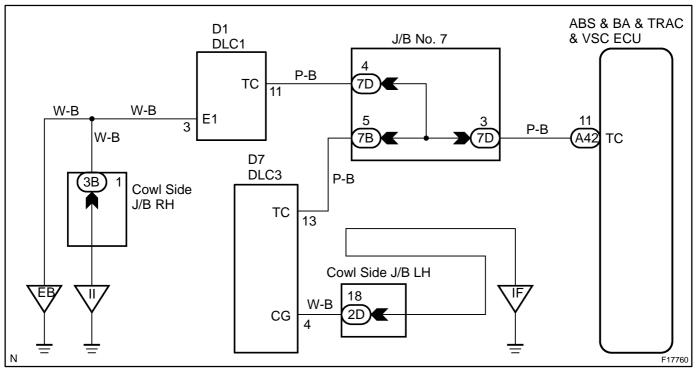
NG

Repair or replace harness or connector.

Check and repair skid control ECU.

OK

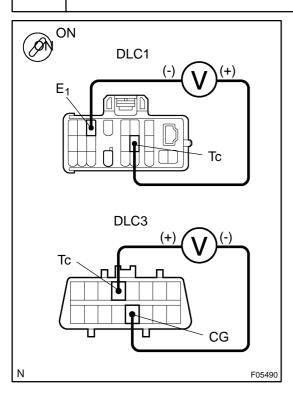
DI-651


DICAC-01

Tc Terminal Circuit

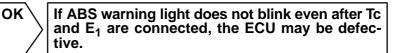
CIRCUIT DESCRIPTION

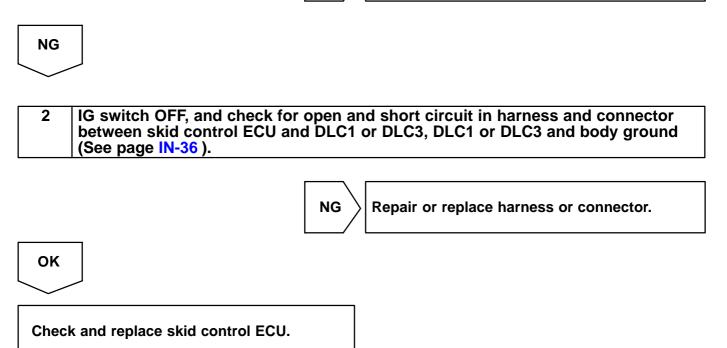
Connecting terminals Tc and E_1 of the DLC1 or Tc and CG of the DLC3 causes the ECU to display the DTC by flashing the ABS warning light and VSC TRAC warning light.


WIRING DIAGRAM

INSPECTION PROCEDURE

1

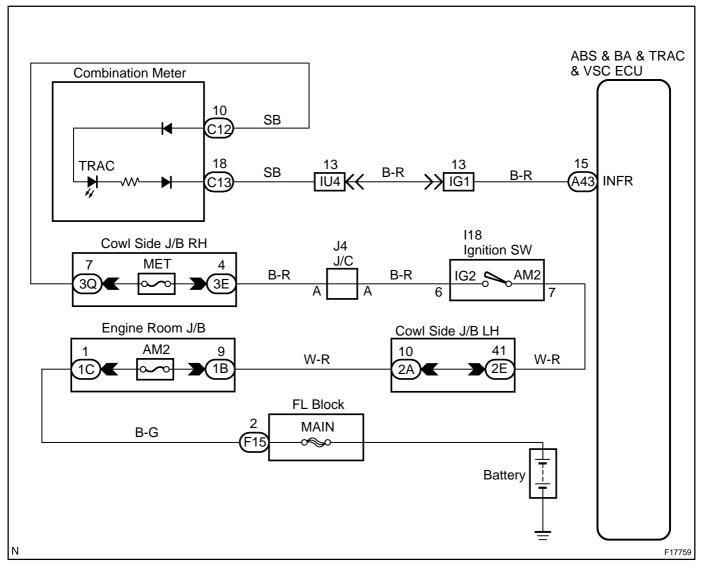

Check voltage between terminals Tc and E_1 of DLC1 or Tc and CG of DLC3.



CHECK:

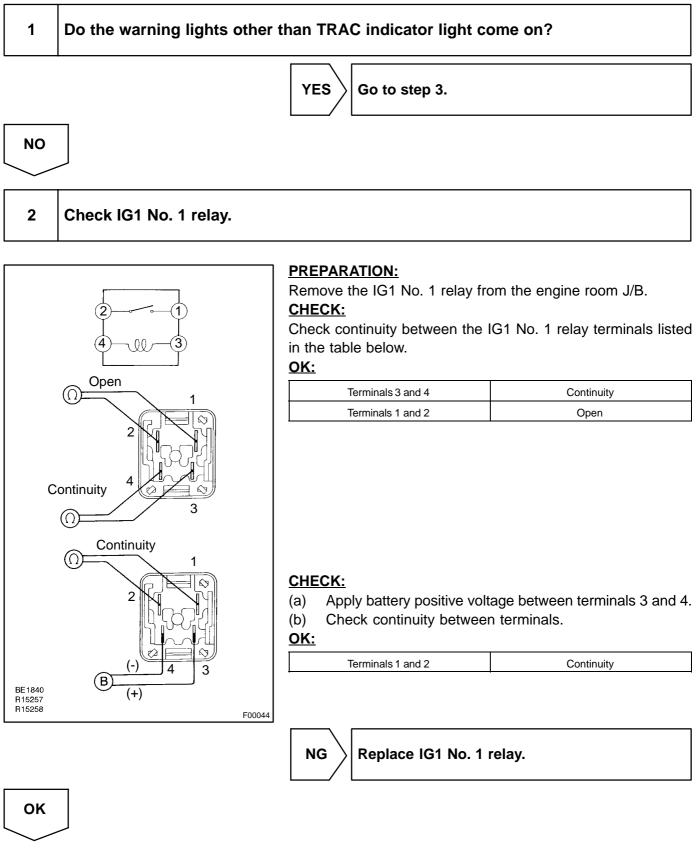
- (a) Turn the ignition switch ON.
- (b) Measure voltage between terminals Tc and E1 of the DLC1 or Tc and CG of the DLC3.
- <u>OK:</u>

Voltage: 10 to 14 V



TRAC Indicator Light Circuit

CIRCUIT DESCRIPTION


The TRAC indicator light blinks during TRAC operation.

WIRING DIAGRAM

DICA9-02

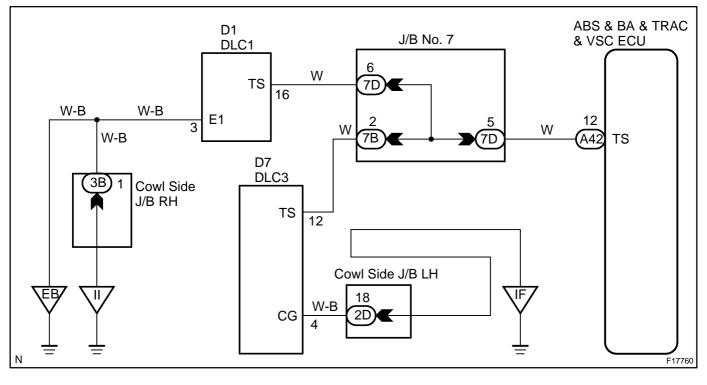
INSPECTION PROCEDURE

Check for open circuit in harness and connector between IG1 No. 1 relay and combination meter (See page IN-36).

DIAGNOSTICS -

3 Check TRAC indicator light. Check that the open circuit in the combination meter circuit (See page BE-58). NG Repair TRAC indicator light bulb or combination meter assembly. OK 0K 4 Check for short circuit in harness and connector between TRAC indicator light and skid control ECU (See page IN-36). NG Repair or replace harness or connector.

Check and repair skid control ECU.

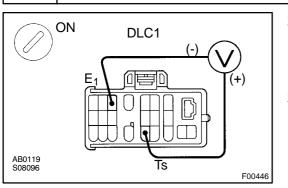

Ts Terminal Circuit

CIRCUIT DESCRIPTION

The sensor check circuit detects abnormalities in the speed sensor signal which cannot be detected by the DTC check.

Connecting terminals Ts and E_1 of the DLC1 starts the check.

WIRING DIAGRAM


DICAD-01

-

INSPECTION PROCEDURE

1

Check voltage between terminals Ts and E_1 of DLC1.

CHECK:

- (a) Turn the ignition switch ON.
- (b) Measure voltage between terminals Ts and E_1 of the DLC1.

<u> 0K:</u>

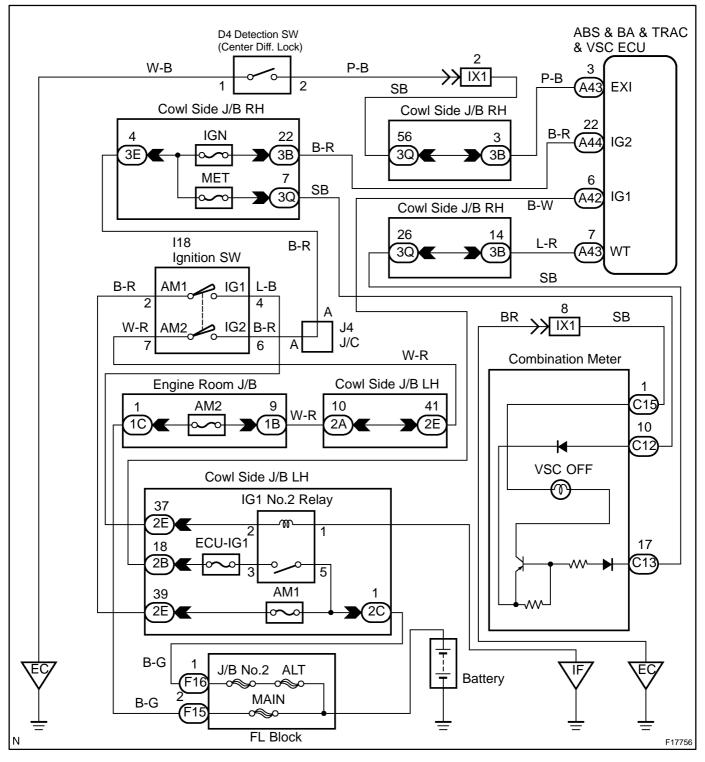
Voltage: 10 to 14 V

If ABS warning light does not blink even after Ts and E_1 are connected, the ECU may be defective.

between skid control ECU and DLC1, DLC1 and body ground (See page IN-36

 NG
 Repair or replace harness or connector.

 OK
 Check and replace skid control ECU.


DICAA-02

VSC OFF Indicator Light, Center Diff Lock Switch Circuit

CIRCUIT DESCRIPTION

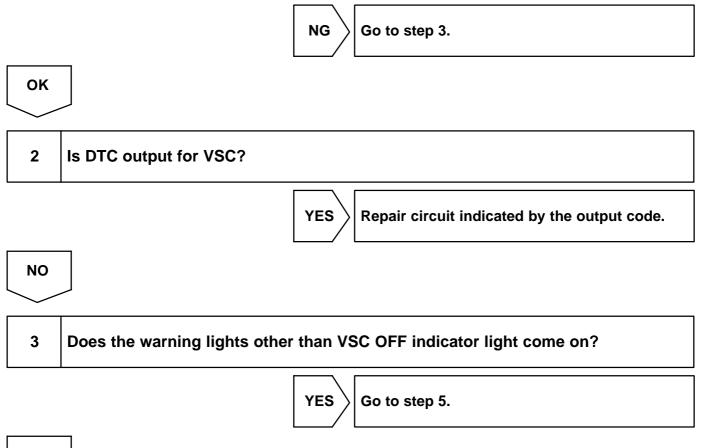
This is the VSC control main switch. When the center differential is locked, VSC control goes off and the VSC OFF indicator light lights up.

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

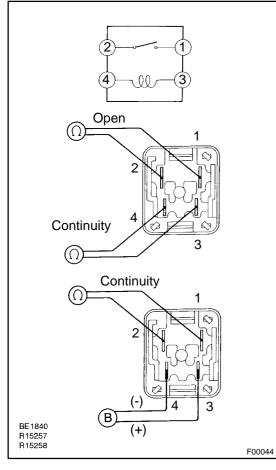
Start the inspection from step 1 in case of using the hand-held tester and start from step 2 in case of not using the hand-held tester.


Check operation of the VSC OFF indicator light.

PREPARATION:

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester main switch ON.
- (c) Select the ACTIVE TEST mode on the hand-held tester.

CHECK:


Check that "ON" and "OFF" of the VSC OFF indicator light can be shown on the combination meter with the hand-held tester.

NO

Check IG1 No. 1 relay.

4

PREPARATION:

Remove the IG1 No. 1 relay from the engine room J/B. CHECK:

Check continuity between the IG1 No. 1 relay terminals listed in the table below.

<u> 0K:</u>

Terminals 3 and 4	Continuity
Terminals 1 and 2	Open

CHECK:

- (a) Apply battery positive voltage between terminals 3 and 4.
- (b) Check continuity between terminals.

<u> 0K:</u>

Terminals 1 and 2 Continuity

NG

 \rangle Replace IG1 No. 1 relay.

οк

Check for open circuit in harness and connector between IG1 No. 1 relay and combination meter (See page IN-36).

5 Check VSC OFF indicator light.

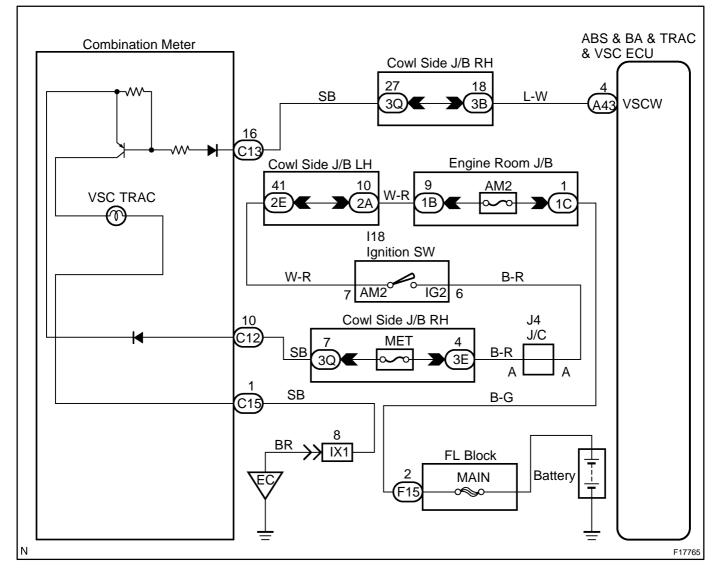
Check that the open circuit in the combination meter circuit (See page BE-58).

NG Repair VSC OFF indicator light bulb or combination meter assembly.

ΟΚ

2004 LAND CRUISER (RM1071U)

6	Check for short circuit in harness and connector between VSC OFF indicator light and skid control ECU (See page IN-36).					
	NG Repair or replace harness or connector.					
ОК						
7	Check if center diff. lock switch remains ON, or check wire harness between cen- ter diff. lock switch and body ground for short circuit.					
	NG Repair center diff. lock switch or repair or replace wire harness.					
ОК						
Checl	k and repair skid control ECU.					


DICA6-02

VSC TRAC Warning Light Circuit

CIRCUIT DESCRIPTION

If the ECU stores DTC, the VSC TRAC warning light illuminates the combination meter.

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

Troubleshoot in accordance with the table below for each trouble symptom.

VSC TRAC warning light does not light up	*1
VSC TRAC warning light remains on	*2

*¹: Start the inspection from step 1 in case of using the hand-held tester and start from step 2 in case of not using the hand-held tester.

*²: After inspection with step 4, start the inspection from step 5 in case of using the hand-held tester and start from step 6 in case of not using hand-held tester.

1	Check operation of the VSC TRAC warning light.
•	Check operation of the VSC TRAC warning light.

PREPARATION:

(a) Connect the hand-held tester to the DLC3.

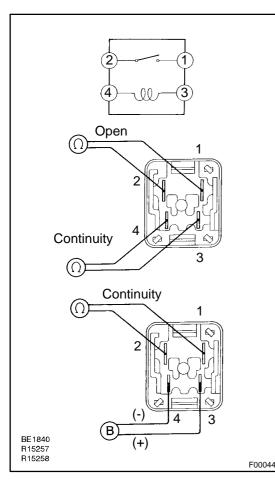
- (b) Turn the ignition switch ON and push the hand-held tester main switch ON.
- (c) Select the ACTIVE TEST mode on the hand-held tester.

CHECK:

Check that "ON" and "OFF" of the VSC TRAC warning light can be shown on the combination meter on the hand-held tester.

NG

2 Does the warning lights other than VSC TRAC warning light come on?



Repair VSC TRAC warning light bulb or combination meter assembly.

NO

Check IG1 No. 1 relay.

3

PREPARATION:

Remove the IG1 No. 1 relay from the engine room J/B. CHECK:

Check continuity between the IG1 No. 1 relay terminals listed in the table below.

<u>OK:</u>

Terminals 3 and 4	Continuity
Terminals 1 and 2	Open

CHECK:

- (a) Apply battery positive voltage between terminals 3 and 4.
- (b) Check continuity between terminals.

<u>OK:</u>

Terminals 1 and 2	Continuity
-------------------	------------

NG Replace IG1 No. 1 relay.

OK

Check for open circuit in harness and connector between IG1 No. 1 relay and combination meter (See page IN-36).

4	Check that the ECU connectors are securely connected to the ECU.
	NO Connect the connector to the ECU.
YES	
\checkmark	
5	Check operation of the VSC TRAC warning light (See step 1).
	OK Check and replace skid control ECU.
NG	
\searrow	
6	Is DTC output?
Check t	he DTC on page DI-505 .
	YES Repair circuit indicated by the output code.
NO	
\searrow	
7	Check for short circuit in harness and connector between VSC TRAC warning light and skid control ECU (See page IN-36).
	NG Repair or replace harness or connector.
ок	
\geq	

CUSTOMER PROBLEM ANALYSIS CHECK

DIC8P-01

DI-503

ABS & EBD & BA Check Sheet

Inspector's . Name

			Registration No.			
Customer's Name			Registration Date	1	1	
			Frame No.			
Date Vehicle Brought In	1	1	Odometer Reading			km miles

Date Problem First Occurred		1	Ι	
Frequency Problem Occurs	Continuously		□ Intermittently (times a day)

	ABS does not operate.						
	ABS does not operate efficiently.						
	BA does not operate.						
Symptoms	EBD does not operate.						
	ABS Warning Light Abnormal		Remains ON		Does not light up		
	Brake Warning Light Abnormal (PKB released)		Remains ON		Does not light up		

DTC Chook	1st Time	Normal Code	Malfunction Code (Code)
DTC Check	2nd Time	Normal Code	Malfunction Code (Code)

	STOP LIGHT SW	□ ON	D OFF
Freeze Frame Data		□ NO SYS □ ABS	
	SYSTEM	□ BA □ FAIL SF	
	#IG ON		
	VEHICLE SPD		km/h MPH

TRAC & VSC Check Sheet

Inspector's . Name

			Registration No.			
Customer's Name			Registration Date	/	1	
			Frame No.			
Date Vehicle Brought In	1	1	Odometer Reading		kr m	n iles

Date Problem First Occurred		1		1
Frequency Problem Occurs	Continuous		Intermittent (times a day)

	□ TRAC does not operate. (Wheels spin when starting rapidly.)										
	VSC does not operate. (Wheels sideslip at the time of sharp turning.)										
	TRAC OFF Indicator Light Abnormal		Remains ON		Does not light up						
Symptoms	VSC TRC Warning Indicator Abnormal		Displays		Does not display						
	SLIP Indicator Light Abnormal		Remains ON		Does not light up						
	Skid Control Buzzer Abnormal		Sounds		Does not sound						
	ABS Warning Light		Normal		Malfunction Code (Code)						

	Indicator Light	Honnar		,
	1st Time	Normal Code	Malfunction Code (Code)
DTC Check	2nd Time	Normal Code	Malfunction Code (Code)

Normal

Malfunction

	VSC/TRC OFF SW			N				C)FF	
Freeze Frame Data	SYSTEM		VSC/	TRC						
Freeze Frame Data	SHIFT POSITION		P,N		2		R		3	
	SHILLFOSTION		D		4		L		FAIL	
	STEERING ANG				deg					
	YAW RAT					deg/s				
	MAS CYL PRESS		V							
	THROTTLE					deg				
	MAS PRESS GRADE				MPa/s					
	G (RIGHT&LEFT)							G		
	G (BACK&FORTH)							G		

Check Item

□ Malfunction Code (Code

)

DIAGNOSTIC TROUBLE CODE CHART

NOTICE:

When removing the part, turn the ignition switch OFF. HINT:

- ★ Using SST 09843-18020 or 09843-18040, connect terminals Tc and E₁ of the DLC1 or Tc and CG of the DLC3.
- \star If any abnormality is not found when inspecting parts, inspect the ECU.
- ★ If a malfunction code is displayed during the DTC check, check the circuit listed that code. For details of each code, turn to the page referred to under the "See page" for respective "DTC No." in the DTC chart.

DTC chart of ABS:

DTC No. (See Page)	Detection Item	Trouble Area		
C0278 / 11 (DI-531)	Open or short in ABS solenoid relay circuit	★ABS solenoid relay		
C0279 / 12 (DI-531)	B+ short in ABS solenoid relay circuit	★ABS solenoid relay circuit		
C0226 / 21 (DI-528)	Open or short in hydraulic brake booster solenoid circuit (SFR circuit)	Hydraulic brake booster ★SFRR or SFRH circuit		
C0236 / 22 (DI-528)	Open or short in hydraulic brake booster solenoid circuit (SFL circuit)	₩ydraulic brake booster ★SFLR or SFLH circuit		
C0246 / 23 (DI-528)	Open or short in hydraulic brake booster solenoid circuit (SRR circuit)	₩ydraulic brake booster ★SRRR or SRRH circuit		
C0256 / 24 (DI-528)	Open or short in hydraulic brake booster solenoid circuit (SRL circuit)	Hydraulic brake booster SRLR or SRLH circuit		
C1225 / 25 (DI-543)	Open or short in hydraulic brake booster solenoid circuit (SA1 circuit)	Hydraulic brake booster ★SA1 circuit		
C1226 / 26 (DI-543)	Open or short in hydraulic brake booster solenoid circuit (SA2 circuit)	Hydraulic brake booster ★SA2 circuit		
C1227 / 27 (DI-543)	Open or short in hydraulic brake booster solenoid circuit (SA3 circuit)	Hydraulic brake booster ★SA3 circuit		
C1228 / 28 (DI-543)	Open or short in hydraulic brake booster solenoid circuit (STR circuit)	Hydraulic brake booster ★STR circuit		
C0200 / 31* ¹ (DI-615)	Right front wheel speed sensor signal malfunction			
C0205 / 32* ¹ (DI-615)	Left front wheel speed sensor signal malfunction	Right front, left front, right rear and left rear speed sensor		
C0210 / 33* ¹ (DI-615)	Right rear wheel speed sensor signal malfunction	₩Each speed sensor circuit ★Sensor rotor		
C0215 / 34* ¹ (DI-615)	Left rear wheel speed sensor signal malfunction			
C1235 / 35 (<mark>DI-615</mark>)	Foreign matter is attached on the tip of the right front sensor	Right front, left front, right rear, left rear speed sensor		
C1236 / 36 (DI-615)	Foreign matter is attached on the tip of the left front sensor	*Sensor rotor		
C1237 / 37 (DI-557)	Size of some tires is different from the other tires	Tire size		

DIC8V-01

DIAGNOSTICS -

C1238 / 38 (DI-615) Foreign matter is attached on the tip of the right rear sensor		₩Right front, left front, right rear, left rear speed sensor				
C1239 / 39 (DI-615)	Foreign matter is attached on the tip of the left rear sensor	★Sensor rotor				
C1241 / 41 (DI-558)	Low battery positive voltage or abnormally high battery positive voltage					
C1242 / 42*2 (DI-561)	Open in IG2 circuit					
C1243 / 43 (DI-564)	Malfunction in deceleration sensor (constant output)	 ★Deceleration sensor ★Wire harness for deceleration sensor system 				
C1244 / 44 (DI-567)	Open or short in deceleration sensor circuit	 ★Deceleration sensor ★Deceleration sensor circuit 				
C1245 / 45 (<mark>DI-564</mark>)	Malfunction in deceleration sensor	 ★Deceleration sensor ★Wire harness for deceleration sensor system 				
C1246 / 46 (DI-570)	Malfunction in master cylinder pressure sensor	 ₩Master cylinder pressure sensor ★Master cylinder pressure sensor circuit 				
C1249 / 49 (DI-573)	Open in stop light switch circuit	★Stop light bulb ★Stop light switch circuit				
C1251 / 51* ² (DI-577)	Pump motor is locked Open circuit in pump motor ground	Hydraulic brake booster pump motor				
C1252 / 52 ^{*2} (DI-580)	Hydraulic brake booster pump motor malfunction	 ★Hydraulic brake booster pump motor ★Hydraulic brake booster pump motor circuit ★Pressure switch (PH or PL) 				
C1253 / 53*2 (DI-586)	Hydraulic brake booster pump motor relay malfunction	 ★ABS motor1 or ABS motor 2 relay ★ABS motor1 or ABS motor 2 relay circuit ★Hydraulic brake booster pump motor circuit 				
C1254 / 54* ² (DI-592)	Pressure switch malfunction					
C1256 / 56* ² (DI-595)	Accumulator low pressure malfunction	 ★Accumulator ★Pressure switch (PH or PL) ★Hydraulic brake booster pump motor 				
C1257 / 57* ² (DI-602)	Power supply drive circuit malfunction	 ★Battery ★Power source circuit ★Skid control ECU 				
C1203 / 59 (DI-536)	ECM communication circuit malfunction	★TRC+ or TRC- circuit ★ENG+ or ENG- circuit ★ECM				
C1268 / 68 (DI-605)	Transfer L4 position signal transmission failure	 ★Transfer L4 position switch ★Transfer L4 position switch circuit 				
Always ON (DI-621)	Malfunction in skid control ECU					

*¹: As the DTC cannot be erased by replacing parts alone do either of the following operations.

(1) Clear the DTC (See page DI-505).

(2) At a speed of 20 km/h (12 mph), drive the vehicle for 30 sec. or more.

*²: Using the following table, troubled parts can be specified.

DIAGNOSTICS -

ABS & VEHICLE STABILITY CONTROL (VSC) & BRAKE ASSIST (BA) SYSTEM

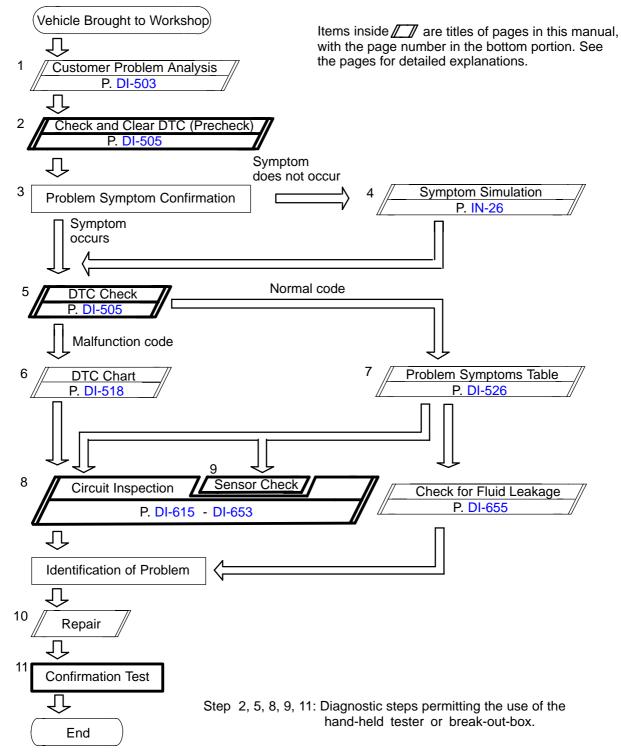
DTC		C124	42/42	C125	51/51	C1252/52		C1253/53		C1254/54		C1256/56		C1257/57	
BRAKE warning I	ight and buzzer	Light	Buzzer	Light	Buzzer	Light	Buzzer	Light	Buzzer	Light	Buzzer	Light	Buzzer	Light	Buzzer
Pressure switch	РН														
Flessure Switch	PL														
	Pump motor														
Pump motor circuit	MTT wire harness														
	MT+ wire harness														
	MT- wire harness														
Accumulator malfunction	n														
	MR1 open circuit														
	MR2 open circuit														
Motor relay circuit	MR1 welded contact														
	MR2 welded contact														
Hydraulic brake booster	Pressure leaks														
Power source*	IG2 open circuit														
ECU	Power supply circuit														

Table of Trouble Part and DTC:

*: When IG1 circuit is open, the ABS warning light and BRAKE warning light come on.

DTC chart of VSC:

DTC No. (See Page)	Detection Item	Trouble Area
C1231 / 31 (DI-546)	Malfunction in steering angle sensor	★Steering angle sensor ★Steering angle sensor circuit
C1232 / 32 (DI-551)	Malfunction in deceleration sensor	 ★Deceleration sensor ★Deceleration sensor circuit
C1233 / 33 (DI-553)	Open or short in yaw rate sensor circuit	⊀Yaw rate sensor ★Yaw rate sensor circuit
C1234 / 34 (DI-553)	Malfunction in yaw rate sensor	 ★Yaw rate sensor ★Yaw rate sensor circuit
C1335 / 35 (DI-546)	Open circuit in steering angle sensor	
C1210 / 36 (DI-538)	Zero point calibration of yaw rate sensor undone	 ★Yaw rate sensor ★Yaw rate sensor circuit ★PNP switch circuit (P position)
C1336 / 39 (DI-609)	Zero point calibration of deceleration sensor undone	 ★Deceleration sensor ★Deceleration sensor circuit ★PNP switch (P position) circuit
C1223 / 43 (DI-540)	Malfunction in ABS control system	ABS control system
C1224 / 44 (DI-541)	Open or short in NE signal circuit	HNEO circuit HECM HSkid control ECU
C1290 / 66 (DI-608)	Zero point calibration of steering sensor undone	 ★Steering angle sensor zero point calibration ★Yaw rate sensor zero point calibration
C1340 / 47 (DI-612)	Open circuit in center differential lock signal	 ★Center differential lock system ★Center differential lock circuit
C1201 / 51 (DI-535)	ECM system malfunction	Engine control system
C1203 / 53 (DI-536)	ECM communication circuit malfunction	★TRC+ or TRC- circuit ★ENG+ or ENG- circuit ★ECM
Always ON (DI-627)	Malfunction in skid control ECU Open in VSC TRAC warning light circuit	 ★Power source circuit ★VSC TRAC warning light circuit


HINT:

There is a case that TOYOTA hand-held tester cannot be used when the VSC TRAC warning light is always on.

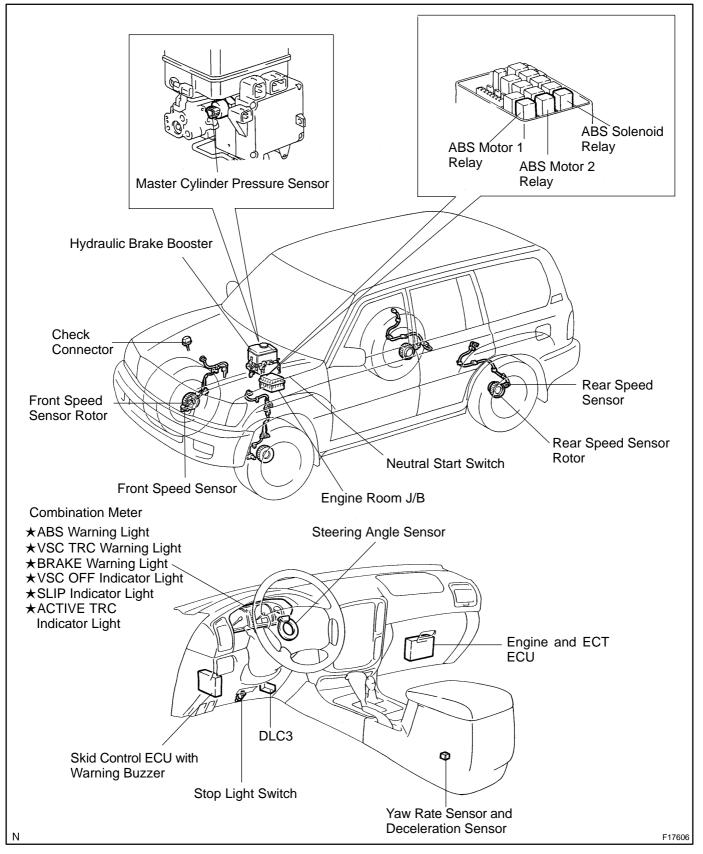
ABS & VEHICLE STABILITY CONTROL (VSC) & BRAKE ASSIST (BA) SYSTEM

HOW TO PROCEED WITH TROUBLESHOOTING

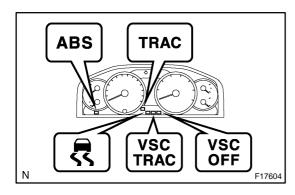
Troubleshoot in accordance with the procedure on the following pages.

Fail safe function:

When a failure occurs in the ABS & BA & TRAC & VSC systems, the ABS and VSC warning lights are lit and ABS & BA & TRAC & VSC operation is prohibited. In addition to this, when the failure which disables EBD operation occurs, the BRAKE warning light is lit as well and EBD operation is prohibited.


DIC8N-01

DI-522


ABS & VEHICLE STABILITY CONTROL (VSC) & BRAKE ASSIST (BA) SYSTEM

DIC8X-01

PARTS LOCATION

DIC8S-02

PRE-CHECK

1. DIAGNOSIS SYSTEM

- (a) Check the warning lights and buzzer.
 - (1) Release the parking brake lever.
 - (2) When the ignition switch is turned ON, check that the ABS, VSC TRAC and BRAKE warning lights, VSC OFF, SLIP and TRAC indicator lights come on for 3 sec.
 - (3) When depressing the brake pedal repeatedly, it may turn on the ABS, VSC TRAC and BRAKE warning lights, VSC OFF indicator light and buzzer.

HINT:

- ★ If the ECU stores DTC, the ABS, VSC TRAC and BRAKE warning lights and VSC OFF indicator light come ON.
- ★ If the indicator check result is not normal, proceed to troubleshooting for the ABS warning light circuit, VSC TRAC warning light circuit, brake warning light circuit, VSC OFF indicator light circuit, SLIP indicator light circuit and AC-TIVE TRAC indicator light circuit.

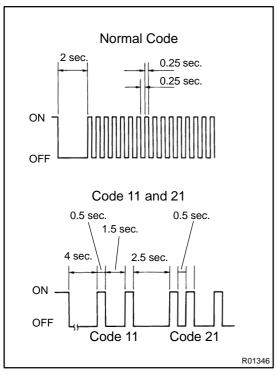
Trouble Area	See Page
ABS warning light circuit	DI-627
VSC TRAC warning light circuit	DI-631
BRAKE warning light circuit	DI-635
VSC OFF indicator light circuit	DI-645
SLIP indicator light circuit	DI-639
TRAC indicator light circuit	DI-642

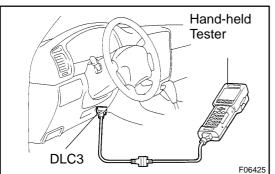
CG

F05476

- (b) In case of not using hand-held tester: Check the DTC.
 - (1) Using SST, connect terminals Tc and E_1 of the DLC1 or Tc and CG of the DLC3.
 - SST 09843-18020 or 09843-18040
 - (2) Turn the ignition switch ON.
 - (3) Read the DTC from the ABS or VSC TRAC warning light on the combination meter.

HINT:


★ If no code appears, inspect the Tc circuit, ABS or VSC TRAC warning light circuit.

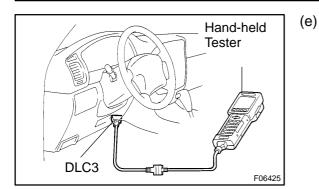

Trouble Area	See page
Tc circuit	DI-651
ABS warning light circuit	DI-627
VSC TRAC warning light circuit	DI-631

2004 LAND CRUISER (RM1071U)

F02201

N09214

- ★ As an example, the blinking patterns for normal code and codes 11 and 21 are shown on the left.
 - (4) Codes are explained in the code table on page DI-518.
 - (5) After completing the check, disconnect terminals Tc and E₁ of the DLC1 or Tc and CG of the DLC3 and turn off the display.


If 2 or more malfunctions are indicated at the same time the lowest numbered DTC will be displayed 1st.

- (c) In case of using hand-held tester: Check the DTC.
 - (1) Hook up the hand-held tester to the DLC3.
 - (2) Turn the ignition switch ON.
 - (3) Read the DTC by following the prompts on the tester screen.

HINT:

Please refer to the hand-held tester operator's manual for further details.

- (d) In case of not using hand-held tester: Clear the DTC.
 - (1) Using SST, connect terminals Tc and E_1 of the DLC1 or Tc and CG of the DLC3.
 - SST 09843-18020 or 09843-18040
 - (2) Turn the ignition switch ON.
 - (3) Clear the DTC stored in the ECU by depressing the brake pedal 8 or more times within 5 sec.
 - (4) Check that the warning light shows the normal code.
 - (5) Remove the SST from the terminals of the DLC1 or DLC3.
 - SST 09843-18020 or 09843-18040

In case of using hand-held tester: Clear the DTC.

- (1) Hook up the hand-held tester to the DLC3.
- (2) Turn the ignition switch ON.
- (3) Operate the hand-held tester to erase the codes. (See the hand-held tester operator's manual.)

2. DATA LIST

HINT:

According to the DATA LIST displayed by the hand-held tester, you can read the value of the switch, sensor, actuator and so on without parts removal. Reading the DATA LIST as a first step of troubleshooting is one of the methods to shorten labor time.

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON.
- (c) According to the display on the tester, read the "DATA LIST".

ltem	Measurement Item/Range (Display)	Normal Condition*	Diagnostic Note
HB MOT RELAY	HB Motor relay status/ ON or OFF	-	-
ABS MOT RELAY	Motor relay status/ ON or OFF	-	-
SOL RELAY	Solenoid relay status/ ON or OFF	-	-
PRESS HIGH	HIGH Hydraulic brake boost pres- sure/ ON or OFF	-	-
PRESS LOW	LOW Hydraulic brake boost pressure/ ON or OFF	-	-
VSC/TRC OFF SW	VSC OFF switch/ ON or OFF	-	-
IDLE SW	Main idle switch/ ON or OFF	ON: Accelerator pedal released OFF: Accelerator pedal depressed	-
STOP LIGHT SW	Stop light switch/ ON or OFF	ON: Brake pedal released OFF: Brake pedal depressed	-
PKB SW	PKB sw/ ON or OFF	ON: Parking brake applied OFF: Parking brake released	-
ABS OPERT FR	Front Right wheel operation/ BEFORE or OPERATE	BEFORE: No ABS operation (FR) OPERATE: During ABS operation (FR)	-
ABS OPERT FL	Front Left wheel operation/ BEFORE or OPERATE	BEFORE: No ABS operation (FL) OPERATE: During ABS operation (FL)	-
ABS OPERT RR	Rear Right wheel operation/ BEFORE or OPERATE	BEFORE: No ABS operation (RR) OPERATE: During ABS operation (RR)	-
ABS OPRET RL	Rear Left wheel operation/ BEFORE or OPERATE	BEFORE: No ABS operation (RL) OPERATE: During ABS operation (RL)	-
WHEEL SPD FR	Front Right wheel speed / Min.: 0km/h, Max.: 326.4 km/h	Actual wheel speed	Speed indicated on speedometer

2004 LAND CRUISER (RM1071U)

DIAGNOSTICS -

ABS & VEHICLE STABILITY CONTROL (VSC) & BRAKE ASSIST (BA) SYSTEM

F			
WHEEL SPD FL	Front Left wheel speed/ Min.: 0km/h, Max.: 326.4 km/h	Actual wheel speed	Speed indicated on speedometer
WHEEL SPD RR	Rear Right wheel speed/ Min.: 0km/h, Max.: 326.4 km/h	Actual wheel speed	Speed indicated on speedometer
WHEEL SPD RL	Rear Left wheel speed/ Min.: 0km/h, Max.: 326.4 km/h	Actual wheel speed	Speed indicated on speedometer
DECELERAT SENS	G sensor (GL1 filter)/ Min.: -1.869 G, Max.: 1.869	Approximately 0 ± 0.13 G at still condition	Reading changes when vehicle is bounced
DECELERAT SENS2	G sensor (GL2 filter)/ Min.: -1.869 G, Max.: 1.869	Approximately 0 ± 0.13 G at still condition	Reading changes when vehicle is bounced
IG VOLTAGE	ECU IG power voltage/ UNDER or NORMAL or OVER	-	-
SFRR	SFRR/ ON or OFF	-	-
SFRH	SFRH/ ON or OFF	-	-
SFLR	SFLR/ ON or OFF	-	-
SFLH	SFLH/ ON or OFF	-	-
SRRR (SRR)	SRRR (SRR)/ ON or OFF	-	-
SRRH (SRH)	SRRH (SRH)/ ON or OFF	-	-
SRLR	SRLR/ ON or OFF	-	-
SRLH	SRLH/ ON or OFF	-	-
SRCF (SA1)	SRCF (SA1)/ ON or OFF	-	-
SRCR (SA2)	SRCR (SA2)/ ON or OFF	-	-
SRMF (SMCF, SA3)	SRMF (SMCF, SA3)/ ON or OFF	-	-
SRMR (SMCR, STR)	SRMR (SMCR, STR)/ ON or OFF	-	-
THROTTLE	Throttle position sensor/ Min.: 0 deg, Max.: 125 deg	-	-
ENGINE SPD	Engine Speed/ Min.: 0 rpm, Max.: 6000 rpm	Actual engine speed	-
YAW RATE	Yaw rate sensor/ Min.: -128 deg/s, Max.: 128 deg/s	-	-
YAW ZERO VALUE	Memorized zero value/ Min.: -128 deg/s, Max.: 128 deg/s	-	-
STEERING ANG	Steering sensor/ Min.: -1682 deg, Max.: 1877 deg	-1682 to 1877 deg	Turning the steering wheel changes the value Left : Becomes grater Right : Becomes smaller
MAS CYL PRS 1	Master cylinder pressure 1/ Min.: 0 V, Max.: 5 V	When brake pedal is released: 0.3 - 0.9 V	Reading increases when brake pedal is depressed
AIR BLD SUPPORT	Air bleed support/ NOT SUP or SUPPORT	w/ BA: Supported w/ VSC: Not supported	-
TEST MODE	Test mode operation/ NORMAL or TEST	NORMAL: Normal mode TEST: During test mode	-
#CODES	Number of Trouble Code/ Min.: 0, Max.: 255	Mln.: 0, Max.: 45	-

3. ACTIVE TEST

HINT:

Performing the ACTIVE TEST using the hand-held tester allows the relay, VSV, actuator and so on to operate without parts removal. Performing the ACTIVE TEST as a first step of troubleshooting is one of the methods to shorten labor time.

It is possible to display the DATA LIST during the ACTIVE TEST.

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON.

(c) According to the display on the tester, perform the "ACTIVE TEST".

HINT:

IG must be turned ON to proceed the ACTIVE TEST using a hand-held tester.

*1: For VSC equipped vehicles only

Item	Test Details	Diagnostic Note
SFRR	Turns ABS solenoid (SFRR) ON / OFF	Operation of solenoid (click- ing sound) can be heard
SFRH	Turns ABS solenoid (SFRH) ON / OFF	Operation of solenoid (click- ing sound) can be heard
SFLR	Turns ABS solenoid (SFLR) ON / OFF	Operation of solenoid (click- ing sound) can be heard
SFLH	Turns ABS solenoid (SFLH) ON / OFF	Operation of solenoid (click- ing sound) can be heard
SRRR	Turns ABS solenoid (SRRR) ON / OFF	Operation of solenoid (click- ing sound) can be heard
SRRH	Turns ABS solenoid (SRRH) ON / OFF	Operation of solenoid (click- ing sound) can be heard
SRLR	Turns ABS solenoid (SRLR) ON / OFF	Operation of solenoid (click- ing sound) can be heard
SRLH	Turns ABS solenoid (SRLH) ON / OFF	Operation of solenoid (click- ing sound) can be heard
SRCF (SA1)	Turns ABS solenoid (SRCF (SA1)) ON / OFF	Operation of solenoid (click- ing sound) can be heard
SRCR (SA2)	Turns ABS solenoid (SRCR (SA2)) ON / OFF	Operation of solenoid (click- ing sound) can be heard
SRMF (SMCF, SA3)	Turns ABS solenoid (SMCF, SA3)) ON / OFF	Operation of solenoid (click- ing sound) can be heard
SRMR (SMCR, STR)	Turns ABS solenoid (SRMR (SMCR, STR)) ON / OFF	Operation of solenoid (click- ing sound) can be heard
SFRR & SFRH	Turns ABS solenoid SFRR & SFRH ON / OFF	Operation of solenoid (click- ing sound) can be heard
SFLR & SFLH	Turns ABS solenoid SFLR & SFLH ON / OFF	Operation of solenoid (click- ing sound) can be heard
SRH & SRR	Turns ABS solenoid SRRR & SRRH ON / OFF	Operation of solenoid (click- ing sound) can be heard
SRLR & SRLH	Turns ABS solenoid SRLR & SRLH ON / OFF	Operation of solenoid (click- ing sound) can be heard
SFRH & SFLH	Turns ABS solenoid SFRH & SFLH ON / OFF	Operation of solenoid (click- ing sound) can be heard
SRCF & SRCR	Turns ABS solenoid SRCF & SRCR ON / OFF	Operation of solenoid (click- ing sound) can be heard

DIAGNOSTICS

SRMF & SRMR	Turns ABS solenoid SRMF & SRMR ON / OFF	Operation of solenoid (click- ing sound) can be heard
SOL RELAY	Turns ABS solenoid relay ON/OFF	Operation of solenoid (click- ing sound) can be heard
ABS MOT RELAY	Turns ABS motor relay ON/OFF	Operation of motor (clicking sound) can be heard
TRAC MOT RELAY	Turns TRC motor relay ON/OFF	Operation of motor (clicking sound) can be heard
ABS WARN LIGHT	Turns ABS warning light ON / OFF	Observe combination meter
VSC WARN LIGHT	Turns VSC warning light ON / OFF	Observe combination meter
VSC/ TRC OFF IND	Turns VSC / TRC OFF indicator ON / OFF	Observe combination meter
SLIP INDI LIGHT	Turns SLIP indicator light ON / OFF	Observe combination meter
BRAKE WRN LIGHT	Turns BRAKE warning light ON / OFF	Observe combination meter
VSC/BR WARN BUZ	Turns VSC / BRAKE warning buzzer ON / OFF	Buzzer can be heard

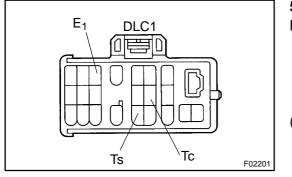
4. FREEZE FRAME DATA

- (a) The vehicle (sensor) status memorized during ABS and/or VSC operation or at the time of error code detection can be displayed by the hand-held tester.
- (b) Only one record of freeze frame data is stored and the freeze frame data generated during ABS and/or VSC operation are constantly updated. Also, the number of the ignition switch's "ON" after the freeze frame data is stored can be memorized up to 31 and it can be displayed.

HINT:

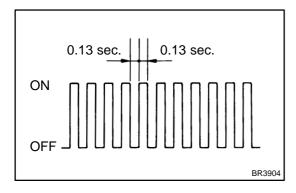
If the ignition switch "ON" operation exceeds 31 times, "31" appears on the display.

(c) If the diagnosis code abnormality occurs, the freeze frame data at the occurrence of the abnormality is stored but the ABS actuation data is deleted.


Hand-held tester display	Measurement Item	Reference Value*
VEHICLE SPD	Wheel speed sensor reading	Speed indicated on speedometer
STOP LIGHT SW	Stop light switch signal	Stop light switch ON: ON, OFF: OFF
# IG ON	Number of operations of ignition switch ON after memorizing freeze frame data	0 - 31
MAS CYL PRESS	Master cylinder pressure sensor reading	Brake pedal release : 0.3 to 0.9 V Brake pedal depress: 0.8 to 4.5 V
MASS PRESS GRADE	Master cylinder pressure sensor change	-30 to 200 MPa/s
SYSTEM	System status	ABS activated: ABS VSC/TRC activated: VSC/TRC BA activated: BA Fail safe mode activated: FAIL SF No system activated: NO SYS
YAW RATE	Yaw rate angle sensor reading	-100 to 100
STEERING ANG	Steering sensor reading	Left turn: Increase Right turn: Drop
THROTTLE	Throttle position sensor reading	Release accelerator pedal: Approx. 0 deg. Depress accelerator pedal: Approx. 90 deg.
G (RIGHT & LEFT)	Right and left G	-1.869 to 1.869
G (BACK & FORTH)	Back and forth G	-1.869 to 1.869
VSC (TRC) OFF SW	VSC OFF switch signal	TRAC OFF SW ON: ON OFF: OFF

DIAGNOSTICS

ABS & VEHICLE STABILITY CONTROL (VSC) & BRAKE ASSIST (BA) SYSTEM


Hand-held tester display	Measurement Item	Reference Value*
SHIFT POSITION	Shift lever position	FAIL
		P,N
		R
		D
		4
		3
		2
		L
THROTTLE	Throttle sensor reading	0 to 125 deg.

*: If no conditions are specifically stated for "Idling", it means the shift lever is in the N or P position, the A/C switch is OFF and all accessory switches are OFF.

5. SPEED SENSOR SIGNAL CHECK (TEST MODE) HINT:

- ★ When replacing the yaw rate sensor or ECU, make sure to perform a yaw rate sensor zero point calibration.
- ★ If the ignition switch is turned from the ON to the ACC or LOCK position during test mode, DTC will be erased.
- (a) In case of not using hand-held tester: Check the speed sensor signal.
 - (1) Turn the ignition switch OFF.
 - (2) Using SST, connect terminals Ts and E_1 of the DLC1.
 - SST 09843-18020
 - (3) Start the engine.

(4) Check that the ABS warning light blinks.

HINT:

If the ABS warning light does not blink, inspect the ABS warning light circuit and Ts circuit (See page DI-627 and DI-653).

- (5) Keep the vehicle in the stationary condition on the flat place for 6 sec. or more.
- (6) Shift the transfer lever in the L4 position and turn the center diff. lock switch ON.
- (7) Shift the transfer lever back.

2004 LAND CRUISER (RM1071U)

Date :

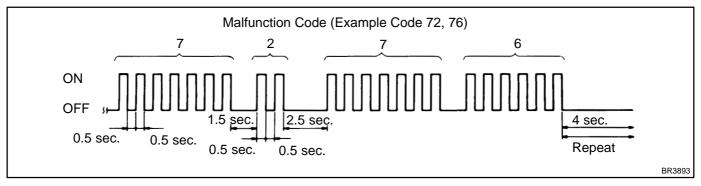
- (8) Leaving the vehicle in the stationary condition and the brake pedal in a free condition for 1 sec. or more, continue to depress the brake pedal with a force of 98 N (10 kgf, 22 lbf) or more for 1 sec. or more.
- (9) Leaving the vehicle in the stationary condition, depress the brake pedal with a force of 980 N (100 kgf, 221 lbf) or more quickly.

HINT:

At this time, the ABS warning light comes on for 3 sec.

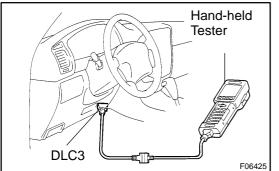
(10) Drive the vehicle straight forward.

When driving the vehicle with a speed faster than 28 mph (45 km/h) for several seconds, check that the ABS warning light goes off.


HINT:

There is a case that the sensor check is not completed if the vehicle has its wheels spun or its steering wheel turned during this check.

- (11) Stop the vehicle.
- (12) Using SST, connect terminals Tc and E_1 of the DLC1 or Tc and CG of the DLC3.
- SST 09843-18020 or 09843-18040


(13) Read the number of blinks of the ABS warning light. HINT:

- \star See the list of DTC on the next page.
- ★ If every sensor is normal, a normal code is output (A cycle of 0.25 sec. ON and 0.25 sec. OFF is repeated).
- ★ If 2 or more malfunctions are indicated at the same time, the lowest numbered code will be displayed 1st.
 - (14) After doing the check, disconnect the SST from terminals of the DLC1 or terminals of the DLC1 and DLC3, and turn the ignition switch OFF.
 - SST 09843-18020 or 09843-18040

(b)

ABS & VEHICLE STABILITY CONTROL (VSC) & BRAKE ASSIST (BA) SYSTEM

In case of using hand-held tester:

Check the sensor signal.

- (1) Hook up the hand-held tester to the DLC3.
- (2) Do step (3) to (10) on the previous page.
- (3) Read the DTC by following the prompts on the tester screen.

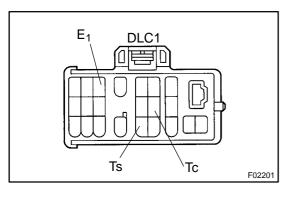
HINT:

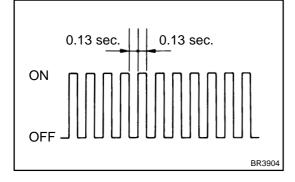
Please refer to the hand-held tester operator's manual for further details.

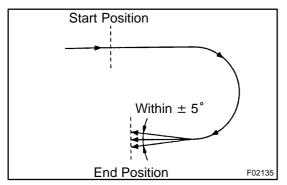
DTC of speed sensor signal check function:

Code No.	Diagnosis	Trouble Area	
C1271 / 71	Low output voltage in right front speed sensor	 	
C1272 / 72	Low output voltage in left front speed sensor		
C1273 / 73	Low output voltage in right rear speed sensor	 ★Right rear speed sensor ★Sensor installation ★Sensor rotor 	
C1274 / 74	Low output voltage in left rear speed sensor	 ★Left rear speed sensor ★Sensor installation ★Sensor rotor 	
C1275 / 75	Abnormal change in output voltage of right front speed sensor	Right front speed sensor rotor	
C1276 / 76	Abnormal change in output voltage of left front speed sensor	Left front speed sensor rotor	
C1277 / 77	Abnormal change in output voltage of right rear speed sensor	Right rear speed sensor rotor	
C1278 / 78	Abnormal change in output voltage of left rear speed sensor	Left rear speed sensor rotor	
C1279 / 79	Deceleration sensor is faulty		
C1281 / 81	Master cylinder pressure sensor output signal is faulty	Master cylinder pressure sensor	
C1282 / 82	Transfer indicator (center diff. lock) switch malfunction	Transfer indicator (center diff. lock) switch	
C1283 / 83	Transfer L4 position switch malfunction	Transfer L4 position switch	

6. In case of not using hand-held tester: VSC SENSOR CHECK (TEST MODE)


NOTICE:


When having replaced the yaw rate sensor, deceleration sensor and/or ECU, perform a zero point calibration of the yaw rate and deceleration sensors (See step 8.). HINT:


If the ignition switch is turned from the ON to the ACC or LOCK during test mode, DTC will be erased.

DI-513

DIAGNOSTICS

- (a) Procedures for test mode:
 - (1) Turn the ignition switch OFF.
 - (2) Check that the shift lever is in the P position, and turn the steering wheel to the neutral position.
 - (3) Using SST, connect terminals Ts and E_1 of the DLC1.
 - SST 09843-18020
 - (4) Start the engine.
 - (5) Check that the VSC TRAC warning light blinks.

HINT:

If the VSC TRAC warning light does not blink, inspect the VSC TRAC warning light circuit and Ts terminal circuit (See page DI-631 and DI-653).

Turn the steering wheel either to the left or right 450° or more from the vehicle stationary condition, and turn back the steering wheel to the straight ahead position.

- (b) Keep the vehicle stationary on a level place for 1 sec. or more.
- (c) Check the yaw rate sensor.

Shift the shift lever to the D position and drive the vehicle at a vehicle speed of approx. 5 km/h (3 mph), turn the steering wheel either to the left or right 90° or more, and maintain this angle until the vehicle has turned 180° .

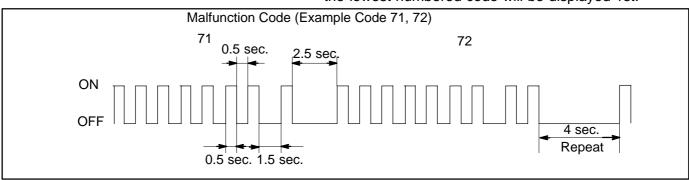
Stop the vehicle and shift the shift lever to the P position. Check that the VSC buzzer sounds for 3 sec.

If the VSC buzzer sounds, the sensor check is in normal completion.

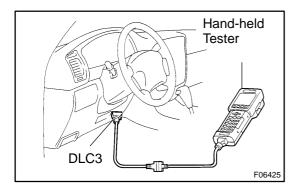
If the VSC buzzer does not sound, do the sensor check again. If the VSC buzzer still does not sound, check the VSC buzzer circuit, then do the sensor check again.

Trouble Area	See page
VSC buzzer circuit	DI-649

HINT:


- ★ Make a 180° turn. At the end of the turn, the direction of the vehicle should be within $180^{\circ} \pm 5^{\circ}$ of its start position.
- \star Do not spin the wheels.
- (d) Read the DTC.
 - (1) Using SST, connect terminals Tc and E_1 of the DLC1 or Tc and CG of the DLC3.
 - SST 09843-18020 or 09843-18040
 - (2) Read the number of times the VSC TRAC warning light blinks.

HINT:


- \star See the list of DTC shown on the next page.
- ★ If every sensor is normal, a normal code is output. (A cycle of 0.25 sec. ON and 0.25 sec. OFF is repeated.)

Date :

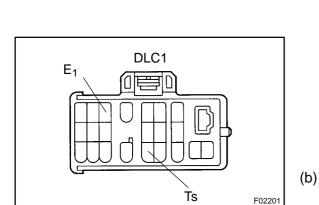
★ If 2 or more malfunctions are indicated at the same time, the lowest numbered code will be displayed 1st.

- (3) After doing the check, disconnect the SST from terminals of the DLC1 or terminals of the DLC1 and DLC3 and turn the ignition switch OFF.
- SST 09843-18020 or 09843-18040

7. In case of using hand-held tester: CHECK VSC SENSOR SIGNAL

NOTICE:

When having replaced the yaw rate sensor, deceleration sensor and/or ECU, perform a zero point calibration of the yaw rate and deceleration sensors (See step 7.). Make sure that this operation should be done before starting the following.


- (a) Hook up the hand-held tester to the DLC3.
- (b) Do steps (a)-(2) and from (a)-(4) to (c) on the previous page.
- (c) Read the DTC by following the prompts on the tester screen.

HINT:

Please refer to the hand-held tester operator's manual for further details.

DTC of the VSC sensor check function:

Code No	D .	Diagnosis	Trouble Area
C0371 / 7	71	Yaw rate sensor output signal malfunction	₩Yaw rate sensor ₩Yaw rate sensor circuit

8. IF NECESSARY, PERFORM ZERO POINT CALIBRA-TION OF YAW RATE AND DECELERATION SENSORS

HINT:

- ★ When having replaced the yaw rate sensor, deceleration sensor or/and the ECU, make sure to perform a yaw rate and deceleration sensors zero point calibration.
- ★ This operation is also required when the deceleration sensor or yaw rate sensor has been replaced since the calibrated zero point of both sensors will be erased.

NOTICE:

- ★ While obtaining the zero point, do not vibrate the vehicle by tilting, moving or shaking it and keep it in a stationary condition. (Do not start the engine.)
- ★ Be sure to do this on a level surface (within an inclination of 1 %).
- (a) Clear the zero point of the yaw rate and deceleration sensors.
 - (1) Shift the shift lever to P range.
 - (2) Turn the ignition switch ON in a stationary condition.
 - (3) With the ignition switch ON, using SST, repeat a cycle of short and open between terminals Ts and E₁ of the DLC1 4 times or more within 8 sec. Check that the VSC warning light is lit indicating the recorded zero point is erased.
 - SST 09843-18020
 - (4) Turn the ignition switch OFF.
 - b) Obtain the zero point of the yaw rate sensor.
 - (1) Disconnect terminals Ts and E_1 of the DLC1.
 - (2) Turn the ignition switch ON.

HINT:

The vehicle should be in a stationary condition with the shift lever in the P position.

(3) Check that the lighted VSC warning light goes off about 15 sec. after the ignition switch is turned ON.

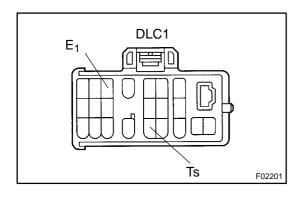
HINT:

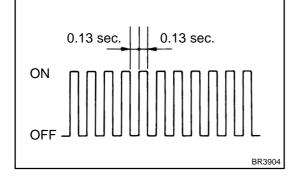
Even if the ignition is not turned OFF in step (a)-(4) and remains ON, a yaw rate sensor zero point calibration can be completed. In this case, the VSC warning light is lit about 15 sec. and starts blinking. (Normal code)

(4) After ensuring that the VSC warning light remains OFF for 2 sec., turn the ignition switch OFF.

HINT:

If the ignition switch is not turned OFF in step (a)-(4), ensure the blinking of the VSC warning light for 2 sec. and turn the ignition switch OFF. (c) Perform a deceleration sensor zero point calibration. **NOTICE:**


After step (b) (a yaw rate sensor zero point calibration), the VSC warning light goes off. At this time, if the vehicle is driven without performing step (c) (a deceleration sensor zero point calibration), deceleration sensor zero point calibration malfunction will be detected and the VSC warning light will light up. Therefore, perform step (c) right after step (b).


- (1) Using SST, connect terminals Ts and E_1 of the DLC1.
- SST 09843-18020
- (2) Turn the ignition switch ON.

HINT:

Keep the vehicle in a stationary condition with the shift lever in the P position.

- (3) After turning the ignition switch ON, check that the VSC warning light is lit for about 4 sec. and then starts quick blinking at 0.13 sec. intervals.
- (4) After ensuring the blinking of the VSC warning light for 2 sec., turn the ignition switch OFF.
- (5) Remove the SST and disconnect terminals Ts and E1 of the DLC1.
- SST 09843-18020

DIC91-01

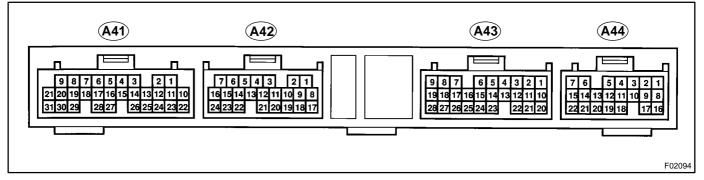
PROBLEM SYMPTOMS TABLE

If a normal code is displayed during the DTC check but the problem still occurs, check the circuits for each problem symptom in the order given in the table below and proceed to the relevant troubleshooting page. **NOTICE:**

When replacing the skid control ECU, sensor, etc., turn the ignition switch OFF.

Symptom	Suspected Area	See page
	Only when 1. to 4. are all normal and the problem is still	
	occurring, replace the skid control ECU.	
	1. Reconfirm the DTC and check that the normal code is	DI-505
	output.	
ABS does not operate	2. IG power source circuit	DI-558
BA does not operate	3. Speed sensor circuit	DI-615
	4. Check the hydraulic brake booster with a checker or	BR-40
	hand-held tester.	
	If abnormal, check the hydraulic circuit for leakage (See	
	page DI-655).	
	Only when 1. to 4. are all normal and the problem is still	
	occurring, replace the skid control ECU.	
	1. Reconfirm the DTC and check that the normal code is	DI-505
	output.	
ABS does not operate efficiently	2. Speed sensor circuit	DI-615
BA does not operate	3. Stop light switch circuit	DI-573
	4. Check the hydraulic brake booster with a checker or	BR-40
	hand-held tester.	
	If abnormal, check the hydraulic circuit for leakage (See	
	page DI-655).	
	1. ABS warning light circuit	DI-627
ABS warning light abnormal	2. Skid control ECU	IN-36
	Only when 1. to 4. are all normal and the problem is still	
	occurring, replace the skid control ECU.	
	1. ABS warning light circuit	DI-627
DTC check cannot be done	2. VSC OFF indicator light, center diff. lock indicator switch	DI-645
	circuit	
	3. Center diff. lock indicator switch circuit	DI-612
	4. Tc terminal circuit	DI-651
	1. Ts terminal circuit	DI-653
Speed sensor signal check cannot be done	2. Skid control ECU	IN-36
	Only when 1. to 4. are all normal and the problem is still	
	occurring, replace the skid control ECU.	
	1. Check the DTC, reconfirming that the normal code is	DI-505
TRAC does not operate	output.	
	2. IG power source circuit	DI-558
	3. Check the hydraulic circuit for leakage.	DI-655
	4. Speed sensor circuit	DI-615
	Only when 1. to 7. are all normal and the problem is still	
	occurring, replace the skid control ECU.	
	1. Check the DTC, reconfirming that the normal code is	DI-505
	output.	2.000
	2. IG power source circuit	DI-558
/SC does not operate	3. Check the hydraulic circuit for leakage.	DI-655
	4. Speed sensor circuit	DI-615
	5. Deceleration sensor circuit	DI-570
	6. Yaw rate sensor circuit	DI-553
	7. Steering angle sensor circuit	DI-605

DIAGNOSTICS -


ABS & VEHICLE STABILITY CONTROL (VSC) & BRAKE ASSIST (BA) SYSTEM

VSC TRAC warning light abnormal	 VSC TRAC warning light circuit Skid control ECU 	DI-631 IN-36
BRAKE warning light abnormal	 BRAKE warning light circuit Skid control ECU 	DI-635 IN-36
SLIP indicator light abnormal	 SLIP indicator light circuit Skid control ECU 	DI-639 IN-36
VSC OFF indicator abnormal	 VSC OFF indicator light, center diff. lock switch circuit Skid control ECU 	DI-645 IN-36
TRAC indicator light abnormal	 TRAC indicator light circuit Skid control ECU 	DI-642 IN-36

ABS & VEHICLE STABILITY CONTROL (VSC) & BRAKE ASSIST (BA) SYSTEM

DIC8Z-01

TERMINALS OF ECU

Symbols (Terminals No.)	Wiring Color	Condition	STD Voltage (V)
SA1 (A41 - 2) - GND (A41 - 6, 31, A42 - 8, 17)	G - W-B	IG switch ON, ABS warning light OFF	10 to 14 V
SA2 (A41 - 3) - GND (A41 - 6, 31, A42 - 8, 17)	B - W-B	IG switch ON, ABS warning light OFF	10 to 14 V
SA3 (A41 - 4) - GND (A41 - 6, 31, A42 - 8, 17)	G-W - W-B	IG switch ON, ABS warning light OFF	10 to 14 V
STR (A41 - 5) - GND (A41 - 6, 31, A42 - 8, 17)	G-Y - W-B	IG switch ON, ABS warning light OFF	10 to 14 V
SFLR (A41 - 7) - GND (A41 - 6, 31, A42 - 8, 17)	B-Y - W-B	IG switch ON, ABS warning light OFF	10 to 14 V
SRRH (A41 - 8) - GND (A41 - 6, 31, A42 - 8, 17)	W - W-B	IG switch ON, ABS warning light OFF	10 to 14 V
SRRR (A41 - 9) - GND (A41 - 6, 31, A42 - 8, 17)	B-O - W-B	IG switch ON, ABS warning light OFF	10 to 14 V
VCM (A41 - 10) - GND (A41 - 6, 31, A42 - 8, 17)	B - W-B	IG switch ON	4.5 to 5.5 V
PH (A41 - 11) - GND (A41 - 6,	0 - W-B	IG switch ON, pressure switch (PH) ON	Below 0.9 V
31, A42 - 8, 17)	0- ₩-В	IG switch ON, pressure switch (PH) OFF	5 to 8 V
FR+ (A41 - 14) - FR- (A41 - 13)	L - P	IG switch ON, slowly turn right front wheel	AC generation
FL+ (A41 - 16) - FL- (A41 - 15)	R - G	IG switch ON, slowly turn left front wheel	AC generation
SR (A41 - 19) - R1+ (A41 - 1)	G-Y - P	IG switch ON, ABS warning light OFF	10 to 14 V
SFLH (A41 - 21) - GND (A41 - 6, 31, A42 - 8, 17)	Y - W-B	IG switch ON, ABS warning light OFF	10 to 14 V
PMC (A41 - 22) - E2 (A41 - 12)	R - W	IG switch ON, stop light switch OFF	0.3 to 0.7 V
E2 (A41 - 12) - GND (A41 - 6, 31, A42 - 8, 17)	W - W-B	IG switch OFF	Continuity
MTT (A41 - 27) - GND (A41 - 6, 31, A42 - 8, 17)	B-R - W-B	IG switch ON (Motor relay is OFF)	Below 1.5 V
MT+ (A41 - 28) - MT- (A41 - 18)	L - GR	IG switch ON (Motor relay is ON)	Below 1.5 V
MR1 (A41 - 29) - R1+ (A41 - 1)	R - P	IG switch ON, hydraulic brake booster pump motor running	10 to 14 V
WA (A42 - 1) - GND (A41 - 6, 31, A42 - 8, 17)	R-L - W-B	IG switch ON, ABS warning light OFF	Below 2.0 V

2004 LAND CRUISER (RM1071U)

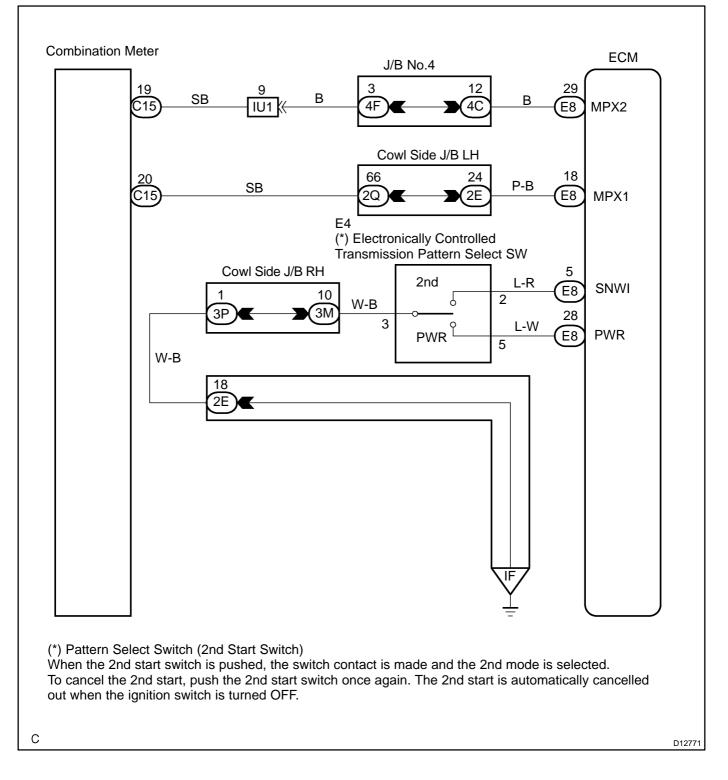
DI-524

DIAGNOSTICS -

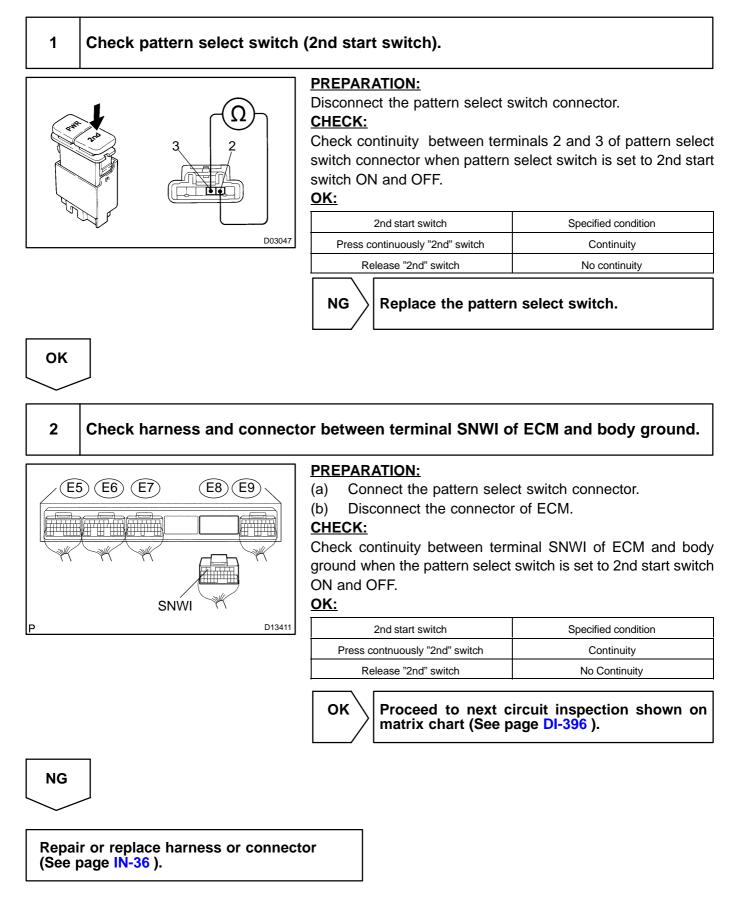
			1
BZ (A42 - 2) - GND (A41 - 6, 31, A42 - 8, 17)	L - W-B	IG switch ON, VSC buzzer sound can be heard	Below 1.5 V
D/G (A42 - 3) - GND (A41 - 6, 31, A42 - 8, 17)	V-W - W-B	IG switch ON	10 to 14 V
P (A42 - 5) - GND (A41 - 6, 31, A42 - 8, 17)	G-W - W-B	IG switch ON, shift lever is in P position	10 to 14 V
IG1 (A42 - 6) - GND (A41 - 6, 31, A42 - 8, 17)	B-W - W-B	IG switch ON	10 to 14 V
NEO (A42 - 7) - GND (A41 - 6, 31, A42 - 8, 17)	W - W-B	Engine idling	Pulse generation
STP (A42 - 10) - GND (A41 -		Stop light switch pushed in	10 to 14 V
6, 31, A42 - 8, 17)	G-W - W-B	Stop light switch released	2 to 5 V
Tc (A42 - 11) - GND (A41 - 6,		IG switch ON and terminals Tc-E 1 of DLC1 connected	Below 1.0 V
31, A42 - 8, 17)	P-B - W-B	IG switch ON and terminals Tc-E 1 of DLC1 not connected	10 to 14 V
Ts (A42 - 12) - GND (A41 - 6,		IG switch ON and terminals Ts-E 1 of DLC1 connected	Below 1.0 V
31, A42 - 8, 17)	W - W-B	IG switch ON and terminals Ts-E 1 of DLC1 not connected	10 to 14 V
PKB (A42 - 13) - GND (A41 -		IG switch ON, parking brake switch ON	Below 1.5 V
6, 31, A42 - 8, 17)	R-W - W-B	IG switch ON, parking brake switch OFF	10 to 14 V
ENG+ (A42 - 14) - ENG - (A42 - 22)	R - G	IG switch ON	Pulse generation
RL+ (A42 - 18) - RL- (A42 - 19)	R - G	IG switch ON, slowly turn left rear wheel	AC generation
RR+ (A42 - 20) - RR- (A42 - 21)	B - W	IG switch ON, slowly turn right rear wheel	AC generation
TRC+ (A42 - 24) - TRC- (A42 - 16)	Y - L	IG switch ON	Pulse generation
EXI2 (A43 - 2) - GND (A41 -		IG switch ON, transfer in L4 position	8 to 14 V
6, 31, A42 - 8, 17)	B-L - W-B	IG switch ON, transfer in any position except L4	Below 1.5 V
EXI (A43 - 3) - GND (A41 - 6,		IG switch ON, center diff. lock switch ON	Below 2.0 V
31, A42 - 8, 17)	P-B - W-B	IG switch ON, center diff. lock switch OFF	10 to 14 V
VSCW (A43 - 4) - GND (A41 - 6, 31, A42 - 8, 17) L-W - W-B		IG switch ON, VSC TRAC warning light ON	Below 2.0 V
		IG switch ON, VSC TRAC warning light OFF	10 to 14 V
BRL (A43 - 5) - GND (A41 - 6,		IG switch ON, BRAKE warning light ON	10 to 14 V
31, A42 - 8, 17)	Y-G - W-B	IG switch ON, BRAKE warning light OFF	Below 2.0 V
IND (A43 - 6) - GND (A41 - 6,		IG switch ON, SLIP indicator light ON	Below 2.0 V
31, A42 - 8, 17)	L-B - W-B	IG switch ON, SLIP indicator light OFF	10 to 14 V
WT (A43 - 7) - GND (A41 - 6,		IG switch ON, VSC OFF indicator light ON	Below 2.0 V
31, A42 - 8, 17)	L-R - W-B	IG switch ON, VSC OFF indicator light OFF	10 to 14 V
VYS (A43 - 9) - GYAW (A43 - 27)	B - W-R	IG switch ON	4.5 to 5.5 V
GL2 (A43 - 10) - GYAW (A43 - 27)	Y - P	IG switch ON, vehicle is placed on the horizontal surface	2.0 to 3.0 V
SS1+ (A43 - 14) - SS1- (A43 - 23)	W - G	Engine idling, slowly turn steering wheel	Pulse generation (See page DI-546)
INFR (A43 - 15) - GND (A41 -		IG switch ON, ACTIVE TRAC indicator light ON	Below 1.5 V
6, 31, A42 - 8, 17)	B-R - W-B	IG switch ON, ACTIVE TRAC indicator light OFF	10 to 14 V
YD (A43 - 19) - GND (A41 - 6, 31, A42 - 8, 17)	L - W-B	Approx. 1 sec. after IG switch ON	4.5 to 5.3 V

GL1 (A43 - 22) - GYAW (A43 - 27)	G-R	IG switch ON, vehicle is placed on the horizontal surface	2.0 to 3.0 V
GYAW (A43 - 27) - GND (A41 - 6, 31, A42 - 8, 17)	R - W-B	IG switch OFF	Continuity
YAW (A43 - 28) - GYAW (A43 - 27)	W - R	IG switch ON, vehicle is in stationary condition	2 to 3 V
SRLR (A44 - 1) - GND (A41 - 6, 31, A42 - 8, 17)	R-G - W-B	IG switch ON, ABS warning light OFF	10 to 14 V
MR2 (A44 - 2) - R2+ (A44 - 3)	Y-B - W-L	IG switch ON, hydraulic brake booster pump motor running	10 to 14 V
AST (A44 - 6) - GND (A41 - 6, 31, A42 - 8, 17)	R-Y - W-B	IG switch ON, ABS warning light OFF	10 to 14 V
SRLH (A44 - 7) - GND (A41 - 6, 31, A42 - 8, 17)	R-W - W-B	IG switch ON, ABS warning light OFF	10 to 14 V
SFRR (A44 - 8) - GND (A41 - 6, 31, A42 - 8, 17)	B-W - W-B	IG switch ON, ABS warning light OFF	10 to 14 V
PL (A44 - 9) - GND (A41 - 6,		IG switch ON, pressure switch ON	3 to 5 V
31, A42 - 8, 17)	W - W-B	IG switch ON, pressure switch OFF	7 to 11 V
TRIG (A44 - 20) - GND (A41 - 6, 31, A42 - 8, 17)	L - R	IG switch ON, ABS warning light OFF	10 to 14 V
+BO (A44 - 21) - GND (A41 - 6, 31, A42 - 8, 17)	` ´ ` I I G - I I I G switch ON		10 to 14 V
SFRH (A44 - 16) - GND (A41 - 6, 31, A42 - 8, 17)	LG - W-B	IG switch ON, ABS warning light OFF	10 to 14 V
IG2 (A44 - 22) - GND (A41 - 6, 31, A42 - 8, 17)	B-W - W-B	IG switch ON 10 to 14	

Pattern Select Switch Circuit (2nd Start Switch)


CIRCUIT DESCRIPTION

When 2nd start mode is selected with the pattern select switch, the ECM controls the solenoid valves and the transmission starts from 2nd gear.

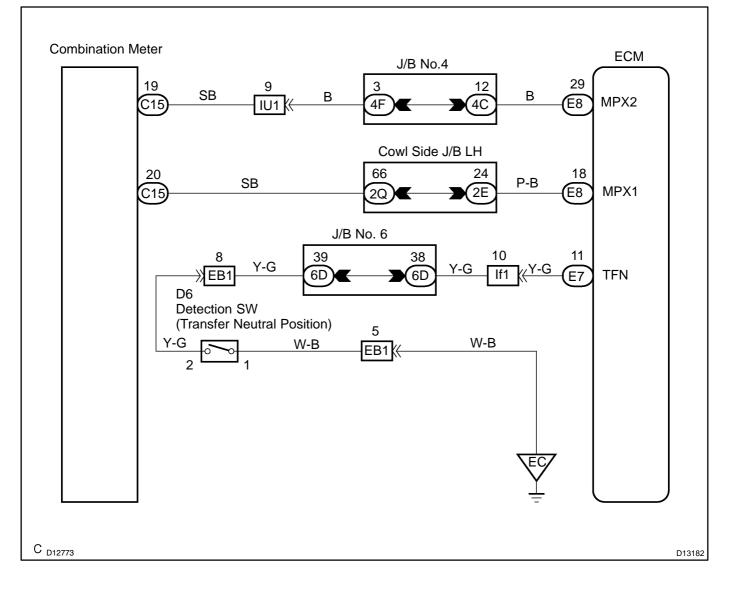

In D position, the transmission automatically shifts up through 3rd to 5th as usual. In 2nd position, the transmission is held in 2nd gear.

DIB3N-02

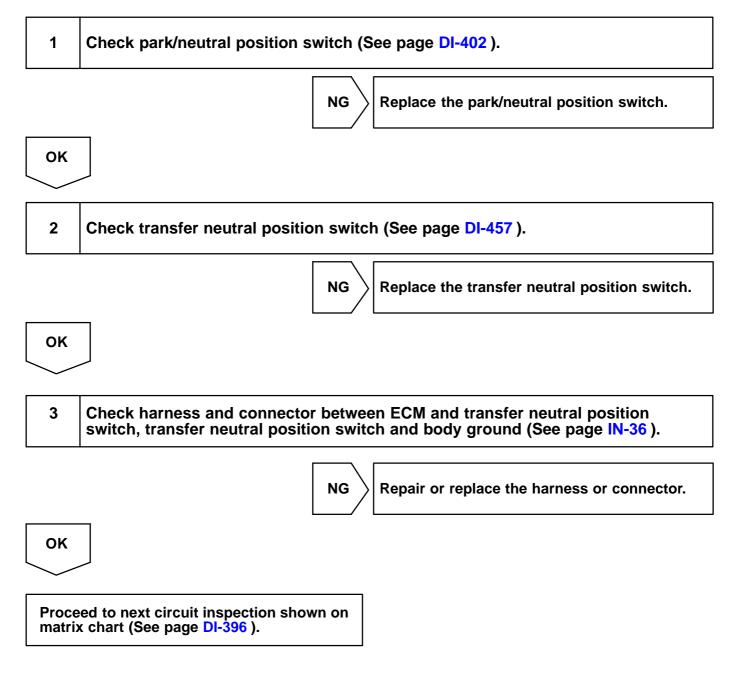
WIRING DIAGRAM

INSPECTION PROCEDURE

DI3C7-07


A/T. P. (Automatic Transmission Parking) Indicator Circuit

CIRCUIT DESCRIPTION


The propeller shaft and wheels are free even when the transmission shift lever is set to P as long as the transfer shift lever is in Neutral position. The A/T.P. indicator light lights up to warn the driver that the propeller shaft and wheels are not locked.

If the A/T.P. indicator light goes on, the transfer shift lever should be shifted to the positions other than N position.

WIRING DIAGRAM

INSPECTION PROCEDURE

CIRCUIT INSPECTION

function (PRNDL Input)	function (PRNDL Input)
------------------------	------------------------

DTC P0850 Park/Neutral Switch Input Ci	rcuit
--	-------

CIRCUIT DESCRIPTION

The park/neutral position switch detects the shift lever position and sends signals to the ECM.

DTC No.	DTC Detection Condition	Trouble Area
P0705	 (2-trip detection logic) *All switches are OFF simultaneously for P, R, N, D, 3 and 2 positions. *2 or more switches are ON simultaneously for P, R, N, (D 4), 3 and (2 L) positions. 	*Short in park/neutral position switch circuit
P0850	 Park/neutral position switch remaines ON (P, N position) during driving under conditions (a) and (b) for 30 sec. (2-trip detection logic) (a) Vehicle speed: 70 km/h (44 mph) or more (b) Engine speed: 1,500 - 2,500 rpm 	₩Park/neutral position switch ₩ECM

MONITOR DESCRIPTION

The park/neutral position switch detects the shift lever position and sends a signal to the ECM.

For security, the park/neutral position switch detects the shift lever position so that engine can be started only when the vehicle is in P or N shift position.

When the park/neutral position switch sends more than one signal at a time from switch positions P, R, N or D, the ECM interprets this as a fault in the switch. The ECM will turn on the MIL and store the DTC.

MONITOR STRATEGY

P0705:

Related DTCs	P0705	Park/neutral position switch/Verify switch input
Required sensors/Components	Park/neutral position switch	
Frequency of operation	Continuous	
	Condition (A), (B) and (D)	2 sec.
Duration	Condition (C)	60 sec.
MIL operation	2 driving cycle	
Sequence of operation None		

DIC2Y-01

P0850:

Related DTCs	P0850	Park/neutral position switch/Verify switch cycling
	Main	Park/neutral position switch
Required sensors/Components	Sub	Crankshaft position sensor (NE), MAF meter
Frequency of operation	Continuous	
Duration	30 sec.	
MIL operation	2 driving cycles	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS P0705:

	Specification	
Item	Minimum Maximum	
The monitor will run whenever the follow- ing DTCs are not present.	See page DI-361	
Ignition switch	ON	
Battery voltage	10.5 V or more	

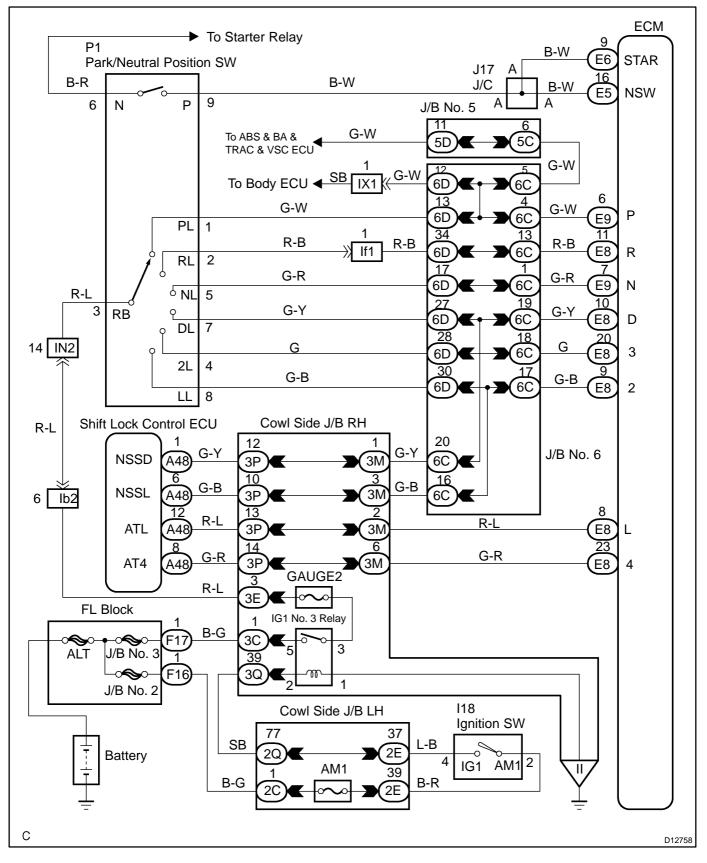
P0850:

	Specification		
Item	Minimum	Maximum	
The monitor will run whenever the follow- ing DTCs are not present.	See pag	e DI-361	
Vehicle speed	70 km/h (43 mph) or more	-	
Engine speed	1,500 rpm or more	2,500 rpm or less	
Intake air amount per revolution	0.9 g/rev. or more	-	

TYPICAL MALFUNCTION THRESHOLDS

P0705:

Detection criteria	Threshold	
One of the following conditions is met: Condition (A), (B), (C) or (D)		
Condition (A)		
Number of the following signal input at the same time	2 or more	
P switch		
N switch		
R switch		
D switch	ON	
3 switch		
2 switch		
Condition (B)		
Number of the following signal input at the same time	2 or more	
NSW switch		
R switch		
D switch	ON	
3 switch		
2 switch		
Condition (C)		
All of following conditions are met		
P switch		
N switch		
NSW switch		
R switch	OFF	
D switch		
3 switch		
2 switch		
Condition (D)		
Both (i) and (ii) are met		
(i) One of followings is met		
NSW switch		
P switch	ON	
N switch	UN	
R switch		
(ii) One of followings is met		
4 switch	ON	
L switch		
P0850:		
	-	


COMPONENT OPERATING RANGE

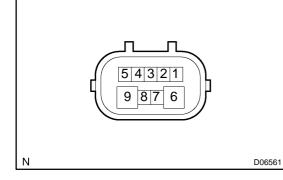
P0705:

Parameter	Standard value
Park/neutral position switch	The park/neutral position switch sends only one signal to the ECM.
P0850:	
Baramatar	Standard value

Parameter	Standard value
Park/neutral position switch	The park/neutral position switch is OFF when avobe condition.

WIRING DIAGRAM

INSPECTION PROCEDURE


HINT:

According to the DATA LIST displayed by the OBD II scan tool or Hand-held tester, you can read the value of the switch, sensor, actuator and so on without parts removal. Reading the DATA LIST as a first step of troubleshooting is one method to shorten labor time.

- (a) Warm up the engine.
- (b) Turn the ignition switch OFF.
- (c) Connect the OBD II scan tool or Hand-held tester to the DLC3.
- (d) Turn the ignition switch ON.
- (e) Push the "ON" button of OBD II scan tool or Hand-held tester.
- (f) Select the item "/DIAGNOSIS/ENHANCED OBD II/DATA LIST/ALL (or ATM)".
- (g) According to the display on tester, read the "DATA LIST".

PNP SW [NSW]PNP SW Status/ ON or OFFShift lever position is; P or N: ON Except P or N: OFFThe shift lever position and these values are different, there are fail- ures of the PNP switch or shift cable adjustment.REVERSEPNP SW Status/ ON or OFFShift lever position is; R: ON Except R: OFFThe shift lever position and these values are different, there are fail- ures of the PNP switch or shift cable adjustment.DRIVEPNP SW Status/ ON or OFFShift lever position is; D and 4: ON Except D and 4: OFFThe shift lever position and these values are different, there are fail- ures of the PNP switch or shift cable adjustment.	Item	Measurement Item/ Display (Range)	Normal Condition	Diagnostic Note
REVERSE PNP SW Status/ ON or OFF Shift lever position is; R: ON Except R: OFF values are different, there are fail- ures of the PNP switch or shift cable adjustment. DRIVE PNP SW Status/ ON or OFF Shift lever position is; D and 4: ON values are different, there are fail- ures of the PNP switch or shift cable adjustment.	PNP SW [NSW]		P or N: ON	
DRIVE PNP SW Status/ ON or OFF Shift lever position is; D and 4: ON	REVERSE		R: ON	values are different, there are fail- ures of the PNP switch or shift
	DRIVE		•	

Check park/neutral position switch.

PREPARATION:

- (a) Jack up the vehicle.
- (b) Disconnect the park/neutral position switch connector.

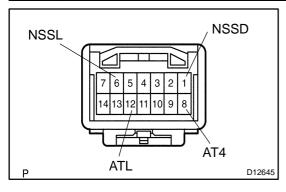
CHECK:

Check continuity between each terminal shown below when the shift lever is moved to each position.

<u>OK:</u>

Shift position	Terminal No. to continuity	Terminal No. to continuity
Р	1 - 3	6 - 9
R	2 - 3	-
N	3 - 5	6 - 9
D, 4	3 - 7	-
3	3 - 4	-
2, L	3 - 8	-

NG


Replace park/neutral position switch (See page AT-7).

OK

1

2

Check transmission control switch.

PREPARATION:

(a) Connect the park/neutral position switch connector.

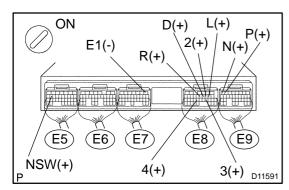
(b) Disconnect the shift lock control computer connector (transmission control switch).

CHECK:

Check continuity between each terminal of shift lock control computer (transmission control switch).

<u>OK:</u>

Shift position	Tester connection	Specified valve
D		No continuity
4	1 - 8 (NSSD - AT4)	Continuity
2		No continuity
L	6 - 12 (NSSL - ATL)	Continuity


NG

Replace the transmission control switch (See page AT-20).

ОК

3

Measure voltage between each terminals of NSW, P, R, N, D, 4, 3, 2, L and E1 of ECM.

PREPARATION:

- (a) Connect the shift lock control computer connector (transmission control switch).
- (b) Turn the ignition switch ON.

CHECK:

Measure voltage between each terminals NSW, P, R, N, D, 4, 3, 2, L and E1 of ECM when the shift lever is shifted to the following positions.

<u>OK:</u>

Tester connection	Condition	Specified condition
	Shift lever position: P and N	Below 1 V
NSW - Body ground	Shift lever position: Except P and N	Battery voltage
P- Body ground	Shift lever position: P	Battery voltage
R - Body ground	Shift lever position: R	Battery voltage*
N - Body ground	Shift lever position: N	Battery voltage
D - Body ground	Shift lever position: D and 4	Battery voltage
4 - Body ground	Shift lever position: 4	Battery voltage
3 - Body ground	Shift lever position: 3	Battery voltage
2 - Body ground	Shift lever position: 2 and L	Battery voltage
L - Body ground	Shift lever position: L	Battery voltage

HINT:

*: The voltage will drop slightly due to lighting up of the back up light.

ок

Check and replace the ECM (See page IN-36).

NG

Repair or replace the harness or connector (See page IN-36).

DIC2Z-01

DTC	P0710	Transmission Fluid Temperature Sensor "A" Circuit
-----	-------	--

DTC		Transmission Fluid Temperature Sensor "A" Circuit Low Input
-----	--	--

DTC		Transmission Fluid Temperature Sensor "A" Circuit High Input
-----	--	---

CIRCUIT DESCRIPTION

The ATF temperature sensor converts fluid temperature into a resistance value which is input into the ECM.

DTC No.	DTC Detecting Condition	Trouble Area
P0710	 (a) and (b) is detected momentary within 0.5 sec. when neither P0712 or P0713 is not detected (1-trip detection logic) (a) ATF temperature sensor resistance is less than 79 Ω. (b) ATF temperature sensor resistance is more than 156 kΩ. HINT: Within 0.5 sec. the malfunction switches from (a) to (b) or from (b) to (a) 	★Open or short in ATF temperature sensor No. 1 circuit ★ATF temperature sensor No. 1
P0712	ATF temperature sensor resistance is less than 79 Ω . for 0.5 sec. or more (1-trip detection logic)	∠E CM
P0713	ATF temperature sensor resistance is more than 156 k Ω . 15 minutes or more after the engine start DTC is detected for 0.5 sec. or more (1-trip detection logic)	

MONITOR DESCRIPTION

The automatic transmission fluid (ATF) temperature sensor converts ATF temperature to an electrical resistance value. Based on the resistance, the ECM determines the ATF temperature, and the ECM detects an opens or shorts in the ATF temperature circuit. If the resistance value of the ATF temperature is less than 79 Ω^{*1} or more than 156 k Ω^{*2} , the ECM interprets this as a fault in the ATF sensor or wiring. The ECM will turn on the MIL and store the DTC.

*1: 150 C (302 F) or more is indicated regardless of the actual ATF temperature.

*2: $-40 \square C$ ($-40 \square F$) is indicated regardless of the actual ATF temperature.

HINT:

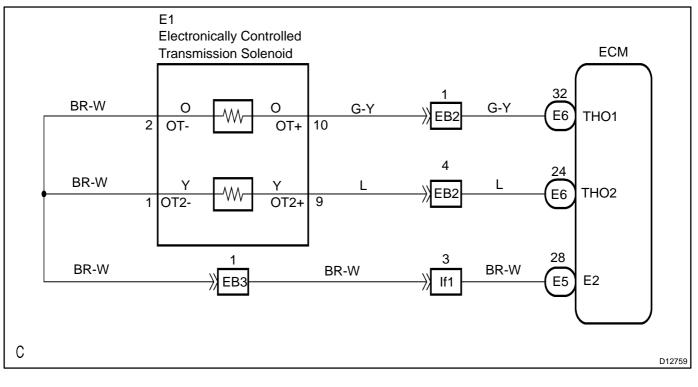
The ATF temperature can be checked on the OBD II scan tool or hand-held tester display.

MONITOR STRATEGY

	P0710	ATF temperature sensor/Range check (Fluttering)
Related DTCs	P0712	ATF temperature sensor/Range check (Low resistance)
	P0713	ATF temperature sensor/Range check (High resistance)
Required sensors/Components ATF temperature sensor		
Frequency of operation	Continuous	
Duration	0.5 sec.	
MIL operation	Immediate	
Sequence of operation None		

TYPICAL ENABLING CONDITIONS

	Specification		
Item	Minimum	Maximum	
The monitor will run whenever the follow- ing DTCs are not present.	See page DI-361		
Range check (Fluttering, Low resistance))		
The typical enabling condition is not avail- able.	-		
Range check (High resistance)			
Time after engine start	15 min. or more	-	


TYPICAL MALFUNCTION THRESHOLDS

Detection criteria	Threshold	
Range check (Fluttering)		
	Less than 79 Ω	
ATF temperature sensor resistance	or	
	More than 156 k Ω	
Range check (Low resistance)		
ATF temperature sensor resistance	Less than 79 Ω	
Range check (High resistance)		
ATF temperature sensor resistance	More than 156 k Ω	

COMPONENT OPERATING RANGE

Parameter	Standard value
ATF temperature sensor resistance	Atmospheric temperature to approx. 130°C (266°F)

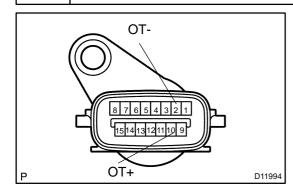
WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

According to the DATA LIST displayed by the OBD II scan tool or Hand-held tester, you can read the value of the switch, sensor, actuator and so on without parts removal. Reading the DATA LIST as a first step of troubleshooting is one method to shorten labor time.

- (a) Warm up the engine.
- (b) Turn the ignition switch OFF.
- (c) Connect the OBD II scan tool or Hand-held tester to the DLC3.
- (d) Turn the ignition switch ON.
- (e) Push the "ON" button of OBD II scan tool or Hand-held tester.
- (f) Select the item "/DIAGNOSIS/ENHANCED OBD II/DATA LIST/ALL (or ATM)".
- (g) According to the display on tester, read the "DATA LIST".


Item	Measurement Item/ Display (Range)	Normal Condition	Diagnostic Note
AT FLUID TEMP	ATF Temp. Sensor No.1 Value/ min.: -40°C (-40°F) max.: 215°C (419°F)	80°C (176°F) (After Stall Test)	If the value is "-40°C (-40°F)" or "215°C (419°F)", ATF temp. sen- sor No. 1 circuit is opened or shorted.

HINT:

When DTC P0712 is output and OBD II scan tool or hand-held tester output is 150°C (302°F), there is a short circuit.

Measure the resistance between THO1 (THO) and body ground.

Temperature Displayed	Malfunction
-40 °C (-40 °F)	Open circuit
150°C (302°F) or more	Short circuit
1 Check transmission wire	

PREPARATION:

Disconnect the transmission wire connector from the transmission.

CHECK:

Measure the resistance between terminals OT+ and OT-. **OK:**

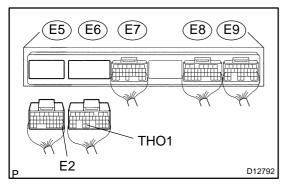
79 Ω to 156 k Ω

CHECK:

Measure resistance between terminals OT+ and OT- of the transmission wire connector and body ground.

<u> 0K:</u>

Resistance: 1 M Ω or higher


Replace the transmission wire (ATF temperature sensor).

ΟΚ

2004 LAND CRUISER (RM1071U)

2

Measure resistance between terminal THO1 and E2 of ECM connector.

PREPARATION:

(a) Connect the transmission wire connector.

(b) Disconnect the connector of the ECM.

CHECK:

Measure the resistance between terminals THO1 and E2. **OK:**

79 Ω to 156 k Ω

CHECK:

Measure resistance between terminals THO1 and E2 of the ECM connector and body ground.

<u>OK:</u>

Resistance: 1 M Ω or higher

Repair or replace the harness or connector (See page IN-36).

Check and replace the ECM (See page IN-36).

DTC P0711 Transmission Fluid Temperature Sensor "A" Performance

CIRCUIT DESCRIPTION

The ATF temperature sensor converts fluid temperature into a resistance value which is input into the ECM.

DTC No.	DTC Detecting Condition	Trouble Area
P0711	 (A) Both (a) and (b) are detected: (2-trip detection logic) (a) Intake air and engine coolant temps. are more than -10°C (14°F) at engine start (b) After normal driving for over 20 min. and 9 km (6 mile) or more, ATF temp. is less than 20°C (68°F) (B) After 17 min. of engine start, the ATF temp. is 110°C (230°F) or more (2-trip detection logic). 	★Open or short in ATF temperature sensor No. 1 circuit ★ATF temperature sensor No. 1 ★ECM

MONITOR DESCRIPTION

The ATF temperature sensor converts the ATF temperature to an electrical resistance value. Based on the resistance, the ECM determines the ATF temperature and detects an opens or shorts in the ATF temperature circuit or a fault of the ATF temperature sensor.

After running the vehicle for a certain period, the ATF temperature should increase. If the ATF temperature is below $10 \ (50 \)$ after running the vehicle for a certain period, the ECM interprets this as a fault, and turns on the MIL.

When the ATF temperature is 110 (230) or more after 17 minutes of engine cold start, the ECM also determines this as a fault, turns on the MIL, and stores the DTC.

MONITOR STRATEGY

Related DTCs	P0711	ATF temperature sensor/Rationality check
Required sensors/Components	ATF temperature sensor	
Frequency of operation	Continuous	
Duration	3 sec.	
MIL operation	2 driving cycles	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS

	Specification		
Item	Minimum	Maximum	
The monitor will run whenever the follow- ing DTCs are not present.	See page DI-361		
ATF Temperature sensor "A" circuit	There is no malfunction in the circuit shown on the left.		
ECT (Engine coolant temperature) sensor circuit			
IAT (Intake air temperature) sensor circuit			
Time after engine start	18 min. and 20 sec. or more -		
ECT	-15 °C (5 °F) or more -		
Driving distance after engine start	9 km (6 mile) or more -		
IAT (12 sec. after engine start)	-20 °C (-4°F) or more -		
ECT (12 sec. after engine start)	-20 °C (-4 °F) or more -		

2004 LAND CRUISER (RM1071U)

TYPICAL MALFUNCTION THRESHOLDS

Detection criteria	Threshold	
	Less than 10°C (50°F)	
ATF Temperature	(ATF temperature = -10°C (14°F) at engine start)	
	(Conditions vary with ATF temperature at engine start)	

COMPONENT OPERATING RANGE

Parameter	Standard value
ATF temperature sensor	Atmospheric temperature to approx. 130°C (266°F)

WIRING DIAGRAM

See page DI-410.

INSPECTION PROCEDURE

	1	1

Check other DTCs output (in addition to DTC P0711).

PREPARATION:

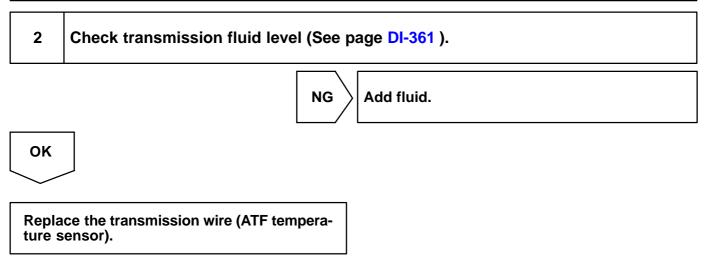
- (a) Warm up the engine.
- (b) Turn the ignition switch off.
- (c) Connect the OBD II scan tool or hand-held tester to the DLC3.
- (d) Turn the ignition switch to the ON position.
- (e) Push the "ON" button of the OBD II scan tool or the hand-held tester.
- (f) Select the item "DIAGNOSIS/ENHANCED OBD II/DTC INFO/CURRENT CODES".

CHECK:

Read the DTCs using the OBD II scan tool or the hand-held tester.

RESULT:

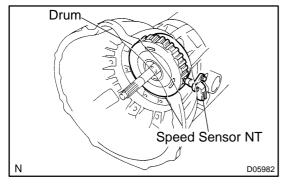
Display (DTC output)	Proceed to
Only "P0711" is output	А
"P0711" and other DTCs	В


HINT:

If any other codes besides "P0711" is output, perform the troubleshooting for those DTCs first.

В

A


Go to relevant DTC chart (See page DI-389).

DTC

P0717

CIRCUIT DESCRIPTION

The speed sensor NT detects the rotation speed of the input shaft from the rotation of the drum. Its construction is the same as that of the speed sensor SP2.

DIB35-02

By comparing the speed sensor NT signal and speed sensor SP2 signal, the ECM detects the shift timing of the gears and appropriately controls the engine torque and hydraulic pressure in response to various conditions, thus providing smooth gear shift.

DTC No.	DTC Detection Condition	Trouble Area
P0717	 All conditions below are detected for 5 secs. or more (1-trip detection logic) (a) Gear change not being performed (b) Gear position: 1st, 2nd, 3rd, 4th or 5th (c) T/M input shaft rpm: 300 rpm or less (d) T/M output shaft rpm: 1,000 rpm or more (e) Park/neutral position switch: OFF (f) Shift solenoid valves, park/neutral posotion switch and vehicle speed sensor are in normal operation 	★Open or short in speed sensor NT circuit ★Speed sensor NT ★ECM ★Automatic transmission assembly

MONITOR DESCRIPTION

The input speed sensor detects the transmission input shaft speed. The ECM determines the gear shift timing based on a comparison of the input speed sensor (input shaft speed) with the output speed sensor (output shaft speed).

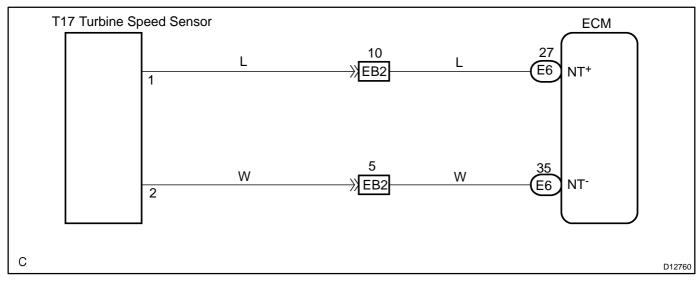
When the output shaft speed is higher then the expected value and the input shaft speed is 300 rpm or less while running with the shift in the D position, the ECM will conclude that there is malfunction of the input turbine speed sensor (NT). The ECM will illuminate the MIL and a DTC is set.

MONITOR STRATEGY

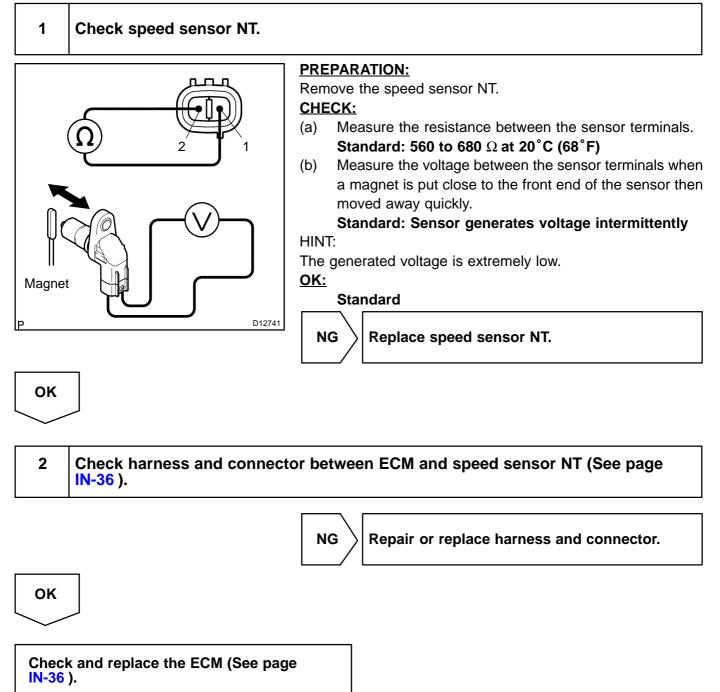
Related DTCs	P0717	Speed sensor (NT)/Verify pulse input
	Main	Speed sensor (NT)
Required sensors/Components	Sub	Speed sensor (NO)
Frequency of operation	Continuous	
Duration	5 sec.	
MIL operation	Immediate	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS

	Specification		
Item	Minimum	Maximum	
The monitor will run whenever the follow- ing DTCs are not present.	See page DI-361		
Shift change	Shift change is completed and before starting next shift change operation		
Transmission Shift position	4th or 5th		
Output shaft rpm	1,000 rpm or more -		
NSW switch	OFF		
R switch	OFF		
L switch	OFF		
Engine	Running		


TYPICAL MALFUNCTION THRESHOLDS

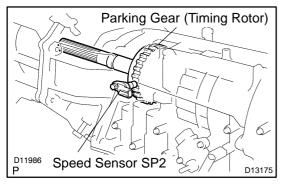
Detection criteria	Threshold
Sensor signal rpm	Less than 300 rpm


COMPONENT OPERATING RANGE

Parameter	Standard value
Speed sensor (NT)	Input speed is equal to engine speed when lock-up ON.

WIRING DIAGRAM

INSPECTION PROCEDURE



DIB36-02

P0722

Output Speed Sensor Circuit No Signal

CIRCUIT DESCRIPTION

The speed sensor SP2 detects the rotation speed of the transmission output shaft and sends signals to the ECM. The ECM determines the vehicle speed based on these signals. An AC voltage is generated in the speed sensor SP2 coil as the parking gear mounted on the rear planetary gear assy rotates, and this voltage is sent to the ECM. The parking gear on the rear planetary gear is used as the timing rotor for this sensor. The gear shift point and lock-up timing are controlled by the ECM based on the signals from this vehicle speed sensor and

the throttle position sensor signal. If the speed sensor SP2 malfunctions, the ECM uses input signals from the speed sensor NT as a back-up signal.

DTC No.	DTC Detection Condition	Trouble Area
P0722	 All conditions below are detected 500 times or more continuously (1-trip detection logic) (a) No signal from speed sensor SP2 is input to ECM while 4 pulses of No. 1 vehicle speed sensor signal are sent (b) Vehicle speed is 9 km/h (6 mph) or more for at least 4 sec. (c) Park/neutral position switch is OFF. (d) Transfer position is except neutral (4WD). 	★Open or short in speed sensor SP2 circuit ★Speed sensor SP2 ★ECM

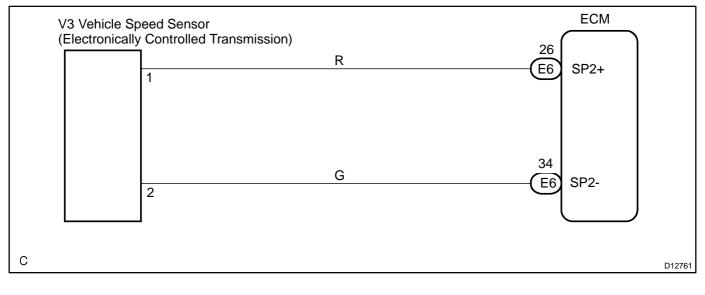
MONITOR DESCRIPTION

The output speed sensor monitors the output shaft speed. The ECM controls the gearshift point and the lock up timing based on the signals from the output speed sensor and throttle position sensor.

If the ECM detects no signal from the output shaft speed sensor even while the vehicle is moving, it will conclude that is a malfunction of the output speed sensor. The ECM will illuminate the MIL and store the DTC.

MONITOR STRATEGY

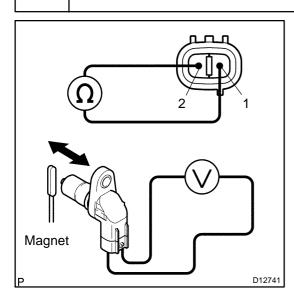
Related DTCs	P0722	Speed sensor SP2/Verify pulse input
Required sensors/Components	Speed sensor SP2	
Frequency of operation	Continuous	
Duration	500 output shaft revolution	
MIL operation	Immediate	
Sequence of operation	None	


TYPICAL ENABLING CONDITIONS

	Specification		
Item	Minimum Maximum		
The monitor will run whenever the follow- ing DTCs are not present.	See page DI-361		
Vehicle speed range (4 sec. or more)	9 km/h (6 mph) or more -		
NSW switch	OFF		
Transfer neutral switch	OFF		

TYPICAL MALFUNCTION THRESHOLDS

Detection criteria	Threshold
No pulse input during 4 vehicle speed sensor pulse input	500 times or more


WIRING DIAGRAM

INSPECTION PROCEDURE

1 Chec

Check speed sensor SP2.

PREPARATION:

Remove the speed sensor SP2. **CHECK:**

- (a) Measure the resistance between the sensor terminals. Standard: 560 to 680 Ω at 20°C (68°F)
- (b) Measure the voltage between the sensor terminals when a magnet is put close to the front end of the sensor then moved away quickly.

Standard: Sensor generates voltage intermittently. HINT:

The generated voltage is extremely low.

<u> 0K:</u>

Standard

ΟΚ

2 Check harness and connector between ECM and speed sensor SP2 (See page IN-36).

Repair or replace harness and connector.

ΟΚ

Check and replace the ECM (See page IN-36).

P0724

Brake Switch "B" Circuit High

CIRCUIT DESCRIPTION

The purpose of this circuit is to prevent the engine from stalling, while driving in lock-up condition, when brakes are suddenly applied.

When the brake pedal is operated, this switch sends a signal to ECM. Then the ECM cancels operation of the lock-up clutch while braking is in progress.

DTC No.	DTC Detection Condition	Trouble Area
P0724	Stop light switch always turn on even vehicle is driver Go and Stop 10 times. (2-trip detection logic)	★Short in stop light switch signal circuit ★Stop light switch ★ECM

MONITOR DESCRIPTION

When the stop light switch remains ON during "stop and go" driving, the ECM interprets this as a fault in the stop light switch and the MIL comes on and the ECM stores the DTC. The vehicle must stop and go (3 km/h (2 mph) to 30 km/h (19 mph)) ten times for two driving cycles in order to detect malfunction.

MONITOR STRATEGY

Related DTCs	P0724	Stop light switch/Range check/Rationality					
	Main	Stop light switch					
Required sensors/Components	Sub	Vehicle speed sensor					
Frequency of operation	Continuous						
Duration	GO and STOP 10 times						
MIL operation	2 driving cycles						
Sequence of operation	None						

TYPICAL ENABLING CONDITIONS

	Speci	fication
Item	Minimum	Maximum
The monitor will run whenever the follow- ing DTCs are not present.	See pag	e DI-361
The stop light switch remains on during	GO and STOP 10 times.	
GO and STOP are defined as follows;		
GO: Vehicle speed	30 km/h (19 mph) or more	_
STOP: Vehicle speed	-	Less than 3 km/h (2 mph)

TYPICAL MALFUNCTION THRESHOLDS

Detection criteria	Threshold
Brake switch status	ON stuck

WIRING DIAGRAM

See page DI-278.

INSPECTION PROCEDURE 1 Check stop light switch (See page BE-50). NG Replace stop light switch. OK . 2 Check harness and connector between ECM and stop light switch (See page IN-36). NG Repair or replace harness or connector. OK . OK . Check and replace ECM (See page IN-36).

DTC P0748 Pressure Control Solenoid "A" Electric (Shift Solenoid Valve SL1)	al
--	----

CIRCUIT DESCRIPTION

Shifting from 1st to 5th is performed in combination with ON and OFF of the shift solenoid valves S1, S2, SR, SL1 and SL2, controlled by ECM. If an open or short circuit occurs in either of the shift solenoid valves, the ECM controls the remaining normal shift solenoid valve to allow the vehicle to be operated smoothly (Fail safe function).

DIB38-02

Fail Safe Function:

If either of the shift solenoid valve circuits develops an open or short, the ECM turns the other shift solenoid ON and OFF to shift to the gear positions shown in the table below.

Manual shifting as shown in the following table must be done (In the case of a short circuit, the ECM stops sending current to the short circuited solenoid).

: ON X: OFF

c		NC	₽RM	IAL				S1	OF	F				S2	OFF	-				SR	OFI	=		
Position	Gear	S1	S2	SR	SL1	SL2	Gear	S1	S2	SR	SL1	SL2	Gear	S1	S2	SR	SL1	SL2	Gear	S1	S2	SR	SL1	SL2
"R"	R	0	×	×	×	0	R	×	X	×	×	0	R	0	×	×	×	0	R	0	×	×	×	0
"D"	1 st	0	×	×	×	0	4 th ↓ 3 rd	×	X X O	×	×	0	1 st	0	×	×	×	0	1 st	0	×	×	×	0
	2 nd	0	0	×	×	0	3 rd	×	0	×	×	0	1 st ↓ 4 th	0 ∦X	×	×	×	0	2 nd	0	0	×	×	0
	3 rd	×	0	×	×	0	3 rd	×	0	×	×	0	4 th	X	×	X	×	0	3 rd	×	0	×	×	0
	4 th	×	×	×	×	0	4 th	×	×	×	×	0	4 th	×	×	×	×	0	4 th	×	×	×	×	0
	5 th	×	×	0	0	×	5 th	×	×	0	0	×	5 th	×	×	0	0	×	4 th	×	×	×	0	×
"3"	1 st	0	×	×	×	0	3 rd ↓ 3 rd E/B	×	X X	×	×	O→X	1 st	0	×	×	×	0	1 st	0	×	×	×	0
	2 nd	0	0	×	×	0	3 rd ↓ 3 rd E/B	×	0	×	×	O →X	1 st ↓ 3 rd E/B	O→X	×	×	×	O→X	2 nd	0	0	×	×	0
	3 rd E/B	×	0	×	×	×	3 rd E/B	×	0	×	×	×	3 rd E/B	×	×	×	×	×	3 rd E/B ↓ 3 rd	×	0	×	×	N X
	4 th	×	×	0	×	0	4 th	×	×	0	×	0	4 th	×	×	0	×	0	3 rd	×	X ↓ Ŏ	×	×	0
	5 th	×	×	0	0	X	5 th	×	×	0	0	X	5 th	×	×	0	0	×	3 rd E/B ↓ 3 rd	×	X →O	×	O ↓X	×→O
"2"	1 st	0	×	×	×	0	1 st	×	×	×	×	0	1 st	0	×	×	×	0	1 st	0	×	×	×	0
	2 nd E/B	0	0	0	×	×	3 rd E/B	×	0	0	×	X	2 nd E/B ↓ 4 th	O ∦X	×	0	×	X →O	2 nd	0	0	×	×	×
	3 rd E/B	×	0	0	×	×	3 rd E/B	×	0	0	×	×	Fail 4th	×	×	0	×	X →O	2 nd	X ↓ O	0	×	×	×
	4 th	×	×	0	×	0	4 th	×	×	0	×	0	4 th	×	×	0	×	0	1 st ↓ 2 nd	X →O	X →O	×	×	0 ∦
	5 th	×	×	0	0	X	5 th	×	×	0	0	×	5 th	×	×	0	0	×	1 st E/B ↓ 2 nd	X ↓ O	0	×	0 *	×
"L"	1 st E/B	0	×	×	×	×	1 st E/B	×	×	×	×	X	1 st E/B	0	×	×	×	×	1 st E/B	0	×	×	×	×
	2 nd E/B	0	0	0	×	×	3 rd E/B	×	0	0	×	×	2 nd E/B ↓ 4 th	0 ∦	×	0	×	X →O	2 nd	0	0	×	×	×
	3 rd E/B	×	0	0	×	×	3 rd E/B	×	0	0	×	×	Fail 4 th	×	×	0	×	X→O	2 nd	X →O	0	×	×	×
	4 th	×	×	0	×	0	4 th	×	×	0	×	0	4 th	×	×	0	×	0	1 st ↓ 2 nd	X V	X→O	×		O →X
	5 th	×	×	0	0	×	5 th	×	×	0	0	×	5 th	×	×	0	0	×	1 st E/B ↓ 2 nd	X →O	X→O	×	O →X	×

2004 LAND CRUISER (RM1071U)

: ON X: OFF

		S1	S2	OF	F			S2	SR	OF	F			S1	SR	OF	F		S	1 S2	2 SR	OF	F	
Position	Gear	S1	S2	SR	SL1	SL2	Gear	S1	S2	SR	SL1	SL2	Gear	S1	S2	SR	SL1	SL2	Gear	S1	S2	SR	SL1	SL2
"R"	R	×	×	×	×	0	R	0	×	×	×	0	R	×	×	×	×	0	R	×	×	×	×	0
"D"	4 th	×	×	×	×	0	1 st	0	×	×	×	0	4 th ↓ 3 rd	×	N X X	×	×	0	4 th	×	×	×	×	0
	4 th	×	×	×	×	0	1 st ↓ 4 th	O→X	×	×	×	0	3 rd	×	0	×	×	0	4 th	×	×	×	×	0
	4 th	×	×	×	×	0	4 th	×	×	×	×	0	3 rd	×	0	×	×	0	4 th	×	×	×	×	0
	4 th	×	×	×	×	0	4 th	×	×	×	×	0	4 th	×	×	×	×	0	4 th	×	×	×	×	0
	5 th	×	×	0	0	×	4 th	×	×	×	O ↓X	×→O	4 th	×	×	×	O ↓×	X→O	4 th	×	×	×	O ↓X	Q X
"3"	3 rd 3 rd E/B	×	×	×	×	O →X	1 st	0	×	×	×	0	3 rd	×	X→O	×	X	0-0	3 rd	×	×	×	×	0 0
	3 rd ↓ 3 rd E/B	×	×	×	×	O ↓X	1 st ↓ 3 rd	O→X	×	×	×	0 0	3 rd	×	0	X	×	0-0	3 rd	X	×	×	×	0
	3 rd E/B	×	×	×	×	×	3 rd E/B ↓ 3 rd	X	X	×	×	X→O	3 rd E/B ↓ 3 rd	×	0	X	×	X→O	3 rd E/B 3 rd	X	×	×	×	X → Ŏ
	4 th	×	×	0	×	0	3 rd	×	×	×	×	Ŏ Ŏ	3 rd	×	X→O	×	×	0-0	3 rd	×	×	×	×	0 Ŏ
	5 th	×	×	0	0	×	1 st E/B 3 rd	×	×	×	O ↓X	×→O	3 rd E/B 3 rd	×	× × O	×	O ↓X	× ×→O	3 rd E/B ↓ 3 rd	×	×	×	O ↓ X	X V
"2"	1 st	×	×	×	×	0	1 st	0	×	×	×	0	1 st	×	X	×	X	0	1 st	×	×	×	×	0
	Fail 4 th	×	×	0	×	× ŏ	1 st E/B ↓ 1 st	0	×	×	×	×→O	2 nd	×	0	×	×	×	1 st E/B ↓ 1 st	×	×	×	×	X →O
	Fail 4 th	×	×	0	×	× ×	1 st E/B ↓ 1 st	X X O	×	×	×	× ×→	2 nd	×	0	×	×	×	1 st E/B ↓ 1 st	×	×	×	×	× ×
	4 th	×	×	0	×	0	1 st	X→O	×	×	×	0	1 st ↓ 2nd	×	X→O	×	×	O →X	1 st	×	×	×	×	0
	5 th	×	×	0	0	×	1 st E/B ↓ 1 st) XO	×	×	O ↓X	X →O	1 st E/B ↓ 2nd	×	X→O	×	O ↓X	X	1 st E/B ↓ 1 st	×	×	×	O ↓X	× ×
"L"	1 st E/B	×	×	×	×	×	1 st E/B	0	×	×	×	X	1 st E/B	×	X	×	×	×	1 st E/B	×	×	×	×	×
	Fail 4 th	×	×	0	×	X→O	1 st E/B ↓ 1 st	0	×	×	×	X O	2 nd	×	0	×	×	×	1 st E/B ↓ 1 st	×	×	×	×	× ×
	Fail 4 th	×	×	0	×	X→O	1 st E/B ↓ 1 st	Х→О	×	×	×	X Ŏ	2 nd	×	0	×	×	×	1 st E/B ↓ 1 st	×	×	×	×	X
	4 th	×	×	0	×	0	1 st	X→O	×	×	×	0	1 st 2nd	×	X→O	×	×	O →X	1 st	×	×	×	×	0
	5 th	×	×	0	0	×	1 st E/B ↓ 1 st	×→O	×	×	O ↓X	X X	1 st E/B ↓ 2nd	×	X→O	×	O →X	×	1 st E/B ↓ 1 st	×	×	×	O ↓X	X → Ŏ

DTC No.	DTC Detection Condition	Trouble Area
P0748	ECM checks for an open or short circuit in shift solenoid valves SL1 (1-trip detection logic) (a) When solenoid, duty ratio equal to 100% (b) When solenoid is not energized, duty ratio is less than 3%	©pen or short in shift solenoid valve SL1 circuit Shift solenoid valve SL1 ECM

MONITOR DESCRIPTION

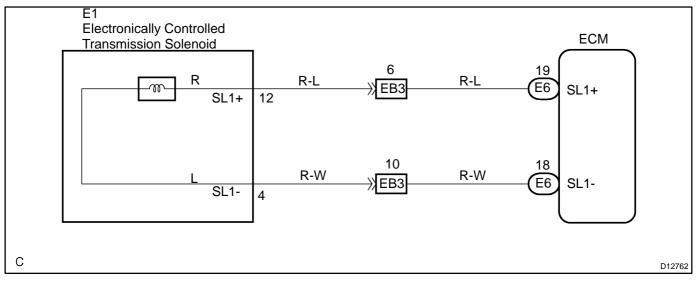
The ECM commands gearshift by turning the shift solenoid valves "ON/OFF". When there is an open or short circuit in any shift solenoid valve circuit, the ECM detects the problem and illuminates the MIL and stores the DTC. And the ECM performs the fail-safe function and turns the other shift solenoid valves in good condition "ON/OFF" (In case of an open or short circuit, the ECM stops sending current to the circuit.).

MONITOR STRATEGY

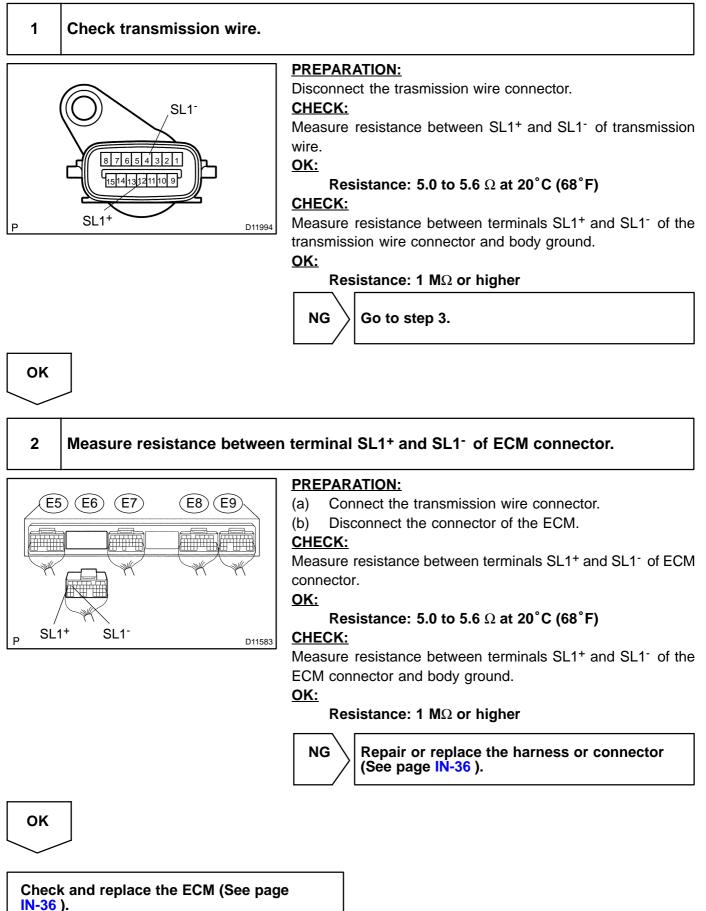
Related DTCs	P0748	Shift solenoid valve SL1/Range check				
Required sensors/Components	Shift solenoid valve SL1					
Frequency of operation	Continuous					
Duration	1 sec.					
MIL operation	Immediate					
Sequence of operation None						

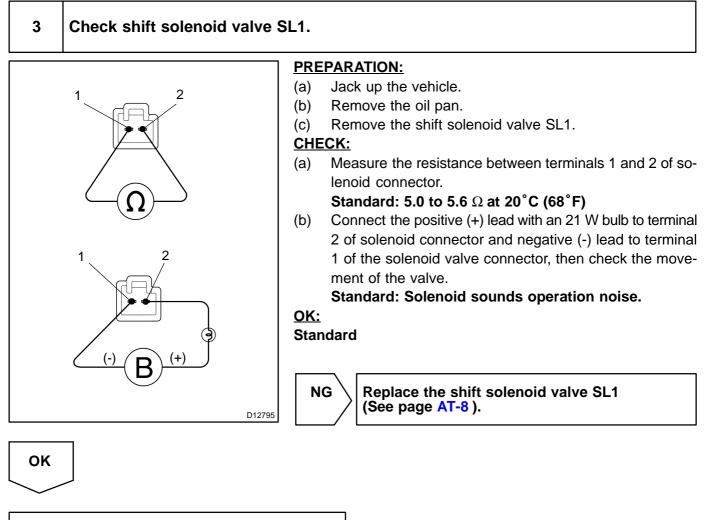
TYPICAL ENABLING CONDITIONS

	Specif	ication
Item	Minimum	Maximum
The monitor will run whenever the follow- ing DTCs are not present.	See pag	e DI-361
Battery voltage	10 V or more	-


TYPICAL MALFUNCTION THRESHOLDS

Detection criteria	Threshold
Output signal duty	100%


COMPONENT OPERATING RANGE


Parameter	Standard value
Output signal duty	Less than 100%

WIRING DIAGRAM

INSPECTION PROCEDURE

Repair or replace the transmission wire (See page AT-6).

DIC31-01

DTC P0751 Shift Solenoid "A" Performance (Shift Solenoid Valve S1)

SYSTEM DESCRIPTION

The ECM uses signals from the vehicle speed sensor and direct clutch speed sensor to detect the actual gear position (1st, 2nd, 3rd, 4th or 5th gear). Then the ECM compares the actual gear with the shift schedule in the ECM memory to detect mechanical problems of the shift solenoid valves, valve body or automatic transmission (clutch, brake or gear etc.).

DTC No.	DTC Detecting Condition	Trouble Area
P0751	The gear required by the ECM does not match the actual gear when driving (2-trip detection logic)	 ★Shift solenoid valve S1 is stuck open or closed ★Valve body is blocked up or stuck ★Automatic transmission (clutch, brake or gear etc.)

MONITOR DESCRIPTION

The ECM commands gear shifts by turning the shift solenoid valves "ON/OFF". According to the input shaft revolution and output shaft revolution, the ECM detects the actual gear position (1st, 2nd, 3rd, 4th or 5th gear position. When the gear position commanded by the ECM and the actual gear position are not same, the ECM illuminates the MIL.

MONITOR STRATEGY

Related DTCs	D0754	Shift solenoid valve S1/OFF malfunction	
Related DTCs	P0751	Shift solenoid valve S1/ON malfunction	
	Main	Shift solenoid valve S1	
Required sensors/Components	Sub	Vehicle speed sensor, Throttle position sensor, Speed sensor (NT), Speed sensor (NO)	
Frequency of operation	Continuous		
	OFF malfunction (A) and (B)	0.4 sec.	
	OFF malfunction (C)	Immediate	
Duration	ON malfunction (A), (B) and (C)	0.4 sec.	
	ON malfunction (D)	3 sec.	
	ON malfunction (E)	E) 0.5 sec.	
MIL operation	2 driving cycles		
Sequence of operation	None		

TYPICAL ENABLING CONDITIONS

	Specification		
Item	Minimum	Maximum	
The following conditions are common to all conditions below: Off malfunction (A), (B), (C) and ON malfunction (A), (B), (C), (D), (E)			
The monitor will run whenever the follow- ing DTCs are not present.	See page DI-361		

Turbine speed sensor (NT) circuit			
Output speed sensor (NO) circuit	There is no malfunction in the circuits shown on the left.		
Shift solenoid "A" (S1) circuit			
Shift solenoid "B" (S2) circuit			
Shift solenoid "E" (SR) circuit			
Pressure control solenoid "A" (SL1) circuit			
Pressure control solenoid "B" (SL2) circuit			
ECT (Engine coolant temperature) sensor			
circuit			
KCS sensor circuit			
ETCS (Electric throttle control system)	Not syste	em down	
Transmission shift position	"C)"	
ECT	40°C (104°F) or more	-	
Spark advance from Max. retard timing by KCS control	0° CA or more	-	
Engine	Run	ning	
Transfer range	"HIG		
Transfer range "HIGH" *1 (This condition	is applied only 4WD)		
*1 Following conditions met			
Vehicle speed sensor "A" circuit			
Output shaft speed sensor circuit	There is no malfunction in th	e circuits shown on the left.	
Transfer output speed	143 rpm or more	-	
NO/NOtf (Transfer input speed/Transfer output speed)	0.9 or more	Less than 1.1	
OFF malfunction (A)			
ECM selected gear	15	st	
Vehicle speed	2 km/h (1 mph) or more	Less than 40 km/h (25 mph)	
	8% or more and		
Throttle valve opening angle	6.5% or more at 2,000 rpm	-	
OFF makiunation (B)	(conditions vary with engine speed)		
OFF malfunction (B)			
Current ECM selected gear	51		
Last ECM selected gear	41	n	
Continuous time for ECM selecting 4th gear	2 sec. or more	-	
Actual gear when ECM selected 4th gear	41	h	
OFF malfunction (C)			
Current ECM selected gear	5t	h	
Last ECM selected gear	4th		
ON malfunction (A)	malfunction (A)		
ECM selected gear	1st		
Vehicle speed	2 km/h (1 mph) or more Less than 40 km/h (25 mph)		
Throttle valve opening angle	6.5% or more at 2,000 rpm (conditions vary with engine speed)		
ON malfunction (B)			
ECM selected gear	4th		
Vehicle speed	2 km/h (1 mph) or more -		

2004 LAND CRUISER (RM1071U)

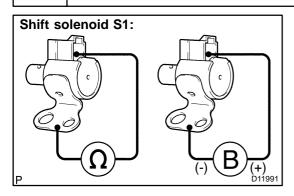
Throttle valve opening angle	6.5% or more at 2,000 rpm (conditions vary with engine speed)	
ON malfunction (C)		
ECM selected gear	3	rd
Vehicle speed	2 km/h (1 mph) or more	-
Throttle valve opening angle	6.5% or more at 2,000 rpm (conditions vary with engine speed)	-
ON malfunction (D)		
Current ECM selected gear	5	th
Last ECM selected gear	4th	
Vehicle speed (During transition from 4th to 5th gear)	- Less than 100 km/h (62 mph)	
ON malfunction (E)		
ECM selected gear	5th	
Engine speed - Turbine speed (NE - NT) (After transition from 4th to 5th gear)	-	150 rpm
Vehicle speed (After transition from 4th to 5th gear)	-	Less than 100 km/h (62 mph)

TYPICAL MALFUNCTION THRESHOLDS

Detection criteria	Threshold	
[OFF malfunction]		
All of the following conditions are met: Condition (A), (B) and (C)		
It is necessary 2 detections/one drive cycle 1st detection; temporary flag ON 2nd detection; pending fault code ON		
OFF malfunction (A)		
Turbine speed/Output speed (NT/NO)	0.93 or more and 1.07 or less	
OFF malfunction (B)		
Turbine speed/Output speed (NT/NO)	0.65 or more and 0.79 or less	
OFF malfunction (C)	·	
Output record from ECM for 4 th \rightarrow 5th upshifting	Recorded	
[ON malfunction]		
Either of the following conditions is met: ★ON malfunction (A) and (B) ★ON malfunction (B) or (C), and ON malfunction (D) or (E)	
ON malfunction (A) and (B)		
Turbine speed/Output speed (NT/NO)	3.30 or more and 7.50 or less	
ON malfunction (C)		
Turbine speed/Output speed (NT/NO)	1.91 or more and 2.35 or less	
ON malfunction (D)		

2004 LAND CRUISER (RM1071U)

Author :


628

1

Turbine speed - Output speed x 4th gear ratio (NT - NO x 4th gear ratio)	1,000 rpm or more
ON malfunction (E)	
Turbine speed - Output speed x 5th gear ratio (NT - NO x 5th gear ratio)	1,000 rpm or more

INSPECTION PROCEDURE

Check shift solenoid valve S1 operation.

PREPARATION:

(a) Jack up the vehicle.

(b) Remove the oil pan.

(c) Remove the shift solenoid valve S1.

CHECK:

Measure the resistance between the solenoid connector terminal and the body ground.

<u>OK:</u>

Resistance: 11 to 15 Ω at 20°C (68°F)

<u>CHECK:</u>

Connect the battery positive lead to the solenoid connector terminal and the battery negative lead to the solenoid body ground.

<u>OK:</u>

Solenoid sounds operation noise.

Replace shift solenoid valve S1 (See page AT-8).

DIC32-01

DTC P0756 Shift Solenoid "B" Performance (Shift Solenoid Valve S2)

SYSTEM DESCRIPTION

The ECM uses signals from the vehicle speed sensor and direct clutch speed sensor to detect the actual gear position (1st, 2nd, 3rd, 4th or 5th gear). Then the ECM compares the actual gear with the shift schedule in the ECM memory to detect mechanical problems of the shift solenoid valves, valve body or automatic transmission (clutch, brake or gear etc.).

DTC No.	DTC Detecting Condition	Trouble Area
P0756	The gear required by the ECM does not match the actual gear when driving (2-trip detection logic)	 ★Shift solenoid valve S2 is stuck open or closed ★Valve body is blocked up or stuck ★Automatic transmission (clutch, brake or gear etc.)

MONITOR DESCRIPTION

The ECM commands gear shifts by turning the shift solenoid valves "ON/OFF". According to the input shaft revolution and output shaft revolution, the ECM detects the actual gear position (1st, 2nd, 3rd, 4th or 5th gear position). When the gear position commanded by the ECM and the actual gear position are not same, the ECM illuminates the MIL.

MONITOR STRATEGY

	-	Shift solenoid valve S2/OFF malfunction
Related DTCs	P0756	Shift solenoid valve S2/ON malfunction
	Main	Shift solenoid valve S2
Required sensors/Components	Sub	Vehicle speed sensor, Throttle position sensor, Speed sensor (NT), Speed sensor (NO)
Frequency of operation	Continuous	
	OFF malfunction (A), (B), (C)	0.4 sec.
	OFF malfunction (D)	Immediate
Duration	ON malfunction (A) and (B)	0.4 sec.
	ON malfunction (C)	3 sec.
	ON malfunction (D)	0.5 sec.
MIL operation	2 driving cycles	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS

	Specification		
Item	Minimum	Maximum	
The following conditions are common to all conditions below: OFF malfunction (A), (B), (C), (D) and ON malfunction (A), (B), (C), (D)			
The monitor will run whenever the follow- ing DTCs are not present.	See page DI-361		

Turbine speed sensor (NT) circuit			
Output speed sensor (NO) circuit			
Shift solenoid "A" (S1) circuit			
Shift solenoid "B" (S2) circuit			
Shift solenoid "E" (SR) circuit			
Pressure control solenoid "A" (SL1) circuit	There is no malfunction in the circuits shown on the left.		
Pressure control solenoid "B" (SL2) circuit			
ECT (Engine coolant temperature) sensor			
circuit			
KCS sensor circuit			
ETCS (Electric throttle control system)	Not syste	em down	
Transmission shift position	"[)"	
ECT	40°C (104°F) or more	-	
Spark advance from Max. retard timing by KCS control	0° CA or more	-	
Engine	Run	ning	
Transfer range	"HIG	-	
Transfer range "HIGH" *1 (This condition	is applied only 4WD)		
*1 Following conditions met			
Vehicle speed sensor "A" circuit			
Output shaft speed sensor circuit	There is no malfunction in the	ne circuits shown on the left.	
Transfer output speed	143 rpm or more	<u>-</u>	
NO/NOtf (Transfer input speed/Transfer			
output speed)	0.9 or more	Less than 1.1	
OFF malfunction (A)			
ECM selected gear	1:	st	
Vehicle speed	2 km/h (1 mph) or more	Less than 40 km/h (25 mph)	
	6.5% or more at 2,000 rpm		
Throttle valve opening angle	(conditions vary with engine speed)	-	
OFF malfunction (B)			
ECM selected gear	2r	nd	
Vehicle speed	2 km/h (1 mph) or more		
Output speed	$2nd \rightarrow 1st down shift point or more$	-	
Throttle valve opening angle	6.5% or more at 2,000 rpm (conditions vary with engine speed)	-	
OFF malfunction (C)			
Current ECM selected gear	51	:h	
Last ECM selected gear	41	th	
Continuous time for ECM selecting 4th			
gear	2 sec. or more -		
Actual gear when ECM selected 4th gear	· 4th		
OFF malfunction (D)			
Current ECM selected gear	5th		
Last ECM selected gear	4th		
ON malfunction (A)			
ECM selected gear	1st		
Vehicle speed	2 km/h (1 mph) or more Less than 40 km/h (25 mph)		
2004 LAND CRUISER (RM1071U)			

2004 LAND CRUISER (RM1071U)

	0.5%		
Throttle valve opening angle	6.5% or more at 2,000 rpm	-	
	(conditions vary with engine speed)		
ON malfunction (B)			
ECM selected gear	4	th	
Vehicle speed	2 km/h (1 mph) or more	-	
	6.5% or more at 2,000 rpm		
Throttle valve opening angle	(conditions vary with engine speed)	-	
ON malfunction (C)			
Current ECM selected gear	5th		
Last ECM selected gear	4th		
Vehicle speed			
(During transition from 4th to 5th gear)	- Less than 100 km/h (62 mph)		
ON malfunction (D)			
ECM selected gear	gear 5th		
Engine speed - Turbine speed (NE - NT)		Loss than 450 mer	
(After transition from 4th to 5th gear)	- Less than 150 rpm		
Vehicle speed			
(After transition from 4th to 5th gear)	- Less than 100 km/h (62 mph)		

TYPICAL MALFUNCTION THRESHOLDS

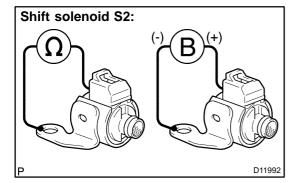
Detection criteria	Threshold		
[OFF malfunction]			
All of the following conditions are met: Condition (A), (B), (C) and (D)			
It is necessary 2 detections/one drive cycle 1st detection; temporary flag ON	It is necessary 2 detections/one drive cycle		
2nd detection; pending fault code ON			
OFF malfunction (A) and (B)			
Turbine speed/Output speed (NT/NO)	3.30 or more and 7.50 or less		
OFF malfunction (C)			
Turbine speed/Output speed (NT/NO)	0.65 or more and 0.79 or less		
OFF malfunction (D)			
Output record from ECM for 4th \rightarrow 5th upshifting	d from ECM for 4th \rightarrow 5th upshifting Recorded		
[ON malfunction]			
Both of the following conditions are met: ON malfunction	(A) or (B), and ON malfunction (C) or (D)		
ON malfunction (A)			
Turbine speed/Output speed (NT/NO) 1.91 or more 2.35 or less			
ON malfunction (B)			
rbine speed/Output speed (NT/NO) 1.28 or more and 1.53 or less			
ON malfunction (C)			
Furbine speed - Output speed x 4th gear ratio 1,000 rpm or more NT - NO x 4th gear ratio) 1,000 rpm or more			

2004 LAND CRUISER (RM1071U)

Author :

ON malfunction (E)

Turbine speed - Output speed x 5th gear ratio


(NT - NO x 5th gear ratio)

1,000 rpm or more

INSPECTION PROCEDURE

1

Check shift solenoid valve S2 operation.

PREPARATION:

(a) Jack up the vehicle.

(b) Remove the oil pan.

(c) Remove the shift solenoid valve S2.

CHECK:

Measure the resistance between the solenoid connector terminal and the body ground.

<u> 0K:</u>

Resistance: 11 to 15 Ω at 20°C (68°F)

CHECK:

Connect the battery positive lead to the solenoid connector terminal and the battery negative lead to the solenoid body ground.

<u>OK:</u>

Solenoid sounds operation noise.

Replace shift solenoid valve S2 (See page AT-8).

OK	
2	Check valve body (See page DI-396).
	NG Repair or replace valve body.
ОК	
Repai	ir or replace transmission (See page

DIB3A-02

DTC P0771 Shift Solenoid "E" Performance (Shift Solenoid Valve SR)

SYSTEM DESCRIPTION

The ECM uses signals from the vehicle speed sensor and direct clutch speed sensor to detect the actual gear position (1st, 2nd, 3rd, 4th or 5th gear). Then the ECM compares the actual gear with the shift schedule in the ECM memory to detect mechanical problems of the shift solenoid valves, valve body or automatic transmission (clutch, brake or gear etc.).

DTC No.	DTC Detecting Condition	Trouble Area
P0771	The gear required by the ECM does not match the actual gear when driving (2-trip detection logic)	 ★Shift solenoid valve SR is stuck open or closed ★Shift solenoid valve SL1 is stuck open or closed ★Valve body is blocked up or stuck ★Automatic transmission (clutch, brake or gear etc.)

MONITOR DESCRIPTION

The ECM commands gear shifts by turning the shift solenoid valves "ON/OFF". According to the input shaft revolution and output shaft revolution, the ECM detects the actual gear position (1st, 2nd, 3rd, 4th or 5th gear position). When the gear position commanded by the ECM and the actual gear position are not same, the ECM illuminates the MIL and stores the DTC.

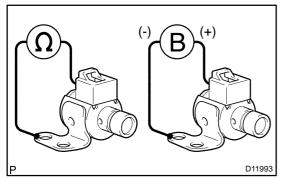
MONITOR STRATEGY

Related DTCs	P0771 Shift solenoid valve SR/Rationality check		
	Main	Shift solenoid valve SR	
Required sensors/Components	Sub	Speed sensor (NT), Speed sensor (NO), Crankshaft position sensor (NE)	
Frequency of operation	Continuous		
	OFF malfunction (A)	0.4 sec.	
Duration	OFF malfunction (B) and (C)	Immediate	
	ON malfunction 0.15 sec.		
MIL operation	2 driving cycles		
Sequence of operation	None		

TYPICAL ENABLING CONDITIONS

	Specification	
Item	Minimum	Maximum
The following items are common to all condition below: OFF malfunction (A), (B), (C) and ON malfunction		
The monitor will run whenever the follow- ing DTCs are not present.	See page DI-361	

Turbine speed sensor (NT) circuit			
Output speed sensor (NO) circuit	There is no malfunction in the circuits shown on the left.		
Shift solenoid "A" (S1) circuit			
Shift solenoid "B" (S2) circuit			
Shift solenoid "E" (SR) circuit			
Pressure control solenoid "A" (SL1) circuit			
Pressure control solenoid "B" (SL2) circuit			
ECT (Engine coolant temperature) sensor circuit			
KCS sensor circuit			
ETCS (Electric throttle control system)	Not syste	em down	
Transmission shift position	"[D"	
ECT	40°C (104°F) or more	-	
Spark advance from Max. retard timing by KCS control	0° CA or more	-	
Engine	Run	ning	
Transfer range	"HIG	5H" ^{*1}	
Transfer range "HIGH" *1 (This condition	is applied only 4WD)		
*1 Following conditions met			
Vehicle speed sensor "A" circuit			
Output shaft speed sensor circuit	There is no malfunction in the circuits shown on the left.		
Transfer output speed	143 rpm or more	-	
NO/NOtf (Transfer input speed/Transfer output speed)	0.9 or more Less than 1.1		
OFF malfunction (A)			
ECM selected gear	5	th	
Vehicle speed	2 km/h (1 mph)	-	
Throttle valve opening angle	6.5% or more at 2,000 rpm (conditions vary with engine speed)	-	
OFF malfunction (B)			
Current ECM selected gear	5	th	
Last ECM selected gear	4	th	
Continuous time for ECM selecting 4th gear	2 sec. or more -		
OFF malfunction (C)		·	
Current ECM selected gear	5th		
Last ECM selected gear	4th		
ON malfunction			
Current ECM selected gear	2th		
Last ECM selected gear	1st		
Throttle valve opening angle (During transition from 1st to 2nd gear)	4.5% or more at 2,000 rpm (conditions vary with turbine speed)		


TYPICAL MALFUNCTION THRESHOLDS

Detection criteria Threshold	
[OFF malfunction]	
All of the following conditions are met: OFF malfunction (A), (B) and (C)	

It is necessary 2 detections/one drive cycle 1st detection; temporary flag ON		
2nd detection; temporary pending fault code ON		
OFF malfunction (A)		
	0.93 or more	
Turbine speed/Output speed (NT/NO)	and	
	1.07 or less	
OFF malfunction (B)		
	Not change as follow	
	0.93 or more and 1.07 or less	
Turbine speed/Output speed (NT/NO)	\downarrow	
	0.65 or more and 0.79 or less	
OFF malfunction (C)		
utput record from ECM for 4th \rightarrow 5th upshifting Recorded		
[ON malfunction]		
It is necessary 2 detections/one drive cycle		
1st detection; temporary flag ON		
2nd detection; temporary pending fault code ON		
Turbine speed - Output speed x 1st gear ratio		
(NT - NO x 1st gear ratio)	150 rpm or more	

INSPECTION PROCEDURE

Check shift solenoid valve SR operation.

PREPARATION:

- (a) Jack up the vehicle.
- (b) Remove the oil pan.

(c) Remove the shift solenoid valve SR.

CHECK:

Measure the resistance between the solenoid connector terminal and the body ground.

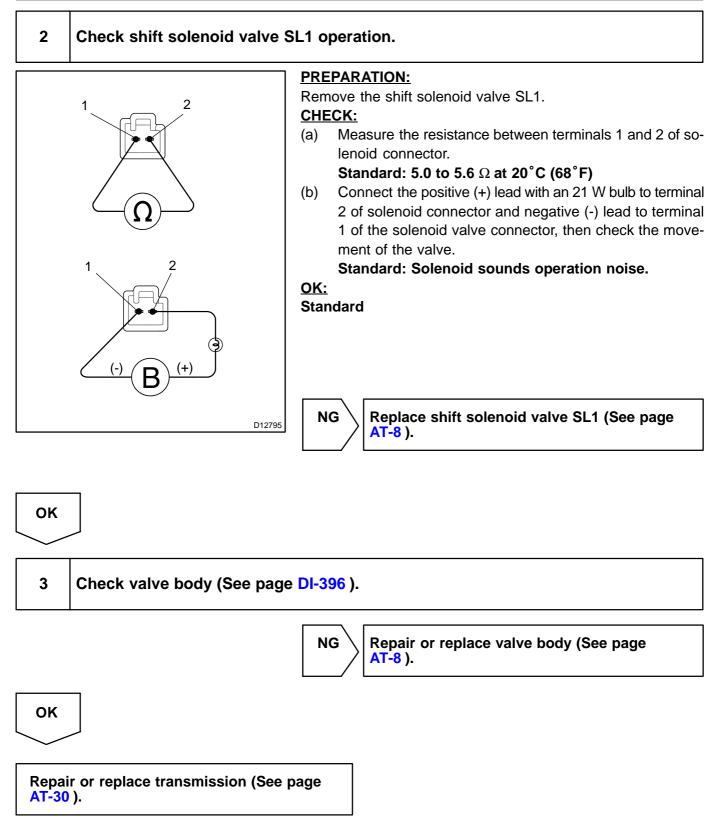
<u>OK:</u>

Resistance: 11 to 15 Ω at 20°C (68°F)

CHECK:

Connect the battery positive lead to the solenoid connector terminal and the battery negative lead to the solenoid body ground.

<u>OK:</u>


Solenoid sounds operation noise.

Replace shift solenoid valve SR (See page

OK

1

DIB3B-02

DTC P0776 Pressure Control Solenoid "B" Performance (Shift Solenoid Valve SL2)

SYSTEM DESCRIPTION

The ECM uses signals from the vehicle speed sensor and direct clutch speed sensor to detect the actual gear position (1st, 2nd, 3rd, 4th or 5th gear). Then the ECM compares the actual gear with the shift schedule in the ECM memory to detect mechanical problems of the shift solenoid valves, valve body or automatic transmission (clutch, brake or gear etc.).

DTC No.	DTC Detecting Condition	Trouble Area
P0776	The gear required by the ECM does not match the actual gear when driving (2-trip detection logic)	☐Shift solenoid valve SL2 is stuck open or closed ☐Valve body is blocked up or stuck ☐Automatic transmission (clutch, brake or gear etc.)

MONITOR DESCRIPTION

The ECM commands gear shifts by turning the shift solenoid valves "ON/OFF". According to the input shaft revolution and output shaft revolution, the ECM detects the actual gear position (1st, 2nd, 3rd, 4th or 5th gear position). When the gear position commanded by the ECM and the actual gear position are not same, the ECM illuminates the MIL and stores the DTC.

MONITOR STRATEGY

Related DTCs	P0776 Shift solenoid valve SL2/ON malfunction		
	Main	Shift solenoid valve SL2	
Required sensors/Components	Sub	Speed sensor (NT), Speed sensor (NO), Crankshaft position sensor (NE)	
Frequency of operation	Continuous		
Duration	ON malfunction (A), (B) and (C)	0.4 sec.	
	ON malfunction (D)	3 sec.	
ON malfunction (E)		0.5 sec.	
MIL operation	2 driving cycles		
Sequence of operation	None		

TYPICAL ENABLING CONDITIONS

	Specification			
ltem	Minimum Maximum			
The following items are common to all co	ndition below: ON malfunction (A), (B), (C), (D) a	nd (E)		
The monitor will run whenever the follow- ing DTCs are not present.	See page DI-361			
Turbine speed sensor (NT) circuit				
Output speed sensor (N) circuit	There is no malfunction in the circuits shown on the left.			
Shift solenoid "A" (S1) circuit				
Shift solenoid "B" (S2) circuit				
Shift solenoid "E" (SR) circuit				
Pressure control solenoid "A" (SL1) circuit				
Pressure control solenoid "B" (SL2) circuit				
ECT (Engine coolant temperature) sensor circuit				
KCS sensor circuit				
ETCS (Electric throttle control system)	Not syste	m down		
Transmission shift position	"D	n		
ECT	40°C (104°F) or more	-		
Spark advance from Max. retard timing by KCS control	0° CA or more	-		
Engine	Runr	ing		
Transfer range	"HIGI	-1" ^{*1}		
Transfer range "HIGH" *1 (This condition	is applied only 4WD)			
*1 Following conditions met				
Vehicle speed sensor "A" circuit				
Output shaft speed sensor circuit	There is no malfunction in the	e circuits shown on the left.		
Transfer output speed	143 rpm or more	-		
NO/NOtf (Transfer input speed/Transfer output speed)	0.9 or more	Less than 1.1		
ON malfunction (A)	ł			
ECM selected gear	1s	t		
Vehicle speed	2 km/h (1 mph) or more	Less than 40 km/h (25 mph)		
Throttle valve opening angle	6.5% or more at 2,000 rpm (conditions vary with engine speed)	-		
ON malfunction (B)				
ECM selected gear	3rd	t i i i i i i i i i i i i i i i i i i i		
Vehicle speed	2 km/h (1 mph) -			
Throttle valve opening angle	6.5% or more at 2,000 rpm (conditions vary with engine speed)	-		
ON malfunction (C)				
ECM selected gear 4th				
Vehicle speed	2 km/h (1 mph) or more -			
Throttle valve opening angle	6.5% or more at 2,000 rpm (conditions vary with engine speed)			
ON malfunction (D)	· · · · · · · · · · · · · · · · · · ·			
Current ECM selected gear	5tt			

2004 LAND CRUISER (RM1071U)

DIAGNOSTICS - AUTOMATIC TRANSMISSION

Last ECM selected gear	4th		
Vehicle speed (During transition from 4th to 5th gear)	-	Less than 100 km/h (62 mph)	
ON malfunction (E)			
ECM selected gear	5th		
Engine speed - Turbine speed (NE - NT) (After transition from 4th to 5th gear)	-	Less than 150 rpm	
Vehicle speed (After transition from 4th to 5th gear)	-	Less than 100 km/h (62 mph)	

TYPICAL MALFUNCTION THRESHOLDS

Detection criteria	Threshold
Both of the following conditions are met: ON malfunction (A) and (B), or ON malfunction (C) ON malfunction (D) or (E)	
ON malfunction (A)	
Turbine speed/Output speed (NT/NO)	3.30 or more and 7.50 or less
ON malfunction (B)	
Turbine speed/Output speed (NT/NO)	1.28 or more and 1.53 or less
ON malfunction (C)	
Turbine speed/Output speed (NT/NO)	0.93 or more and 1.07 or less
ON malfunction (D)	
Turbine speed - Output speed x 4th gear ratio (NT - NO x 4th gear ratio)	1,000 rpm or more
ON malfunction (E)	
Turbine speed - Output speed x 5th gear ratio (NT - NO x 5th gear ratio)	1,000 rpm or more

INSPECTION PROCEDURE

1 Check shift solenoid valve SL2 operation. **PREPARATION:** Jack up the vehicle. (a) 2 1 (b) Remove the oil pan. Remove the shift solenoid valve SL2. (c) CHECK: Measure the resistance between terminals 1 and 2 of so-(a) lenoid connector. Standard: 5.0 to 5.6 Ω at 20°C (68°F) Connect the positive (+) lead with an 21 W bulb to terminal (b) 2 of solenoid connector and negative (-) lead to terminal 1 of the solenoid valve connector, then check the move-1 ment of the valve. Standard: Solenoid sounds operation noise. OK: Standard (-) NG Replace shift solenoid valve SL2 (See page AT-8). D12795

ОК	
2	Check valve body (See page DI-396).
	NG Repair or replace valve body (See page AT-8).
ОК	
Repai (See j	r or replace transmission bage AT-30).

(Shift Solenoid Valve SL2)

Pressure Control Solenoid "B" Electrical

DIB3C-02

CIRCUIT DESCRIPTION

P0778

See page DI-426.

DTC

DTC No.	DTC Detection Condition	Trouble Area
	ECM checks for an open or short circuit in shift solenoid valves SL2 (1-trip detection logic) (a) When solenoid is energized, duty ratio exceed 75% (b) When solenoid is not energized, duty ratio is less than 3%	₩Open or short in shift solenoid valve SL2 circuit ★Shift solenoid valve SL2 ★ECM

MONITOR DESCRIPTION

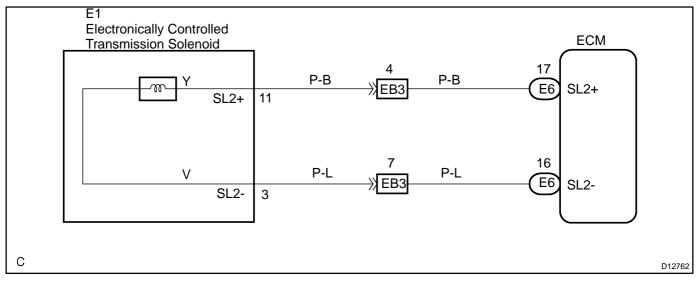
The ECM commands gearshift by turning the shift solenoid valves "ON/OFF". When there is an open or short circuit in any shift solenoid valve circuit, the ECM detects the problem and illuminates the MIL and stores the DTC. And the ECM performs the fail-safe function and turns the other shift solenoid valves in good condition "ON/OFF" (In case of an open or short circuit, the ECM stops sending current to the circuit.) (see page DI-426).

MONITOR STRATEGY

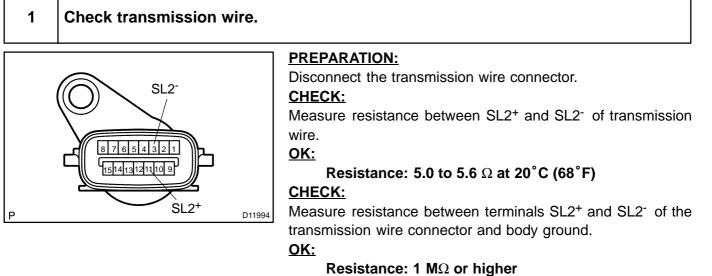
Related DTCs	P0778	Shift solenoid valve SL2/Range check
Required sensors/Components	Shift solenoid valve SL2	
Frequency of operation	Continuous	
Duration	1 sec.	
MIL operation	1 driving cycle	
Sequence of operation	None	

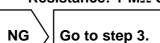
TYPICAL ENABLING CONDITIONS

	Specification		
Item	Minimum	Maximum	
The monitor will run whenever the follow- ing DTCs are not present.	See page DI-361		
Battery voltage	10 V or more	-	


TYPICAL MALFUNCTION THRESHOLDS

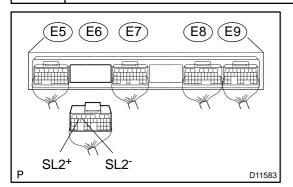
Detection criteria	Threshold
Output signal duty	100%


COMPONENT OPERATING RANGE


Parameter	Standard value
Output signal duty	Less than 100%

WIRING DIAGRAM

INSPECTION PROCEDURE



ОК

2

Measure resistance between terminal SL2⁺ and SL2⁻ of ECM connector.

PREPARATION:

(a) Connect the transmission wire connector.

(b) Disconnect the connector of the ECM.

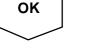
CHECK:

Measure resistance between terminals SL2⁺ and SL2⁻ of ECM connector.

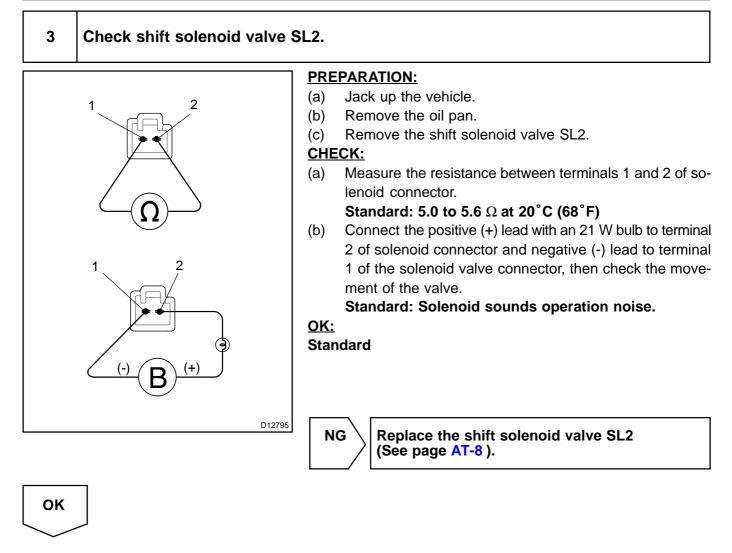
<u>OK:</u>

Resistance: 5.0 to 5.6 Ω at 20°C (68°F)

CHECK:


Measure resistance between terminals SL2⁺ and SL2⁻ of the ECM connector and body ground.

<u>OK:</u>


Resistance: 1 M Ω or higher

NG

Repair or replace the harness or connector (See page IN-36).

Check and replace the ECM (See page IN-36).

Repair or replace the transmission wire (See page AT-6).

DTC	

P0781 | 1-2 Shift

SYSTEM DESCRIPTION

The ECM uses signals from the vehicle speed sensor and direct clutch speed sensor to detect the actual gear position (1st, 2nd, 3rd, 4th or 5th gear). Then the ECM compares the actual gear with the shift schedule in the ECM memory to detect mechanical problems of the shift solenoid valves, valve body or automatic transmission (clutch, brake or gear etc.).

DTC No.	DTC Detecting Condition	Trouble Area
P0781	The gear required by the ECM does not match the actual gear when driving (2-trip detection logic)	 ★Valve body is blocked up or stuck (1-2 shift) ★Automatic transmission assembly ★ECM

MONITOR DESCRIPTION

The ECM calculates the "actual" transmission gear by comparing the signals from the input speed sensor and the output speed sensor. The ECM can detect many mechanical problems in the shift solenoids, valve body, and the transmission clutches, brakes, and gears. If the ECM detects that the actual gear position and the commanded gear position are different, it will illuminate the MIL and store the DTC.

MONITOR STRATEGY

Related DTCs	P0781	Valve body/Rationality check
	Main	Valve body
Required sensors/Components	Sub	Automatic transmission assembly, Speed sensor (NT), Speed sensor (NO), Vehicle speed sensor, Throttle speed sensor
Frequency of operation	Continuous	
	Condition (A) and (B)	0.4 sec.
Duration	Condition (C)	3 sec.
	Condition (D)	0.5 sec.
MIL operation	2 driving cycles	
Sequence of operation	None	

DIB3D-02

TYPICAL ENABLING CONDITIONS

	Specification			
Item	Minimum Maximum			
The Following items are common to all conditions below: Condition (A), (B), (C) and (D)				
The monitor will run whenever the follow- ing DTCs are not present.	See page DI-361			
Turbine speed sensor (NT) circuit				
Output speed sensor (NO) circuit				
Shift solenoid "A" (S1) circuit				
Shift solenoid "B" (S2) circuit	There is no malfunction is the size its shown on the left			
Shift solenoid "E" (SR) circuit				
Pressure control solenoid "A" (SL1) circuit	There is no malfunction in the circuits shown on the left.			
Pressure control solenoid "B" (SL2) circuit				
ECT (Engine coolant temperature) sensor circuit				
KCS sensor circuit				
ETCS (Electric throttle control system)	Not syste	em down		
Transmission shift position	"[)"		
ECT	40°C (104°F) or more	<u> </u>		
Spark advance from Max. retard timing by KCS control	0° CA or more	-		
Engine	Run	ning		
Transfer range	"HIG	H" ^{*1}		
Transfer range "HIGH" *1 (This condition	is applied only 4WD)			
*1 Following conditions met				
Vehicle speed sensor "A" circuit	There is no malfunction in th	a circuits shown on the left		
Output shaft speed sensor circuit				
Transfer output speed	143 rpm or more	-		
NO/NOtf (Transfer input speed/Transfer output speed)	0.9 or more	Less than 1.1		
Condition (A)				
ECM selected gear	2r	nd		
Vehicle speed	2 km/h (1 mph) or more	-		
Output speed	$2nd \rightarrow 1st down shift point or more$	-		
Throttle valve opening angle	6.5% or more at 2,000 rpm (conditions vary with engine speed)			
Condition (B)				
ECM selected gear	41	th		
Vehicle speed	2 km/h (1 mph) or more -			
Throttle valve opening angle	6.5% or more at 2,000 rpm (conditions vary with engine speed)			
Condition (C)				
Current ECM selected gear	51	th		
Last ECM selected gear	4th			
Vehicle speed	- Less than 100 km/h (62 mph)			
(During transition from 4th to 5th gear)				
Condition (D)				

2004 LAND CRUISER (RM1071U)

ECM selected gear	5	th
Engine speed - Turbine speed (NE - NT) (After transition from 4th to 5th gear)	-	Less than 150 rpm
Vehicle speed (After transition from 4th to 5th gear)	-	Less than 100 km/h (62 mph)

TYPICAL MALFUNCTION THRESHOLDS

Detection criteria	Threshold	
Both of the following conditions are met: Condition (A), and Con	dition (B), (C) or (D)	
Condition (A)		
	3.30 or more	
Turbine speed/Output speed (NT/NO)	and	
	7.50 or less	
Condition (B)		
	1.28 or more	
Turbine speed/Output speed (NT/NO)	and	
	1.53 or less	
Condition (C)		
Turbine speed - Output speed x 4th gear ratio	1 000 rpm or moro	
(NT - NO x 4th gear ratio)	1,000 rpm or more	
Condition (D)		
Turbine speed - Output speed x 5th gear ratio	4 000 mm or more	
(NT - NO x 5th gear ratio)	1,000 rpm or more	

INSPECTION PROCEDURE

Check other DTCs output (in addition to DTC P0781).

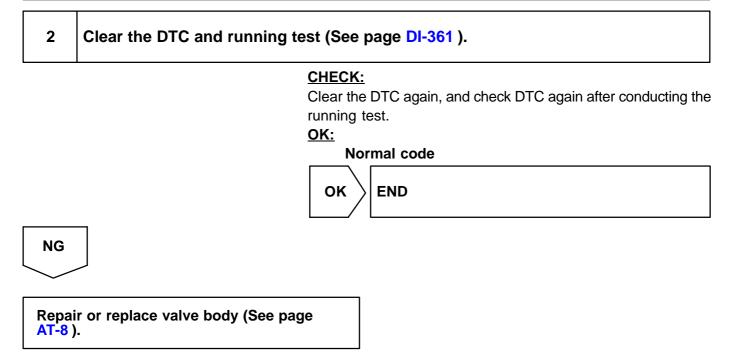
PREPARATION:

1

- (a) Warm up the engine.
- (b) Turn the ignition switch off.
- (c) Connect the OBD II scan tool or hand-held tester to the DLC3.
- (d) Turn the ignition switch to the ON position.
- (e) Push the "ON" button of the OBD II scan tool or the hand-held tester.
- (f) Select the item "DIAGNOSIS/ENHANCED OBD II/DTC INFO/CURRENT CODES".

CHECK:

Read the DTCs using the OBD II scan tool or the hand-held tester.


<u>RESULT:</u>

Display (DTC output)	Proceed to
Only "P0781" is output	А
"P0781" and other DTCs	В

HINT:

If any other codes besides "P0781" is output, perform the troubleshooting for those DTCs first.

A 2004 LAND CRUISER (RM1071U) \rangle Go to relevant DTC chart (See page DI-389)

-	~	
	$\mathbf{\nabla}$	

P0818

Driveline Disconnect Switch Input Circuit

CIRCUIT DESCRIPTION

The ECM detects the signal from the transfer neutral position switch. This DTC indicates that the transfer neutral position switch remains ON.

DTC No.	DTC Detecting Condition	Trouble Area
P0818	Transfer neutral position switch remains ON while vehicle run- ning under conditions for 30 sec. (2-trip detection logic) ★Vehicle speed is 25 km/h or more ★Transfer shift position is H	★Short in transfer neutral position switch circuit ★Transfer neutral position switch ★ECM

MONITOR DESCRIPTION

The ECM detects whether or not the transfer gear is in the neutral position by monitoring the signal from the transfer neutral position switch.

If the ECM detects that the transfer-case is in neutral under the following conditions, the ECM will conclude that there is a malfunction of the transfer-case neutral position switch:

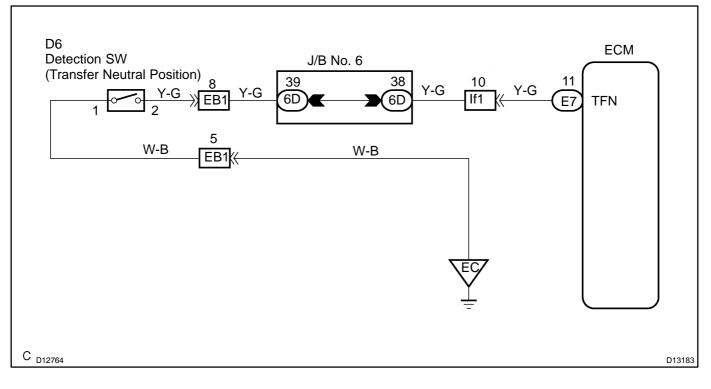
- \star Transfer-case neutral position switch indicates that the transfer-case is in neutral.
- ★ Transfer-case shifter is in the "H" position.
- \star The vehicle is traveling at 25 km/h (16 mph) or more.
- \star The neutral switch has been ON for more than thirty seconds.

If all of the above conditions are detected, the ECM will conclude that there is a malfunction of the transfercase neutral position switch, illuminate the MIL and store the DTC.

MONITOR STRATEGY

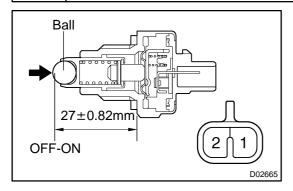
Related DTCs	P0818	Transfer neutral position switch/Verify switch cycling
Required sensors/Components	Main	Transfer neutral position switch
	Sub	Vehicle speed sensor
Frequency of operation	Continuous	
Duration	30 sec.	
MIL operation	2 driving cycles	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS


	Specification		
Item	Minimum	Maximum	
The monitor will run whenever the follow- ing DTCs are not present.	See page DI-361		
Vehicle speed	25 km/h (16 mph) or more -		
Transfer position	High		
Ignition switch ON and time after OFF to ON	0.5 sec. or more	-	

TYPICAL MALFUNCTION THRESHOLDS

Detection criteria	Threshold
Transfer neutral switch signal	ON


DIB3E-02

WIRING DIAGRAM

Check transfer neutral position switch.

PREPARATION:

Remove the transfer neutral position switch.

CHECK:

Check the continuity between the switch terminals when pushing the ball at the tip of the switch.

<u>OK:</u>

Switch	Specified condition
Push	Continuity
Free	No continuity

NG

Replace transfer neutral position switch.

ОК	
2	Check harness and connector between ECM and transfer neutral position switch, transfer neutral position switch and body ground (See page IN-36).
	NG Repair or replace the harness or connector.
ОК	
Chec IN-36	k and replace the ECM (See page).

DTC		Shift Solenoid "A" Control Circuit Low (Shift Solenoid Valve S1)
-----	--	---

DTC	P0974	Shift Solenoid "A" Control Circuit High (Shift Solenoid Valve S1)	

CIRCUIT DESCRIPTION

See page DI-426.

DTC No.	DTC Detection Condition	Trouble Area
P0973	ECM detects short in solenoid valve S1 circuit 4 times when solenoid valve S1 is operated (1-trip detection logic)	★Short in shift solenoid valve S1 circuit ★Shift solenoid valve S1 ★ECM
P0974	ECM detects open in solenoid valve S1 circuit 4 times when solenoid valve S1 is not operated (1-trip detection logic)	₩Open in shift solenoid valve S1 circuit ₩Shift solenoid valve S1 ₩ECM

MONITOR DESCRIPTION

The ECM commands gearshift by turning the shift solenoid valves "ON/OFF". When there is an open or short circuit in any shift solenoid valve circuit, the ECM detects the problem and illuminates the MIL and stored the DTC. And the ECM performs the fail-safe function and turns the other shift solenoid valves in good condition "ON/OFF" (In case of an open or short circuit, the ECM stops sending current to the circuit.).

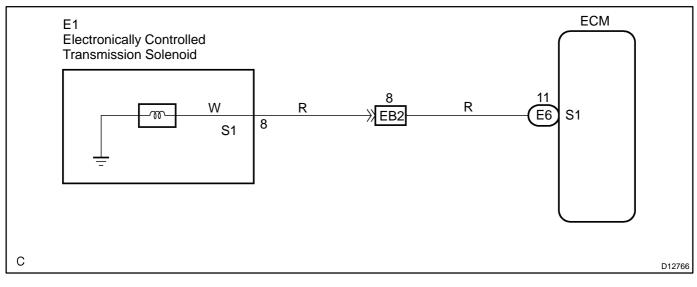
MONITOR STRATEGY

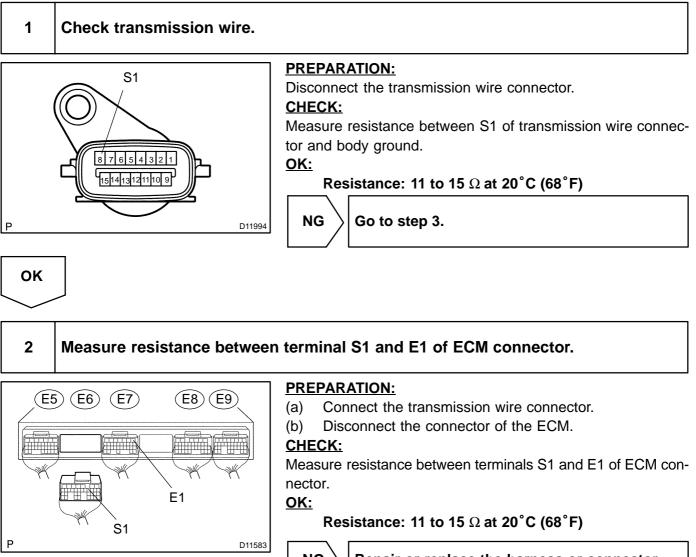
	P0973	Shift solenoid valve S1/Range check (Low resistance)
Related DTCs	P0974	Shift solenoid valve S1/Range check (High resistance)
Required sensors/Components	Shift solenoid valve S1	
Frequency of operation	Continuous	
Duration	0.1 sec. x 2 (times) or more	
MIL operation	1 driving cycle	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS

	Specification		
Item	Minimum	Maximum	
The monitor will run whenever the follow- ing DTCs are not present.	See pag	e DI-361	
Range check (Low resistance)			
Solenoid	0	N	
Range check (High resistance)	Range check (High resistance)		
Solenoid	OFF		

DIB3F-02

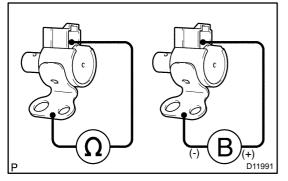

TYPICAL MALFUNCTION THRESHOLDS


Detection criteria	Threshold	
Range check (Low resistance)		
Intelligent power MOS diagnosis fail signals detected while the solenoid is operated	Fail at solenoid resistance: 8 Ω or less	
Range check (High resistance)		
Intelligent power MOS diagnosis fail signals detected while the solenoid is not operated	Fail at solenoid resistance: 100 k Ω or more	

COMPONENT OPERATING RANGE

Parameter	Standard value
Shift solenoid valve S1	Resistance: 11 to 15 Ω at 20 °C (68 °F)

WIRING DIAGRAM


Repair or replace the harness or connector (See page IN-36).

ок

Check and replace the ECM (See page IN-36).

3

Check shift solenoid valve S1.

PREPARATION:

(a) Jack up the vehicle.

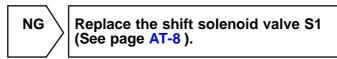
(b) Remove the oil pan.

(c) Remove the shift solenoid valve S1.

CHECK:

Measure the resistance between the solenoid connector terminal and the body ground.

<u>OK:</u>


Resistance: 11 to 15 Ω at 20°C (68°F)

CHECK:

Connect the battery positive lead to the solenoid connector terminal and the battery negative lead to the solenoid body ground.

<u>OK:</u>

Solenoid sounds operation noise.

ОК

Repair or replace the transmission wire (See page AT-6).

DTC		Shift Solenoid "B" Control Circuit Low (Shift Solenoid Valve S2)	
-----	--	---	--

DTC	P0977	Shift Solenoid "B" Control Circuit High (Shift Solenoid Valve S2)
		(Shift Solenoid Valve S2)

CIRCUIT DESCRIPTION

See page DI-426.

DTC No.	DTC Detection Condition	Trouble Area
P0976	ECM detects short in solenoid valve S2 circuit 4 times when solenoid valve S2 is operated (1-trip detection logic)	★Short in shift solenoid valve S2 circuit ★Shift solenoid valve S2 ★ECM
P0977	ECM detects open in solenoid valve S2 circuit 4 times when solenoid valve S2 is not operated (1-trip detection logic)	₩Open in shift solenoid valve S2 circuit ₩Shift solenoid valve S2 ₩ECM

MONITOR DESCRIPTION

The ECM commands gearshift by turning the shift solenoid valves "ON/OFF". When there is an open or short circuit in any shift solenoid valve circuit, the ECM detects the problem and illuminates the MIL and stored the DTC. And the ECM performs the fail-safe function and turns the other shift solenoid valves in good condition "ON/OFF" (In case of an open or short circuit, the ECM stops sending current to the circuit.).

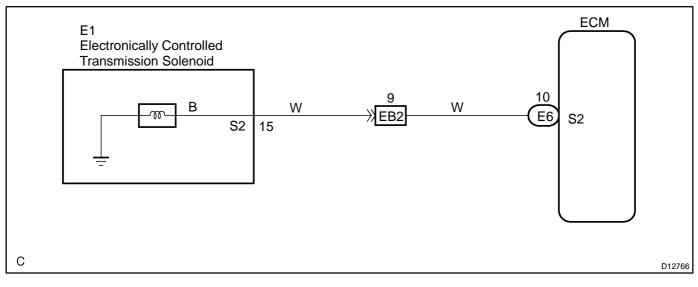
MONITOR STRATEGY

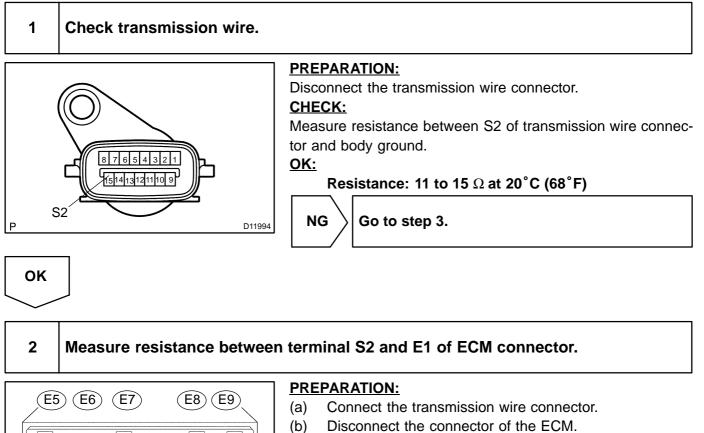
	P0976	Shift solenoid valve S2/Range check (Low resistance)
Related DTCs	P0977	Shift solenoid valve S2/Range check (High resistance)
Required sensors/Components	Shift solenoid valve S2	
Frequency of operation	Continuous	
Duration	0.1 sec. x 2 (times) or more	
MIL operation	1 driving cycle	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS

	Specification		
Item	Minimum	Maximum	
The monitor will run whenever the follow- ing DTCs are not present.	See pag	e DI-361	
Range check (Low resistance)			
Solenoid	0	N	
Range check (High resistance)			
Solenoid	OI	F	

DIB3G-02


TYPICAL MALFUNCTION THRESHOLDS


Detection criteria	Threshold
Range check (Low resistance)	
Intelligent power MOS diagnosis fail signal detected while the solenoid is operated	Fail at solenoid resistance: 8 Ω or less
Range check (High resistance)	
Intelligent power MOS diagnosis fail signal detected while the solenoid is not operated	Fail at solenoid resistance: 100 k Ω or more

COMPONENT OPERATING RANGE

Parameter	Standard value
Shift solenoid valve S2	Resistance: 11 to 15 Ω at 20 °C (68 °F)

WIRING DIAGRAM

CHECK:

Measure resistance between terminals S2 and E1 of ECM connector.

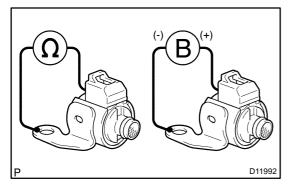
<u>OK:</u>

D11583

Resistance: 11 to 15 Ω at 20°C (68°F)

Repair or replace the harness or connector (See page IN-36).

ОК


Ρ

S2

E1

Check and replace the ECM (See page IN-36).

Check shift solenoid valve S2.

PREPARATION:

(a) Jack up the vehicle.

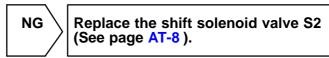
(b) Remove the oil pan.

(c) Remove the shift solenoid valve S2.

CHECK:

Measure the resistance between the solenoid connector terminal and the body ground.

<u>OK:</u>


Resistance: 11 to 15 Ω at 20°C (68°F)

CHECK:

Connect the battery positive lead to the solenoid connector terminal and the battery negative lead to the solenoid body ground.

<u>OK:</u>

Solenoid sounds operation noise.

OK

3

Repair or replace the transmission wire (See page AT-6).

DTC		Shift Solenoid "E" Control Circuit Low (Shift Solenoid Valve SR)
-----	--	---

DTC	P0986	Shift Solenoid "E" Control Circuit High (Shift Solenoid Valve SR)
-----	-------	---

CIRCUIT DESCRIPTION

see page DI-426.

DTC No.	DTC Detection Condition	Trouble Area
P0985	ECM detects short in solenoid valve SR circuit 4 times when solenoid valve SR is operated (1-trip detection logic)	★Short in shift solenoid valve SR circuit ★Shift solenoid valve SR ★ECM
P0986	ECM detects open in solenoid valve SR circuit 4 times when solenoid valve SR is not operated (1-trip detection logic)	₩Open in shift solenoid valve SR circuit ★Shift solenoid valve SR ★ECM

MONITOR DESCRIPTION

The ECM commands gearshift by turning the shift solenoid valves "ON/OFF". When there is an open or short circuit in any shift solenoid valve circuit, the ECM detects the problem and illuminates the MIL and stores the DTC. And the ECM performs the fail-safe function and turns the other shift solenoid valves in good condition "ON/OFF" (In case of an open or short circuit, the ECM stops sending current to the circuit.) (see page DI-426).

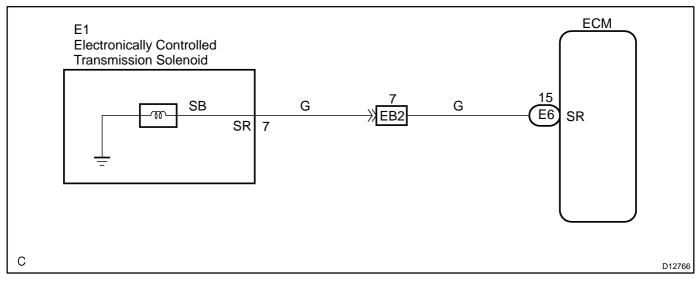
MONITOR STRATEGY

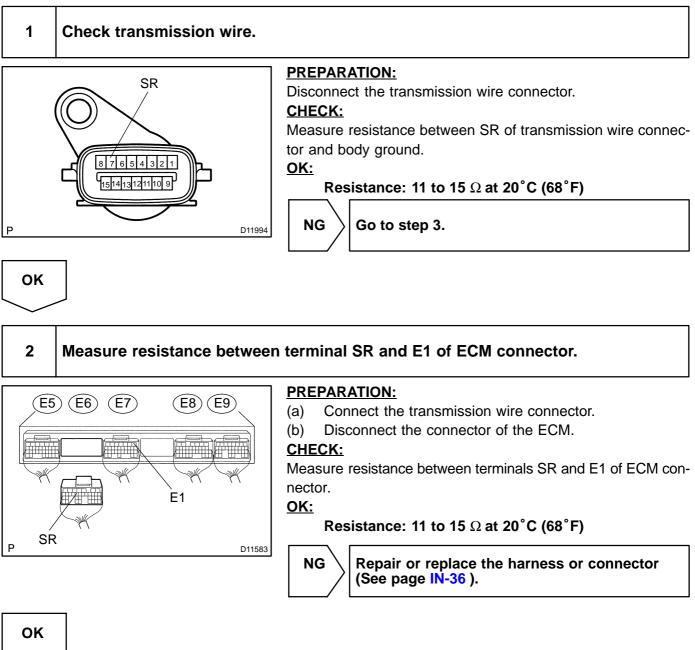
	P0985	Shift solenoid valve SR/Range check (Low resistance)
Related DTCs	P0986	Shift solenoid valve SR/Range check (High resistance)
Required sensors/Components	Shift solenoid valve SR	
Frequency of operation	Continuous	
Duration	0.1 sec. x 2 (times) or more	
MIL operation	1 driving cycle	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS

	Specification		
Item	Minimum	Maximum	
The monitor will run whenever the follow- ing DTCs are not present.	See page	e DI-361	
Range check (Low resistance)			
Solenoid	0	N	
Range check (High resistance)			
Solenoid	OF	F	

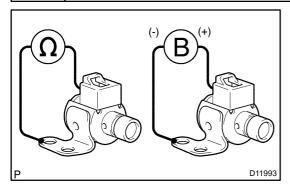
DIB3H-02


TYPICAL MALFUNCTION THRESHOLDS


Detection criteria	Threshold
Range check (Low resistance)	
Intelligent power MOS diagnosis fail signals detected while the solenoid is operated	Fail at solenoid resistance: 8 Ω or less
Range check (High resistance)	
Intelligent power MOS diagnosis fail signals detected while the solenoid is not operated	Fail at solenoid resistance: 100 k Ω or more

COMPONENT OPERATING RANGE

Parameter	Standard value
Shift solenoid valve SR	Resistance: 11 to 15 at 20°C (68°F)


WIRING DIAGRAM

Check and replace the ECM (See page IN-36).

Check shift solenoid valve SR.

PREPARATION:

(a) Jack up the vehicle.

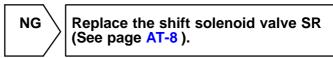
(b) Remove the oil pan.

(c) Remove the shift solenoid valve SR.

CHECK:

Measure the resistance between the solenoid connector terminal and the body ground.

<u>OK:</u>


Resistance: 11 to 15 Ω at 20°C (68°F)

CHECK:

Connect the battery positive lead to the solenoid connector terminal and the battery negative lead to the solenoid body ground.

<u>OK:</u>

Solenoid sounds operation noise.

OK

3

Repair or replace the transmission wire (See page AT-6).

	DTC	P1782	T/F L4 Range Position Switch Performance
--	-----	-------	--

CIRCUIT DESCRIPTION

The ECM detects the signal from the transfer L4 position switch. This DTC indicates that the transfer L4 position switch remains ON.

DTC No.	DTC Detecting Condition	Trouble Area
P1782	Transfer L4 position switch remains ON while vehicle running under conditions for 18 seconds or more (1-trip detection log- ic) (a) Output shaft speed 3000 rpm or less (b) Transfer shift position is H	★Short in transfer L4 position switch circuit ★Transfer L4 position switch ★ECM

MONITOR DESCRIPTION

The ECM monitors the transfer-case L4 position switch to determine when the transfer-case L4 gear is engaged. If the transfer-case L4 gears remain engaged under the following conditions, the ECM will conclude that there is a malfunction of the L4 position switch:

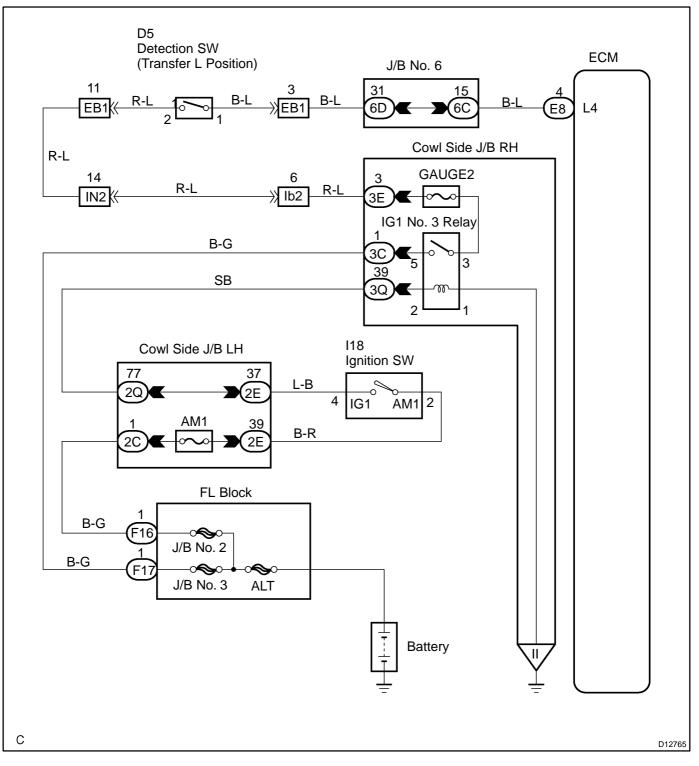
- \star L4 switch indicated that the L4 transfer-case gears are engaged.
- \star Transfer-case shifter is in the "H" position.
- \star Transfer-case output shaft rpm is between 750 and 3,000 rpm.
- \star The specified time period has elapsed.

If all of the above conditions are detected, the ECM will conclude that there is a malfunction of the L4 switch, illuminate the MIL and store the DTC.

MONITOR STRATEGY

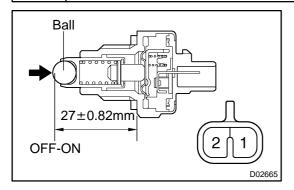
Related DTCs	P1782	Transfer L4 position switch/ON malfunction	
Required sensors/Components	Transfer L4 position switch		
Frequency of operation	Continuous		
	ON malfunction (A)	1.8 sec.	
Duration	ON malfunction (B)	0.5 sec.	
MIL operation	2 driving cycles		
Sequence of operation	None		

TYPICAL ENABLING CONDITIONS


	Specification			
Item	Minimum	Maximum		
The following items are common to all conditions below: ON malfunction (A) and (B)				
The monitor will run whenever the follow- ing DTCs are not present.	See pag	e DI-361		
Output speed sensor circuit	There is no malfunction in the circuits shown on the left.			
Vehicle speed sensor "A" circuit				
Transfer neutral position switch	OFF			
ON malfunction (A)				
Output speed (Transfer output speed)	1,000 rpm or more Less than 3,000 rpm			
ON malfunction (B)	ON malfunction (B)			
Output speed (Transfer output speed)	143 rpm or more	-		

DICEA-01

TYPICAL MALFUNCTION THRESHOLDS


Detection criteria	Threshold		
Both of the following conditions is met: ON malfunction (Both of the following conditions is met: ON malfunction (A) and (B)		
ON malfunction (A)			
L4 switch	ON		
ON malfunction (B)			
Actual Transfer gear ratio	0.9 or more		
Transfer input speed/Transfer output speed (NO/NOtf)	and		
	Less than 1.1		

WIRING DIAGRAM

1

Check transfer L4 position switch.

PREPARATION:

Remove the transfer L4 position switch.

CHECK:

Check the continuity between the switch terminals when pushing the ball at the tip of the switch.

<u> 0K:</u>

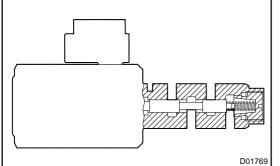
Switch	Specified condition
Push	Continuity
Free	No continuity

NG

Replace transfer L4 position switch.

 OK

 2
 Check harness and connector between battery and transfer L4 position switch, transfer L4 position switch and ECM (See page IN-36).


 NG
 Repair or replace the harness or connector.

 OK

 OK

 Check and replace the ECM (See page IN-36).

DTC	Pressure Control Solenoid "D" Performance (Shift Solenoid Valve SLT)

SYSTEM DESCRIPTION

The ECM calculates the shifting condition by using the signals from the vehicle speed sensor, throttle position sensor, etc.. And compares this result with the signal that ECM sends to SLT to detect mechanical trouble of the shift solenoid valve SLT, valve body, torque converter clutch and automatic transmission assembly (clutch, brake or gear etc.).

DTC No.	DTC Detecting Condition	Trouble Area
P2714	ECM detects a malfunction on SLT (ON side) according to the revolution difference of the turbine and the output shaft, and also by the oil pressure.	 ★Shift solenoid valve SLT is stuck open or closed ★Valve body blocked up or stuck ★Automatic transmission assembly

MONITOR DESCRIPTION

The ECM sends (ED: delete "the") signals (Duty Ratio) to the shift solenoid valve SLT based on the information such as the signal from throttle position sensor and the vehicle speed sensor.

Based on the signal's duty-ratio, the shift solenoid valve SLT adjusts the hydraulic pressure to the primary regulator valve to an appropriate level. This function enables a smooth vehicle operation by adjusting the line hydraulic pressure to match the engine output and running condition.

The ECM calculates the "actual" transmission gear by comparing the signals from the input speed sensor and the output speed sensor. The ECM can detect many mechanical problems in the shift solenoids, valve body, and the transmission clutches, brakes, and gears. If the ECM detects that the actual gear position and the commanded gear position are different, it will illuminate the MIL and store the DTC.

MONITOR STRATEGY

Related DTCs	P2714	Shift solenoid valve SLT/ON malfunction
	Main	Shift solenoid valve SLT
Required sensors/Components	Sub	Valve body, ATF temperature sensor, Speed sensor (NT), Speed sensor (NO)
Frequency of operation	Continuous	
Duration	Immediate	
MIL operation	2 driving cycles	
Sequence of operation	None	

DIB3J-02

TYPICAL ENABLING CONDITIONS

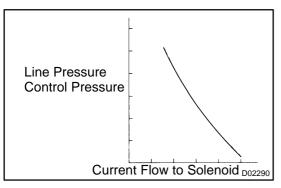
	Specification			
Item	Minimum	Maximum		
[The following items are common to all conditions below: OFF malfunction (A) and (B)]				
The monitor will run whenever the follow- ing DTCs are not present.	See page DI-361			
Turbine speed sensor (NT) circuit				
Output speed sensor (NO) circuit				
Transmission Fluid Temperature Sensor "A" circuit				
Shift solenoid "A" (S1) circuit				
Shift solenoid "B" (S2) circuit				
Shift solenoid "E" (SR) circuit	There is no malfunction in the	ne circuits shown on the left.		
Pressure control solenoid "A" (SL1) circuit				
Pressure control solenoid "B" (SL2) circuit				
Pressure control solenoid "D" (SLT) circuit				
ECT (Engine coolant temperature) sensor circuit				
KCS sensor circuit				
ETCS (Electric throttle control system)	Not system down			
Transmission shift position	"[)"		
ECT	40°C (104°F) or more	-		
Spark advance from Max. retard timing by KCS control	0° CA or more	-		
Engine	Run	ning		
Transfer range	"HIGH"*1			
ATF temperature	10°C or more -			
Transfer range "HIGH" *1 (This condition	is applied only 4WD)			
*1 Following conditions met				
Vehicle speed sensor "A" circuit	There is no malfunction in the circuits shown on the left.			
Output shaft speed sensor circuit				
Transfer output speed	143 rpm or more	-		
NO/NOtf (Transfer input speed/Transfer output speed)	0.9 or more	Less than 1.1		

TYPICAL MALFUNCTION THRESHOLDS

Detection criteria	Threshold
Summation of C1 clutch heat generations	Specified value
= Σ (Turbine speed - Output speed x Temporary ratio)	Specified value

1 Check shift solenoid valve SLT operation. PREPARATION: Jack up the vehicle. (a) (b) Remove the oil pan. Remove the shift solenoid valve SLT. (c) CHECK: Measure the resistance between terminals 1 and 2 of so-(a) lenoid connector. Standard: 5.0 to 5.6 Ω at 20°C (68°F) (b) Connect the positive (+) lead with an 21 W bulb to terminal 2 of solenoid connector and negative (-) lead to terminal 2 1 of the solenoid valve connector, then check the movement of the valve. Standard: Solenoid sounds operation noise. OK: Standard Replace the shift solenoid valve SLT NG (See page AT-8). D11987

ОК


2	Check valve body (See page DI-396).
	NG Replace the valve body (See page AT-8).
ок	

Repair or replace transmission (See page AT-30).

(Shift Solenoid Valve SLT)

Pressure Control Solenoid "D" Electrical

DIB3K-02

В

1 cycle

P2716

DTC

ON

OFF -

CIRCUIT DESCRIPTION

The throttle pressure that is applied to the primary regulator valve (which modulates line pressure) causes the solenoid valve SLT, under electronic control, to precisely and minutely modulate and generate line pressure according to the accelerator pedal effort, or the detected engine power output.

This controls the line pressure and provides smooth shifting characteristics.

Upon receiving the throttle valve opening angle signal, ECM controls the line pressure by sending a predetermined (*) duty ratio to the solenoid valve, modulating the line pressure, and generating throttle pressure.

(*) Duty Ratio

BE4056

The duty ratio is the ratio of the period of continuity in one cycle. For example, if A is the period of continuity in one cycle, and B is the period of non-continuity, then

Duty Ratio =
$$\frac{A}{A+B} \times 100$$
 (%)

DTC No.	DTC Detection Condition	Trouble Area
P2716	ECM detects solenoid SLT circuit open or short malfunction for 1 sec. or more (1-trip detection logic)	₩Open or short in shift solenoid valve SLT circuit ₩Shift solenoid valve SLT ₩ECM

MONITOR DESCRIPTION

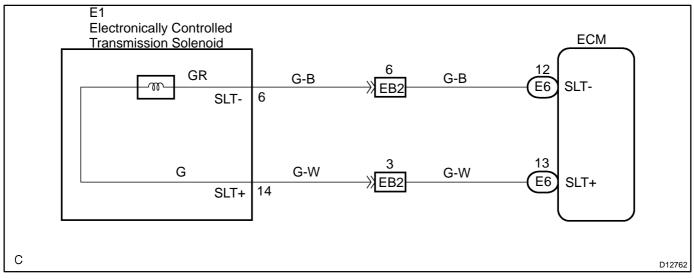
When an open or short in the linear solenoid valve (SLT) circuit is detected, the ECM interprets this as a fault. The ECM will turn ON the MIL and store the DTC.

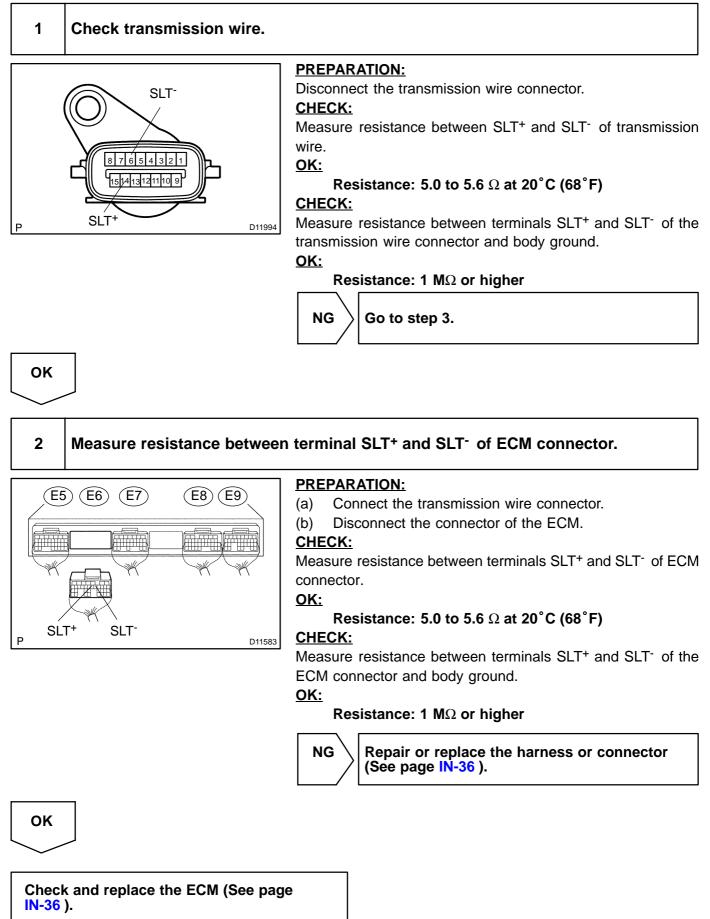
MONITOR STRATEGY

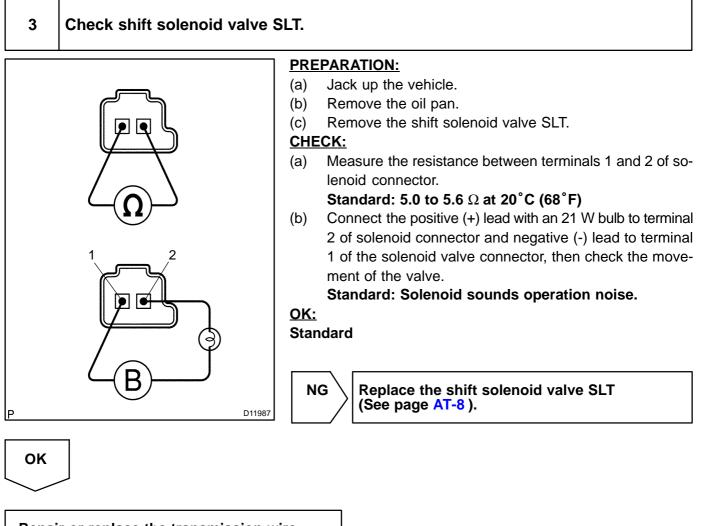
Related DTCs	P2716	Shift solenoid valve SLT/Range check
Required sensors/Components	Shift solenoid valve SLT	
Frequency of operation	Continuous	
Duration	1 sec.	
MIL operation	Immediate	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS

	Specification		
Item	Minimum	Maximum	
The monitor will run whenever the follow- ing DTCs are not present.	See pag	e DI-361	
Solenoid current cut status	Not	t cut	
Battery voltage	11 V or more	_	
CPU command duty ratio to SLT	19% or more	-	


TYPICAL MALFUNCTION THRESHOLDS


Detection criteria	Threshold
Solenoid status from IC	Fail (Open or short)


COMPONENT OPERATING RANGE

Parameter	Standard value	
Output signal duty	Less than 100%	

WIRING DIAGRAM

Repair or replace the transmission wire (See page AT-6).

DTC	Transmission Fluid Temperature Sensor "B" Circuit

DTC		Transmission Fluid Temperature Sensor "B" Circuit Low Input
-----	--	--

DTC P2743 Transmission Fluid Temperature Sensor " Circuit High Input	DTC
---	-----

CIRCUIT DESCRIPTION

The ATF temperature sensor converts fluid temperature into a resistance value which is input in to the ECM. ATF temperature sensor No.2 is on the transmission and just before the oil cooler inlet pipeline.

If ECM detects the abnormally high temperature of ATF by this sensor, it draws driver's attention by illuminating the warning lamp.

HINT:

- \star The temperature of ATF easily raises when towing, climbing hills and in traffic, etc.
- ★ If the ATF temperature sensor No.2 shorts, the signal that indicates the ATF temperature is 150 (302 F) or higher is input in ECM.

Vehicle conditions when sensor is in normal and when the vehicle is in short are indicated in the table below.

ATF temperature No.2 Sensor State	Detection Condition	Symptom	Recovery Condition
	★AT fluid temp. more than 150 C (302 F).	★AT Oil Temp. warning light re- mains on	★AT fluid temp. less than 135⊡C (275⊡F). *1
Sensor is normal	★AT fluid temp. more than 130 C (266 F).	★Shift point too high.	★AT fluid temp. less than 110⊡C (230⊡F).
Sensor is in short	★Any conditions.	 ★AT Oil Temp. warning light re- mains on ★Shift point too high. 	★Symptoms still occur

HINT:

*1: When AT fluid temperature is in normal range, it decreases to less than 135 C within 5 minutes with the shift lever in P or N position in a idling state.

DTC No.	DTC Detecting Condition	Trouble Area
P2740	 (a) and (b) is detected momentary within 0.5 sec. when neither P2742 or P2743 is not detected (1-trip detection logic) (a) ATF temperature sensor resistance is less than 79 Ω. (b) ATF temperature sensor resistance is more than 156 kΩ. HINT: Wthin 0.5 sec. the malfunction switches from (a) to (b) or from (b) to (a) 	★Open or short in ATF temperature sensor No. 2 circuit ★ATF temperature sensor No. 2
P2742	ATF temperature sensor resistance is less than 79 $\Omega.$ for 0.5 sec. or more (1-trip detection logic)	∠E CM
P2743	DTC is detected for 0.5 sec. or more (1-trip detection logic) ATF temperature sensor resistance is more than 156 k Ω . after started engine for 15 minutes or more	

DIC33-01

MONITOR DESCRIPTION

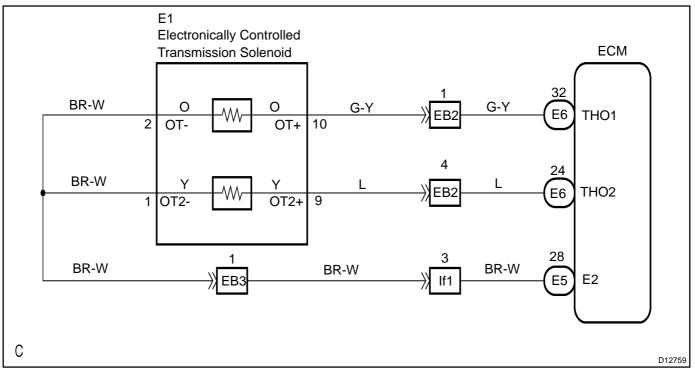
The automatic transmission fluid (ATF) temperature sensor converts ATF temperature to an electrical resistance value. Based on the resistance, the ECM determines the ATF temperature, and the ECM detects an opens or shorts in the ATF temperature circuit. If the resistance value of the ATF temperature is less than 79 Ω or more than 156 k Ω , the ECM interprets this as a fault in the ATF sensor or wiring. The ECM will turn on the MIL and store the DTC.

MONITOR STRATEGY

	P2740	ATF temperature sensor/Range check (Fluttering)
Related DTCs	P2742	ATF temperature sensor/Range check (Low resistance)
	P2743 ATF temperature sensor/Range check (High resistance)	
Required sensors/Components	ATF temperature sensor	
Frequency of operation	Continuous	
Duration	0.5 sec.	
MIL operation	Immediate	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS

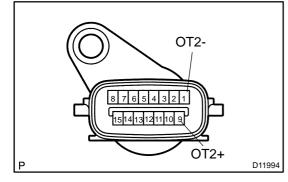
	Specification		
Item	Minimum	Maximum	
The monitor will run whenever the follow- ing DTCs are not present.	See pag	e DI-361	
Range check (Fluttering, Low resistance))		
The typical enabling condition is not avail- able.		-	
Range check (High resistance)			
Time after engine start	15 min. or more	-	


TYPICAL MALFUNCTION THRESHOLDS

Detection criteria	Threshold	
Range check (Fluttering)		
	Less than 25 Ω	
ATF temperature sensor resistance	or	
	More than 156 k Ω	
Range check (Low resistance)		
ATF temperature sensor resistance Less than 25 Ω		
Range check (High resistance)		
ATF temperature sensor resistance	More than 156 k Ω	

COMPONENT OPERATING RANGE

Parameter	Standard value
ATF temperature sensor	Atmospheric temperature to approx. 130°C (266°F)


WIRING DIAGRAM

INSPECTION PROCEDURE

1

Check transmission wire.

PREPARATION:

Disconnect the transmission wire connector from the transmission.

CHECK:

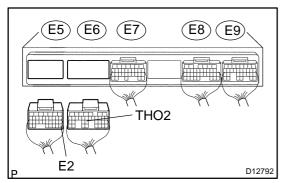
Measure the resistance between terminals OT2+ and OT2-. **OK:**

79 Ω to 156 k Ω

CHECK:

Measure resistance between terminals OT2+ and OT2- of the transmission wire connector and body ground.

<u> 0K:</u>


Resistance: 1 M Ω or higher

οк

2

Measure resistance between terminal THO2 and E2 of ECM connector.

PREPARATION:

(a) Connect the transmission wire connector.

(b) Disconnect the connector of the ECM.

CHECK:

Measure the resistance between terminals THO2 and E2. **OK:**

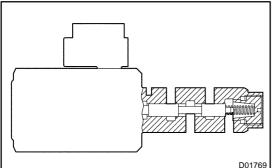
79 Ω to 156 k Ω

CHECK:

Measure resistance between terminals THO2 and E2 of the ECM connector and body ground.

<u>OK:</u>

Resistance: 1 M Ω or higher



Repair or replace the harness or connector (See page IN-36).

Check and replace the ECM (See page IN-36).

DIB3L-02

P2757

DTC

SYSTEM DESCRIPTION

Performance(Shift Solenoid Valve SLU)

The ECM uses the signals from the Throttle Position Sensor and Air-flow Meter to monitor the engagement condition of the lock-up clutch.

Torque Converter Clutch Pressure Control Solenoid

Then the ECM compares the engagement condition of the lock-up clutch with the lock-up schedule in the ECM memory to detect mechanical trouble of the shift solenoid valve SLU, valve body, torque converter clutch and automatic transmission assembly (clutch, brake or gear etc.).

DTC No.	DTC Detecting Condition	Trouble Area
P2757	Lock-up does not occur when driving in the lock-up range (normal driving at 80 km/h [50 mph]), or lock-up remains ON in the lock-up OFF range. (2-trip detection logic)	 ★Shift solenoid valve SLU is stuck open or closed ★Valve body blocked up or stuck ★Lock-up clutch ★Automatic transmission assembly

MONITOR DESCRIPTION

The ECM controls the oil pressure to the lock-up clutch based on engine-load information from the throttle position sensor, crankshaft position sensor, input speed sensor, and the oil pressure sensor for shift-solenoid SLU. The ECM commands the shift-solenoid SLU using a duty-cycle control signal. In turn, the shift solenoid operates the lock-up control valve and causes lock-up or flexible lock-up of the torque converter clutch.

To monitor the condition of the lock up clutch, the ECM monitors the signals from the input speed sensor, crank position sensor, the throttle position sensor, and air flow meter. The ECM uses this information to determine when the vehicle's torque converter clutch should be locked-up. The ECM can detect many mechanical problems in the shift solenoids, valve body, and the transmission clutches, brakes, and gears. If the ECM detects that the torque converter clutch locked below the minimum lock-up speed, it will illuminate the MIL and store the DTC.

MONITOR STRATEGY

D. I. I. ID 70		Shift solenoid valve SLU/OFF malfunction
Related DTCs	P2757	Shift solenoid valve SLU/ON malfunction
	Main	Shift solenoid valve SLU
Required sensors/Components	Sub	Valve body, Vehicle speed sensor, Throttle position sensor, Speed sensor (NT), Speed sensor (NO)
Frequency of operation	Continuous	
	OFF malfunction	2 sec.
Duration	ON malfunction	1.8 sec.
MIL operation	2 driving cycles	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS

	Specification		
Item	Minimum	Maximum	
The following items are common to all conditions below: OFF malfunction and ON malfunction			
The monitor will run whenever the follow- ing DTCs are not present.	See page DI-361		
Turbine speed sensor (NT) circuit			
Output speed sensor (NO) circuit	There is no malfunction in the circuits shown on the left.		
Shift solenoid "A" (S1) circuit			
Shift solenoid "B" (S2) circuit			
Shift solenoid "E" (SR) circuit	There is no manufaction in tr	le circuits shown on the left.	
Torque converter clutch pressure control solenoid circuit			
KCS sensor circuit			
ETCS (Electric throttle control system)	Not syste	em down	
Transmission shift position	"[)"	
ECT (Engine coolant temperature)	40°C (104°F) or more	-	
Spark advance from Max. retard timing by KCS control	0° CA or more	-	
Engine	Running		
ECM selected gear	4th or 5th		
Vehicle speed	25 km/h or more	-	
Shift solenoid "A" (S1) circuit			
Shift solenoid "B" (S2) circuit	There is no malfunction in the circuits shown on the left.		
Pressure control solenoid "B" (SL2) circuit			
1-2 Shift valve			
Transfer neutral position switch	OFF		
Transfer range	"HIGH"*1		
Transfer range "HIGH" *1 (This condition is applied only 4WD)			
*1 Following conditions met			
Vehicle speed sensor "A" circuit		and a singulate sharing any the left	
Output shaft speed sensor circuit	There is no malfunction in the s	ensor circuits shown on the left.	
Transfer output speed	143 rpm or more	-	
NO/NOtf (Transfer input speed/Transfer output speed)	0.9 or more	Less than 1.1	
OFF malfunction			
ECM lock-up command	ON (SLU pressure: 513kpa or more)		
Vehicle speed	-	Less than 100 km/h (62 mph)	
ON malfunction			
ECM lock-up command	OI (SLU pressure:		
Throttle valve opening angle	9% or more	-	
Vehicle speed	-	Less than 60 km/h (38 mph)	

٦

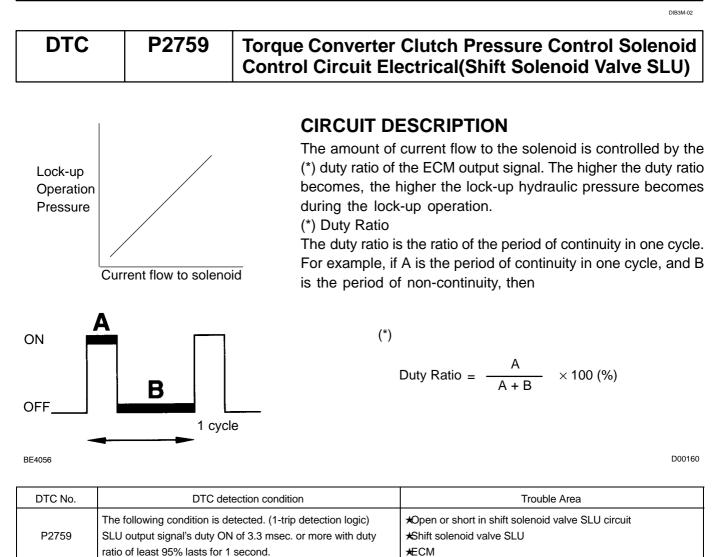
TYPICAL MALFUNCTION THRESHOLDS

Detection criteria	Threshold
OFF malfunction	
Engine speed - Turbine speed	70 rpm or more
ON malfunction	
It is necessary 2 detections/one driving cycle 1st detection; temporary flag ON 2nd detection; pending fault code ON	
Vehicle speed must be under 10 km/h (6 mph) once before 2nd detection	
Engine speed - Turbine speed	Less then 35 rpm

COMPONENT OPERATING RANGE

Parameter	Standard value
Speed sensor (NT)	Input speed is equal to engine speed when lock-up ON.

INSPECTION PROCEDURE


1	Check shift solenoid valve SLU operation.		
		 PREPARATION: (a) Jack up the vehicle. (b) Remove the oil pan. (c) Remove the shift solenoid valve SLU. CHECK: (a) Measure the resistance between terminals 1 and 2 of solenoid connector. Standard: 5.0 to 5.6 Ω at 20°C (68°F) (b) Connect the positive (+) lead with an 21 W bulb to terminal 2 of solenoid connector and negative (-) lead to terminal 1 of the solenoid valve connector, then check the move- 	
		NG Replace the shift solenoid valve SLU (See page AT-8).	

ОК

DI-490

2	Check valve body (See page DI-396).		
	NG Replace the valve body (See page AT-8).		
ОК			
3	3 Check torque converter clutch (See page AT-34).		
OK Repair or replace transmission (See page AT-30).			
NG			

Replace the torque converter clutch (See page AT-30).

MONITOR DESCRIPTION

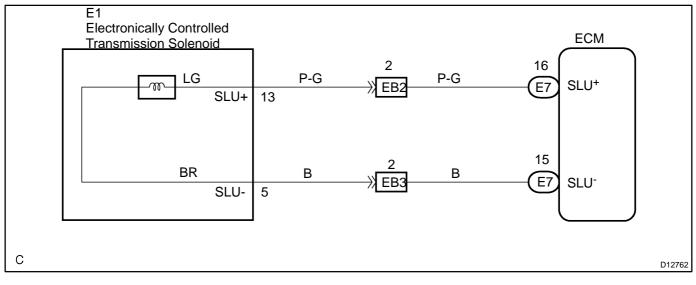
The ECM controls the oil pressure to the lock-up clutch based on engine-load information from the throttle position sensor, crankshaft position sensor, input speed sensor, and the oil pressure sensor for shift-solenoid SLU. The ECM commands the shift-solenoid SLU using a duty-cycle control signal. In turn, the shift solenoid operates the lock-up control valve and cause lock-up or flexible lock-up of the torque converter clutch. The ECM illuminates the MIL and store the DTC when ECM detects an open or a short circuit malfunction in the shift solenoid valve SLU.

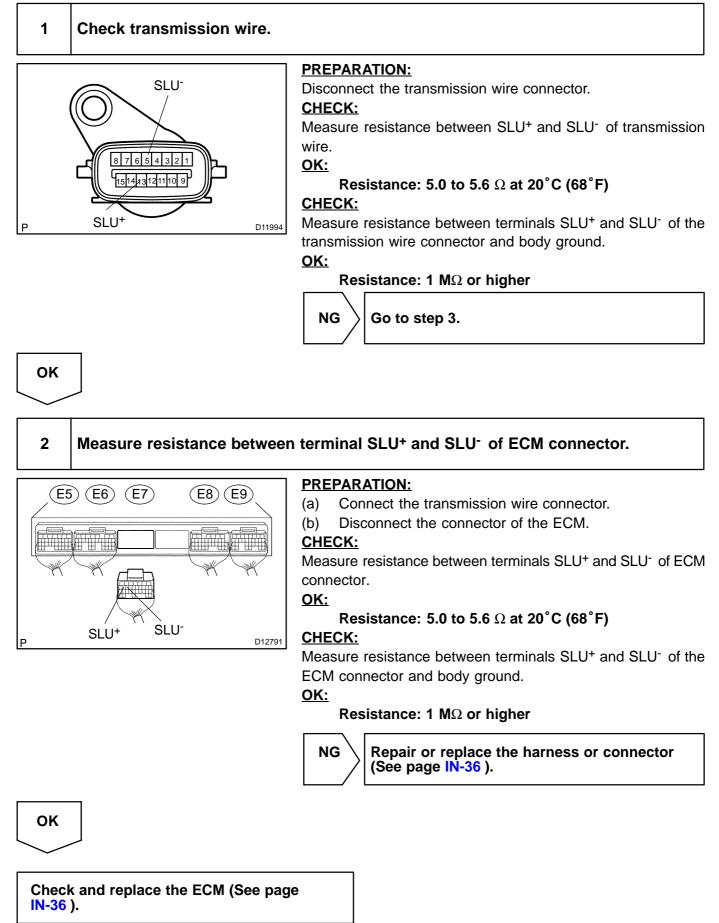
MONITOR STRATEGY

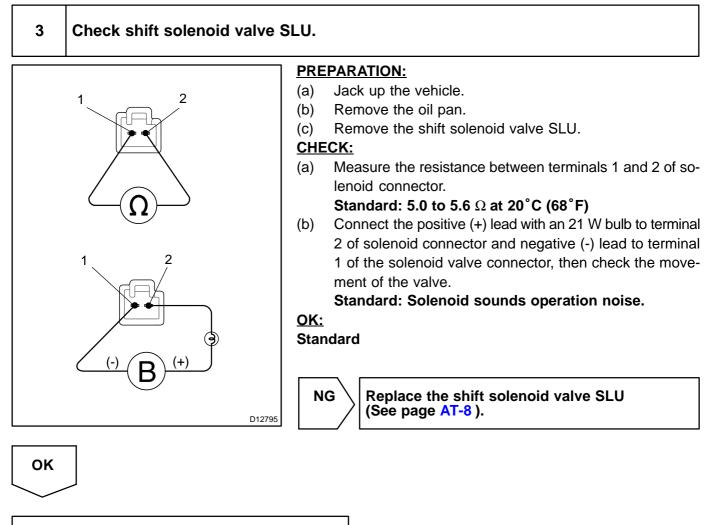
Related DTCs	P2759	Shift solenoid valve SLU/Range check
Required sensors/Components	Shift solenoid valve SLU	
Frequency of operation	Continuous	
Duration	1 sec.	
MIL operation	Immediate	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS

	Specification		
Item	Minimum	Maximum	
The monitor will run whenever the follow- ing DTCs are not present.	See page DI-361		
Battery voltage	10 V or more	-	


TYPICAL MALFUNCTION THRESHOLDS


Detection criteria	Threshold
Output signal duty	100%

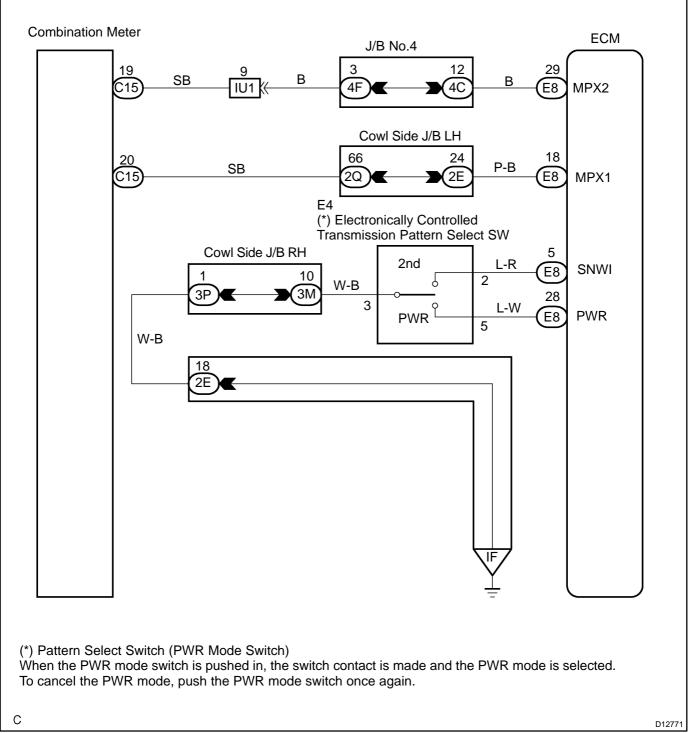

COMPONENT OPERATING RANGE

Parameter	Standard value
Output signal duty	Less than 100%

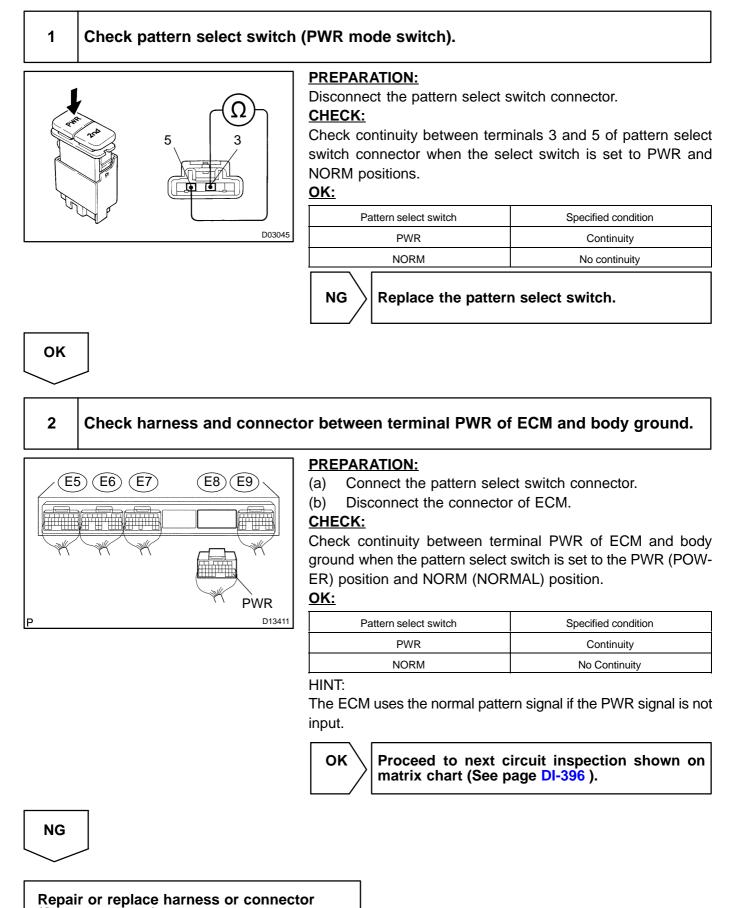
WIRING DIAGRAM

Repair or replace the transmission wire (See page AT-6).

DI-495


DI3C5-07

Pattern Select Switch Circuit (PWR Mode Switch)


CIRCUIT DESCRIPTION

The ECM memory contains the shift programs for the NORMAL and POWER patterns, 2 position, L position and the lock-up patterns. Following the programs corresponding to the signals from the pattern select switch, the park/neutral position and other various sensors, the ECM switches the solenoid valves ON and OFF, and controls the transmission gear change and the lock-up clutch operation.

WIRING DIAGRAM

INSPECTION PROCEDURE

(See page IN-36).

2004 LAND CRUISER (RM1071U)

:

CUSTOMER PROBLEM ANALYSIS CHECK

Automatic	Transmission
System Ch	eck Sheet

Inspector's

Name

			VIN		
Customer's Name			Production Date	/ /	
			Licence Plate No.		
Date Vehicle Brought In	/	/	Odometer Reading	km mile)
Date Problem Occurred					
How Often Does Problem Occur?	Cont	inuous	Intermittent (times a day)	
			• • • •		
	U Vehicle does	not move (Any position D particu	ar position)	
	$\square \text{ No up-shift} (\ \square \ 1st \rightarrow 2nd \ \square \ 2nd \rightarrow 3rd \ \square \ 3rd \rightarrow 4th \ \square \ 4th \rightarrow 5th)$				
	$\begin{tabular}{ c c c c c } \hline I No down-shift (I 5th \rightarrow 4th I 4th \rightarrow 3rd I 3rd \rightarrow 2nd I 2nd \rightarrow 1st) \end{tabular}$				
	Lock-up malfunction				
	Shift point to	o high or too lo	W		
Symptoms	Harsh engage	gement (🗌 N	\rightarrow D \Box Lock-up \Box	Any drive position)	
	Slip or shud	der			
	No kick-down				
	Others				
Check Item	Malfunction Indicator Lamp	Normal	Remains ON		
	1st Time	Normal co	de 🗌 Malfunction c	ode (DTC)
DTC Check	2nd Time	Normal co	ode	code (DTC)

Author :

DI3BO-03

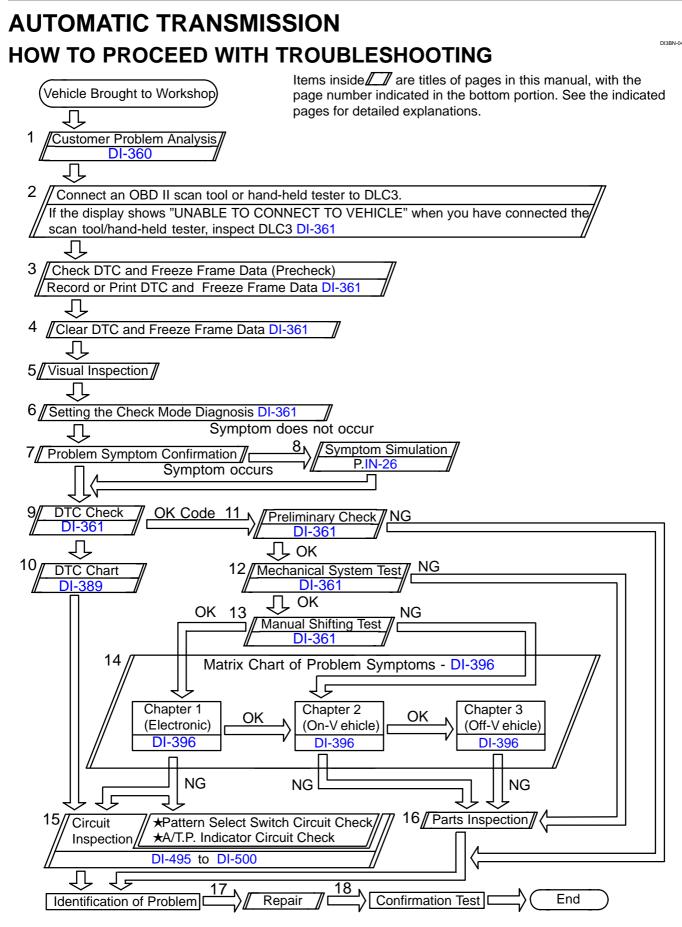
DIAGNOSTIC TROUBLE CODE CHART

DI3BQ-04

DI-389

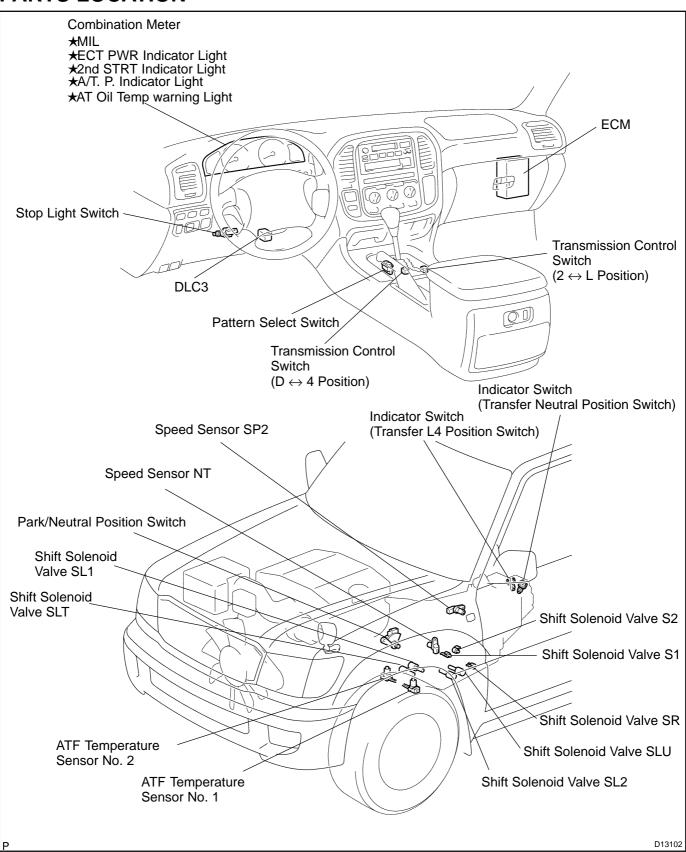
If a DTC is displayed during the DTC check, check the circuit listed for that code in the table below and proceed to the page given.

*¹: ★...MIL light up


DTC No. (See Page)	Detection Item	Trouble Area	MIL *1	Memory
P0500 (DI-274)	Vehicle Speed Sensor "A"	Open or short in No. 1 vehicle speed sensor circuit No. 1 vehicle speed sensor Combination meter ECM	*	
P0705 (DI-402)	Transmission Range Sensor Cir- cuit Malfunction (PRNDL Input)	Short in park/neutral position switch circuit Park/neutral position switch ECM	*	
P0710 (DI-410)	Transmission Fluid Temperature Sensor "A" Circuit	Open or short in ATF temperature sensor No.1 circuit ATF temperature sensor No.1 ECM	*	
P0711 (DI-415)	Transmission Fluid Temperature Sensor "A" Performance	□ATF temperature sensor No.1 □ECM	*	
P0712 (DI-410)	Transmission Fluid Temperature Sensor "A" Circuit Low Input	Short in ATF temperature sensor No.1 circuit ATF temperature sensor No.1 ECM	*	
P0713 (DI-410)	Transmission Fluid Temperature Sensor "A" Circuit High Input	Open in ATF temperature sensor No.1 circuit ATF temperature sensor No.1 ECM	*	
P0717 (DI-418)	Input Speed Sensor Circuit No Signal	Open or short in speed sensor NT circuit Speed sensor NT ECM	*	
P0722 (DI-421)	Output Speed Sensor	Open or short in speed sensor SP2 circuit Speed sensor SP2 ECM	*	
P0724 (DI-424)	Brake Switch "B" Circuit High	Short in stop light switch circuit Stop light switch ECM	*	
P0748 (DI-426)	Pressure Control Solenoid "A" Electrical (Shift Solenoid Valve SL1)	□Open or short in shift solenoid valve SL1 circuit □Shift solenoid valve SL1 □ECM	*	
P0751 Shift Solenoid "A" Performance (DI-433) (Shift Solenoid Valve S1)		Shift solenoid valve S1 is stuck open or closed Valve body is blocked up or stuck Shift solenoid valve S1 Automatic transmission assembly ECM	*	
P0756 Shift Solenoid "B" Performance (DI-437) (Shift Solenoid Valve S2)		Shift solenoid valve S2 is stuck open or closed Valve body is blocked up or stuck Shift solenoid valve S2 Automatic transmission assembly ECM	*	
P0771 (DI-441)	Shift Solenoid "E" Performance (Shift Solenoid Valve SR)	 Shift solenoid valve SR is stuck open or closed Shift solenoid valve SL1 is stuck open or closed Valve body is blocked up or stuck Shift solenoid valve SR Shift solenoid valve SL1 Automatic transmission assembly ECM 	*	

DI-390

DIAGNOSTICS - AUTOMATIC TRANSMISSION


P0776 (DI-445)	Pressure Control Solenoid "B" Performance (Shift Solenoid Valve SL2)	Shift solenoid valve SL2 is stuck open or closed Valve body is blocked up or stuck Shift solenoid valve SL2 Automatic transmission assembly ECM	*
P0778 (DI-449)	Pressure Control Solenoid "B" Electrical (Shift Solenoid Valve SL2)	Open or short in shift solenoid valve SL2 circuit Shift solenoid valve SL2 ECM	*
P0781 (DI-453)	1-2 Shift	□Valve body is blocked up or stuck (1-2 shift valve) □Automatic transmission assembly □ECM	*
P0818 (DI-457)	Driveline Disconnect Switch In- put Circuit	Short in transfer neutral position switch circuit Transfer neutral position switch ECM	*
P0850 (DI-402)	Park/Neutral Switch Input Circuit	Short in park/neutral position switch circuit Park/neutral position switch ECM	*
P0973 (DI-460)	Shift Solenoid "A" Control Circuit Low (Shift Solenoid Valve S1)	□Open or short in shift solenoid valve S1 circuit □Shift solenoid valve S1	*
P0974 (DI-460)	Shift Solenoid "A" Control Circuit High (Shift Solenoid Valve S1)		*
P0976 (<mark>DI-464</mark>)	Shift Solenoid "B" Control Circuit Low (Shift Solenoid Valve S2)	□Open or short in shift solenoid valve S2 circuit □Shift solenoid valve S2	*
P0977 (DI-464)	Shift Solenoid "B" Control Circuit High (Shift Solenoid Valve S2)		*
P0985 (DI-468)	Shift Solenoid "E" Control Circuit Low (Shift Solenoid Valve SR)	□Open or short in shift solenoid valve SR circuit □Shift solenoid valve SR	*
P0986 (DI-468)	Shift Solenoid "E" Control Circuit High (Shift Solenoid Valve SR)	ECM	*
P1782 (DI-472)	T/F L4 Range Position Switch Performance	□Short in transfer L4 position switch circuit □Transfer L4 position switch □ECM	*
P2714 (DI-476)	Pressure Control Solenoid "D" Performance (Shift Solenoid Valve SLT)	Shift solenoid valve SLT is stuck open or closed Valve body is blocked up or stuck Shift solenoid valve SLT Automatic transmission assembly ECM	*
P2716 (DI-479)	Pressure Control Solenoid "D" Electrical (Shift Solenoid Valve SLT)	□Open or short in shift solenoid valve SLT circuit Shift solenoid valve SLT □ECM	*
P2740 (DI-483)	Transmission Fluid Temperature Sensor "B" Circuit	Open or short in ATF temperature sensor No. 2 circuit ATF temperature sensor No. 2 ECM	*
P2742 (DI-483)	Transmission Fluid Temperature Sensor "B" Circuit Low	Short in ATF temperature sensor No. 2 circuit ATF temperature sensor No. 2 ECM	*
P2743 (DI-483)	Transmission Fluid Temperature Sensor "B" Circuit High	Open in ATF temperature sensor No. 2 circuit ATF temperature sensor No. 2 ECM	*

P2757 (DI-487)	Torque Converter Clutch Pres- sure Control Solenoid Perfor- mance (Shift Solenoid Valve SLU)	Shift solenoid valve SLU is stuck open or closed Valve body is blocked up or stuck Shift solenoid valve SLU Automatic transmission assembly ECM	*	
P2759 (DI-491)	Torque Converter Clutch Pres- sure Control Solenoid Control Circuit Electrical (Shift Solenoid Valve SLU)	©pen or short in shift solenoid valve SLU circuit Shift solenoid valve SLU ECM	*	

PARTS LOCATION

PRECAUTION

NOTICE:

Perform the RESET MEMORY (AT initialization) when replacing the automatic transmission assy, engine assy or the ECM (See page DI-361).

HINT:

Initialization can not be completed by only disconnecting the battery terminal.

DIC2W-01

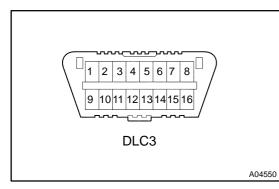
DIDYQ-01

PRE-CHECK

1. DIAGNOSIS SYSTEM

- (a) Description
 - (1) When troubleshooting OBD II vehicles, the only difference from the usual troubleshooting procedure is that you need to connect an OBD II scan tool complying with SAE J1987 or a hand-held tester to the vehicle, and read off various data output from the vehicle's ECM.
 - (2) OBD II regulations require that the vehicle's onboard computer illuminate the Malfunction Indicator Lamp (MIL) on the instrument panel when the computer detects a malfunction in the computer itself or in the drive system components which affect the vehicle emissions. In addition to the MIL illuminating when a malfunction is detected, the applicable DTCs prescribed by SAE J2012 are recorded in the ECM memory (See page DI-381).

If the malfunction does not occur in 3 consecutive trips, the MIL goes off but the DTCs remain in the ECM memory.


- (3) To check the DTCs, connect the OBD II scan tool or hand-held tester to the DLC3 of the vehicle. The OBD II scan tool or hand-held tester also enables you to erase the DTCs and check freeze frame data and various forms of engine data (For instruction book).
- (4) The DTCs include SAE controlled codes and Manufacturer controlled codes. SAE controlled codes must be set as prescribed by the SAE, while Manufacturer controlled codes can be set freely by a manufacturer within the prescribed limits (See the DTC chart on page DI-381).
- (5) The diagnosis system operates in the normal mode during the normal vehicle use, and also has a check mode for technicians to simulate malfunction symptoms and perform troubleshooting. Most DTCs use 2 trip detection logic(*) to prevent erroneous detection. By switching the ECM to the check mode when troubleshooting, the technician can cause the MIL to light up for a malfunction that is only detected once or momentarily. (hand-held tester).
- (6) *2 trip detection logic:

When a malfunction is first detected, the malfunction is temporarily stored in the ECM memory. If the same malfunction is detected again during the second test drive, this second detection causes the MIL to illuminate.

FI0534

554

(b) Inspect the DLC3.

The vehicle's ECM uses ISO 9141-2 for communication. The terminal arrangement of DLC3 complies with SAE J1962 and matches the ISO 9141-2 format.

Tester connection	Condition	Specified condition
7 (Bus \pm Line) - 5 (Signal ground)	During communication	Pulse generation
4 (Chassis Ground) - Body	Always	1 Ω or less
5 (Signal Ground) - Body	Always	1 Ω or less
16 (B+) - Body	Always	9 to 14 V

HINT:

If your display shows UNABLE TO CONNECT TO VEHICLE when you have connected the cable of the OBD II scan tool or hand-held tester to the DLC3, turned the ignition switch ON and operated the scan tool, there is a problem on the vehicle side or tool side.

- ★ If the communication is normal when the tool is connected to another vehicle, inspect the DLC3 on the original vehicle.
- ★ If the communication is still impossible when the tool is connected to another vehicle, the problem is probably in the tool itself, so consult the Service Department listed in the tool's instruction manual.
- (c) Inspect the battery voltage.

Battery Voltage: 11 to 14 V

If voltage is below 11 V, recharge the battery before proceeding.

- (d) Check the MIL.
 - (1) The MIL comes on when the ignition switch is turned ON and the engine is not running.

HINT:

If the MIL does not light up, troubleshoot the combination meter (See page BE-63).

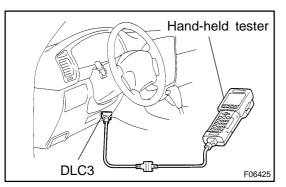
(2) When the engine is started, the MIL should go off. If the lamp remains on, it means that the diagnosis system has detected a malfunction or abnormality in the system.

DI-363

2. Normal Mode: DTC CHECK

NOTICE:

Hand-held tester only:


When the diagnostic system is switched from the normal mode to the check mode, all the DTCs and freeze frame data recorded in the normal mode will be erased. So before switching modes, always check the DTCs and freeze frame data, and note them down.

- (a) Checking DTCs using the OBD II scan tool or hand-held tester.
 - (1) Connect the OBD II scan tool or hand-held tester to DLC3.
 - (2) Turn the ignition switch ON.
 - (3) Use the OBD II scan tool or hand-held tester to check the DTCs and freeze frame data and note them down (For operating instructions, see the OBD II scan tool's instruction book).
 - (4) See page DI-381 to confirm the details of the DTCs.

NOTICE:

When simulating symptoms with an OBD II scan tool (excluding hand-held tester) to check the DTCs, use the normal mode. For codes on the DTCs chart subject to "2 trip detection logic", turn the ignition switch OFF after the symptom is simulated once. Then repeat the simulation process again. When the problem has been simulated twice, the MIL is indicated on the instrument panel and DTCs are recorded in the ECM.

- (b) When using the OBD II scan tool or hand-held tester: Clearing the DTCs.
 - (1) Connect the OBD II scan tool or hand-held tester to DLC3.
 - (2) Turn the ignition switch ON.
 - (3) When operating an OBD II scan tool (complying with SAE J1978) or hand-held tester to erase the codes, the DTCs and freeze frame data will be erased. (See the OBD II scan tool's instruction book for operating instructions.)
- (c) When not using the OBD II scan tool or hand-held tester: Clearing the DTCs.
 - (1) Disconnecting the battery terminal or remove the EFI and ETCS fuse from engine room J/B for 60 seconds or more.

3. Check Mode: DTC CHECK

HINT:

Hand-held tester only:

Compared to the normal mode, the check mode has more sensing ability to detect malfunctions. Furthermore, the same diagnostic items which are detected in the normal mode can also be detected in the check mode.

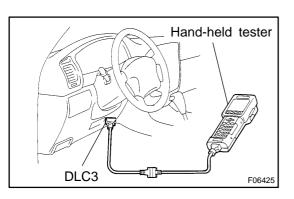
- (a) Procedure for Check Mode using the hand-held tester.(1) Check the initial conditions.
 - ★ Battery positive voltage 11 V or more
 - ★ Throttle valve fully closed
 - ★ Transmission in P or N position
 - ★ A/C switched OFF
 - (2) Turn the ignition switch OFF.
 - (3) Connect the hand-held tester to the DLC3.
 - (4) Turn the ignition switch ON.
 - (5) Switch the hand-held tester from the normal mode to the check mode (Check that the MIL flashes).

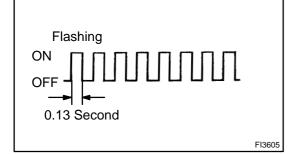
NOTICE:

If the hand-held tester switches the ECM from the normal mode to the check mode or vice-versa, or if the ignition switch is turned from ON to ACC or OFF during the check mode, the DTC and freeze frame data will be erased.

- (6) Start the engine (MIL goes off after the engine starts).
 - (7) Simulate the conditions of the malfunction described by the customer.

NOTICE:


Leave the ignition switch ON until you have checked the DTCs, etc.


(8) After simulating the malfunction conditions, use the hand-held tester diagnosis selector to check the DTCs and freeze frame data, etc.

HINT:

Be sure not to turn the ignition switch OFF, as turning it OFF switches the diagnosis system from the check mode to the normal mode, which erases all the DTCs, etc.

- (9) After checking the DTC, inspect the applicable circuit.
- (b) When using the OBD II scan tool or hand-held tester: Clearing the DTCs.
 - (1) Connect the OBD II scan tool or hand-held tester to DLC3.
 - (2) Turn the ignition switch ON.

- (3) When operating an OBD II scan tool (complying with SAE J1978) or hand-held tester to erase the codes, the DTCs and freeze frame data will be erased. (See the OBD II scan tool's instruction book for operating instructions.)
- (c) When not using the OBD II scan tool or hand-held tester: Clearing the DTCs.
 - (1) Disconnecting the battery terminal or remove the EFI and ETCS fuse from engine room J/B for 60 seconds or more.

4. DATA LIST

HINT:

According to the DATA LIST displayed by the OBD II scan tool or Hand-held tester, you can read the value of the switch, sensor, actuator and so on without parts removal. Reading the DATA LIST as a first step of troubleshooting is one method to shorten labor time.

- (a) Warm up the engine.
- (b) Turn the ignition switch OFF.
- (c) Connect the OBD II scan tool or Hand-held tester to the DLC3.
- (d) Turn the ignition switch ON.
- (e) Push the "ON" button of OBD II scan tool or Hand-held tester.
- (f) Select the item "/DIAGNOSIS/ENHANCED OBD II/DATA LIST/ALL (or ATM)".
- (g) According to the display on tester, read the "DATA LIST".

Item	Measurement Item/ Display (Range)	Normal Condition	Diagnostic Note
STOP LIGHT SW	Stop light SW Status/ ON or OFF	 ★Brake Pedal is depressed: ON ★Brake Pedal is released: OFF 	←
SHIFT	Actual Gear Position/ 1st, 2nd, 3rd, 4th or 5th	Shift Lever Position is; ★L: 1st ★2: 1st or 2nd ★3: 1st, 2nd or 3rd ★4: 1st, 2nd, 3rd or 4th ★D: 1st, 2nd, 3rd, 4th or 5th	←
PNP SW [NSW]	PNP SW Status/ ON or OFF	Shift lever position is; P or N: ON Except P or N: OFF	
REVERSE	PNP SW Status/ ON or OFF	Shift lever position is; R: ON Except R: OFF	
DRIVE	PNP SW Status/ ON or OFF	Shift lever position is; D and 4: ON Except D and 4: OFF	
4th/DRIVE	PNP SW Status/ ON or OFF	Shift lever position is; 4: ON Except 4: OFF	The shift lever position and these values are different, there are fail- ures of the PNP switch or shift
3RD	PNP SW Status/ ON or OFF	Shift lever position is; 3: ON Except 3: OFF	 cable adjustment.
2ND	PNP SW Status/ ON or OFF	Shift lever position is; 2 and L: ON Except 2 and L: OFF	
LOW	PNP SW Status/ ON or OFF	Shift lever position is; L: ON Except L: OFF	
LOCK UP SOL	Lock Up Solenoid Status/ ON or OFF	★Lock Up: ON ★Except Lock Up: OFF	←

DIAGNOSTICS - AUTOMATIC TRANSMISSION

	Pattern SW (PWR) Status/	Pattern SW (PWR) is;	
PATTERN SW (M)	ON or OFF	Pushed in: ON	\leftarrow
		Pushed once again: OFF	
SNOW SW	Pattern SW (2nd) Status/ ON or OFF	★G SW ON: OFF ↓ ★Pattern SW (2nd) Push: ON ↓ ★Pattern SW (2nd) Push: OFF	←
SOLENOID (SLT)	Shift Solenoid SLT Status/ ON or OFF	IG SW ON: ON	←
SOLENOID (SLU)	Shift Solenoid SLU Status/ ON or OFF	★Lock Up: ON ★Except Lock Up: OFF	←
SPD (SP2)	Counter Gear Speed display/ min.: 0 km/h (0 mph) max.: 255 km/h (158 mph)	Vehicle stopped: 0 km/h (0 mph)	←
AT FLUID TEMP	ATF Temp. Sensor No. 1 Value/ min.: -40⊡℃ (-40⊡F) max.: 215⊡℃ (419⊡F)	80⊑C (176⊑ F) (After Stall Test)	If the value is "-40 C (-40 F)" or "215 C (419 F)", ATF temp. sen- sor No. 1 circuit is opened or shorted.

5. ACTIVE TEST

HINT:

Performing the ACTIVE TEST using the Hand-held tester allows the relay, VSV, actuator and so on to operate without parts removal. Performing the ACTIVE TEST as a first step of troubleshooting is one method to shorten labor time.

It is possible to display the DATA LIST during the ACTIVE TEST.

- (a) Warm up the engine.
- (b) Turn the ignition switch OFF.
- (c) Connect the Hand-held tester to the DLC3.
- (d) Turn the ignition switch ON.
- (e) Push the "ON" button of Hand-held tester.

(f) Select the item "/DIAGNOSIS/ENHANCED OBD II/ACTIVE TEST".

(g) According to the display on tester, perform the "ACTIVE TEST".

Item	Test Details	Diagnostic Note
SHIFT	[Test Details] Operate the shift solenoid valve and set the each shift position by your- self. [Vehicle Condition] Less than 50 km/h (31 mph) [Others] ★Press → button: Shift up ★Press ← button: Shift down	Possible to check the operation of the shift solenoid values. HINT: Shifting to the 5th gear is possible only when the vehicle stops or idle is ON.
LOCK UP	[Test Details] Control the shift solenoid SLU to set the ATM to the lock-up condition. [Vehicle Condition] Vehicle Speed: 58 km/h (36 mph) or more	Possible to check the SLU opera- tion.
LINE PRESS UP	[Test Details] Operate the shift solenoid SLT and raise the line pressure. [Vehicle Condition]	

6. **DEFINITION OF TERMS**

Term	Definition	
Monitor description	Description of what the ECM monitors and how it detects malfunctions (monitoring purpose and its details).	
Related DTCs	Diagnostic code	
Typical enabling condition	Preconditions that allow the ECM to detect malfunctions. With all preconditions satisfied, the ECM sets the DTC when the monitored value(s) exceeds the malfunction threshold(s).	
Sequence of operation	The priority order that is applied to monitoring, if multiple sensors and components are used to detect the malfunc- tion. While another sensor is being monitored, the next sensor or component will not be monitored until the previous monitoring has concluded.	
Required sensor/compo- nents	The sensors and components that are used by the ECM to detect malfunctions.	
Frequency of operation	The number of times that the ECM checks for malfunctions per driving cycle. "Once per driving cycle" means that the ECM detects malfunction only one time during a single driving cycle. "Continuous" means that the ECM detects malfunction every time when enabling condition is met.	
Duration	The minimum time that the ECM must sense a continuous deviation in the monitored value(s) before setting a DTC. This timing begins after the "typical enabling conditions" are met.	
Malfunction thresholds	Beyond this value, the ECM will conclude that there is a malfunction and set a DTC.	
MIL operation	MIL illumination timing after a defect is detected. "Immediately" means that the ECM illuminates MIL the instant the ECM determines that there is a malfunction. "2 driving cycle" means that the ECM illuminates MIL if the same malfunction is detected again in the 2nd driving cycle.	

7. TOYOTA/LEXUS PART AND SYSTEM NAME LIST

This reference list indicates the part names used in this manual along with their definitions.

TOYOTA/LEXUS name	Definition
Toyota HCAC system, Hydrocarbon adsorptive Catalyst (HCAC) system, HC adsorptive three-way catalyst	HC adsorptive three-way catalytic converter
Variable Valve Timing sensor, VVT sensor	Camshaft position sensor
Variable valve timing system, VVT system	Camshaft timing control system
Camshaft timing oil control valve, Oil control valve OCV, VVT, VSV	Camshaft timing oil control valve
Variable timing and lift, VVTL	Camshaft timing and lift control
Crankshaft position sensor "A"	Crankshaft position sensor
Engine speed sensor	Crankshaft position sensor
ТНА	Intake air temperature
Knock control module	Engine knock control module
Knock sensor	Engine knock sensor
Mass or volume air flow circuit	Mass air flow sensor circuit
Vacuum sensor	Manifold air pressure sensor
Internal control module, Control module, Engine control ECU, PCM	Power train control module
FC idle	Deceleration fuel cut
Idle air control valve	Idle speed control
VSV for CCV, Canister close valve VSV for canister control	Evaporative emissions canister vent valve
VSV for EVAP, Vacuum switching valve assembly No. 1, EVAP VAV, Purge VSV	Evaporative emissions canister purge valve
VSV for pressure switching valve, Bypass VSV	Evaporative emission pressure switching valve
Vapor pressure sensor, EVAP pressure sensor, Evaporative emission control system pressure sensor	Fuel tank pressure sensor
Charcoal canister	Evaporative emissions canister
ORVR system	On-boad refueling vapor recovery system
Intake manifold runner control	Intake manifold tuning system
Intake manifold runner valve, IMRV, IACV (runner valve)	Intake manifold tuning valve
Intake control VSV	Intake manifold tuning solenoid valve

DI-368

DIAGNOSTICS - AUTOMATIC TRANSMISSION

AFS	Air fuel ratio sensor
O2 sensor	Heater oxygen sensor
Oxygen sensor pumping current circuit	Oxygen sensor output signal
Oxygen sensor reference ground circuit	Oxygen sensor signal ground
Accel position sensor	Accelerator pedal position sensor
Throttle actuator control motor, Actuator control motor, Elec- tronic throttle motor, Throttle control motor	Electronic throttle actuator
Electronic throttle control system, Throttle actuator control system	Electronic throttle control system
Throttle/pedal position sensor, Throttle/pedal position switch, Throttle position sensor/switch	Throttle position sensor
Turbo press sensor	Turbocharger pressure sensor
Turbo VSV	Turbocharger pressure control solenoid valve
P/S pressure switch	Power-steering pressure switch
VSV for ACM	Active control engine mount
Speed sensor, Vehicle speed sensor "A", Speed sensor for skid control ECU	Vehicle speed sensor
ATF temperature sensor, Trans. fluid temp. sensor, ATF temperature sensor "A"	Transmission fluid temperature sensor
Electronic controlled automatic transmission, ECT	Electronically controlled automatic
Intermediate shaft speed sensor "A"	Counter gear speed sensor
Output speed sensor	Output shaft speed sensor
Input speed sensor, Input turbine speed sensor "A", Speed sensor (NT), Turbine speed sensor	Input turbine speed sensor
PNP switch, NSW	Park/neutral position switch
Pressure control solenoid	Transmission pressure control solenoid
Shift solenoid	Transmission shift solenoid valve
Transmission control switch, Shift lock control unit	Shift lock control module
Engine immobilizer system, Immobilizer system	Vehicle anti-theft system

8. The monitor will run whenever the following DTCs are not present (Monitor disablement List) HINT:

This table indicates ECM monitoring status for the items in the upper columns if the DTCs in each line on the left are being set.

As for the "X" mark, when the DTC on the left is stored, detection of the DTC in the upper column is not performed.

P0 P0 P0 P0 P0 P0 P0	DTC 0010,P0020 0031-0052 0031-0052 0037-0058 0043-0064	Component/System VVT VVS1,2 FrO2S heater sensor 1 A/F sensor heater sensor 1 FrO2S heater sensor 2	VT VVS1,2 P0010,P0020	r sensor 1	sor 1		sensor 3		P0101-0103	P0101 P0110-P0113	P0115-P0118	P0116	P0120-P2135		P0128			P0136,P0156	PU142,PU162	P01/1-P01/5		P0325-P0333	PU335	P0340,P0341	P0340-P0346	P0351-P0358	P0401	P0402	P0405	P0409	P0420,P0430	P0440-P0446
P0 P0 P0 P0 P0 P0 P0	0031-0052 0031-0052 0037-0058	VVT VVS1,2 FrO2S heater sensor 1 A/F sensor heater sensor 1	VVT VVS1,2	FrO2S heater sensor 1	F sensor heater sensor 1	eater sensor 2	sensor							л Г			Activity)															
P0 P0 P0 P0 P0 P0 P0	0031-0052 0031-0052 0037-0058	FrO2S heater sensor 1 A/F sensor heater sensor 1			. ₹	FrO2S heater	FrO2S heater	MAE cancor	MAE concor	IAT sensor	ECT sensor	ECT sensor	TP sensor	Insufficient ECT for CL	Thermostat	O2S Sensor 1	FrO2S,A/F sensor (No Activity)					Knock sensor		CMP sensor	VVT sensor 1,2	Ignitor	EGR system (closed)	EGR system (open)	EGR Lift sensor	EGR Lift sensor	Catalyst	EVAP system
P0 P0 P0 P0 P0 P0	0031-0052 0037-0058	A/F sensor heater sensor 1		100.000	100000	8		_		_					×					×				_	$ \rightarrow $							
P0 P0 P0 P0	0037-0058				1		_	_		_						X				×					_	+	X				×	
P0 P0 P0 P0		FrO2S heater sensor 2					100	_			_				×		10000			×	_		_	\perp	_	\rightarrow	X	×		-+	×	
P0 P0 P0	0043-0064			-							_								×	_			_	+	_		_		\rightarrow		×	
P0 P0		FrO2S heater sensor 3																	×					\rightarrow	_							
P0	0100-P0103	MAF sensor		-	-							×								× >			_				×				×	
	0110-P0113	IAT sensor	_	-		-	_	_					_				_	_	×	>			_	+				×				×
P0	0115-P0118	ECT sensor		-	-			-	>	_			0.55578	×	×	\rightarrow			-	× >	_	_	_	+				×	\rightarrow			×
	0120-P2135	TP sensor		-		-		-	>											× >					_			×				×
	0125	ECT sensor		-					>	\square					×	×	× :	× >	× :	× >	<			\rightarrow			×	×		×	×	×
<u>רן נ</u>	0128	Thermostat	_		Risense		_	-	_		_					00000				_	_		_	+	_	-+						_
	0130-P0153	O2S Sensor 1		_											×	0059500	2740000		×		_		_	\rightarrow	_		×				×	
	0134,P0154	Closed Loop			×			-							×	×		× :	×	×	_			_			×	×				×
B PO		O2S Sensor 2			_						_								8/08					+	_	-	_		-+	_	×	\rightarrow
		O2S Sensor 3		-			_	_			_									200	_		_	+	\rightarrow		_					\rightarrow
	0171-P0172	Fuel system						+							×				×				_				×	×			X	
	0300-P0308	Misfire		×				-						<u> </u>	×	×	× :	×	×					-+							×	×
	0325-P0333	Knock sensor	_	-	+	+	_	-	-		_	-			~					_	<			+	\rightarrow		X			+		_
-	0335	CKP sensor		-	-	+		-	>											\times					-+		×				X	
	0340,P0341	CMP sensor			+				>							×	× .	×	× :	×							×	×	\rightarrow	-+	×	×
	0340-P0346	VVT sensor 1,2	_	-		+		+		+					× ×					×							×	$\overline{\mathbf{v}}$	-+	-+	×	×
	0351-P0358	Ignitor	_	-	-	+	-	+			-			$\left \right $	×	-	-			× ×	_		-	+	-			$\hat{}$	-+		× ×	싂
-	0401	EGR system (closed) EGR system (open)		+	+	+	+	+		+	+-			$\left - \right $		×	$\overline{\mathbf{v}}$	$\overline{}$		_	-		+	+	\rightarrow	-			\rightarrow		×	$\overline{}$
	0402 0405,P0409			-	+		+	+-		+	+			$\left - \right $	$\hat{}$		\rightarrow	Ŷ	\sim		+			+	\rightarrow							슈
		Lift sensor		\vdash	+	+	+-	+		+	+			$\left - \right $		\rightarrow	-+				+			+	-+	-+	-+	_	-			\rightarrow
		Catalyst	+	-	+	+	-	+		-	-	-	-	$\left \right $		×	× ·	× :	×	+	-		+	+	-+	+	-		+	-		
100	0442-P0456	EVAP system EVAP press sensor		-	-	+		-			+-					~	\sim	$\sim '$	~						- 1	1	1				8	<u>800</u>

													Мо	onito	or di	isat	olem	ien	t (X	(:c	lisa	ble	d)										
	DTC	[P0010,P0020	P0031-0052	P0031-0052	P0037-0058	P0043-P0064	P0100-P0103	P0101	P0110-P0113	P0115-P0118	P0116	P0120-P2135	P0125	P0128	P0130-P0153		P0136,P0156	P0142,P0162	P0171-P0175	P0300,P0308	P0325-P0333	P0335	P0340,P0341	P0340-P0346	P0351-P0358	P0401	P0402	P0405	P0409	P0420,P0430	P0440-P0446	P0450-P0453
		Component/System	VVT VVS1,2	FrO2S heater sensor 1	A/F sensor heater sensor 1	FrO2S heater sensor 2	FrO2S heater sensor 3	MAF sensor	MAF sensor	IAT sensor	ECT sensor	ECT sensor	TP sensor	Insufficient ECT for CL	Thermostat	O2S Sensor 1	FrO2S,A/F sensor (No Activity)	O2S Sensor 2	O2S Sensor 3	Fuel system	Misfire	Knock sensor	CKP sensor	CMP sensor	VVT sensor 1,2	Ignitor	EGR system (closed)	EGR system (open)	EGR Lift sensor	EGR Lift sensor	Catalyst	EVAP system	EVAP press sensor
	P0500	VVS													Х	×	Х	×	×	Х	Х						X	X				×	
	P0505,P0511	ISC valve														×																	
	P0560	Battery																															_
	P0617	Starter signal																															_
	P0705	Shift lever position switch																															
	P0710	Trans fluid temp sensor																													T		
	P0715-P0717	Output speed sensor																											T	1			
	P0715-P0717	Input speed sensor																						T									
	P0724	Stop lamp switch																															_
ç	P0741-P0796	Trans solenoid (function)																															
ictic	P0748-P0798	Trans solenoid (range)										L																					
Monitor detected malfunction	P0850	PNP switch	-																		×			_			_		_	_	_		
ma	P1010	OCV for VVTL													Х					Х										_			
ted	P2120-P2138	Accel position sensor																											_				
stec	P2120,P2103	Throttle motor																						_			_						
rde	P1126	Electronic magenet clutch																															
lito	P1129	Electronic throttle system																															
МÖ	P0011,P0012	VVT system 1,2													×					×				_				×				×	
	P1011,P1012	VVTL System													×					×				_		_	×	×	-	_		X	
	P1430	Pressure sensor (HC adsorber)																								-+						×	>
	P2004,P2006	Intake manifold runner conrtol																															
	P2009,P2010	Intake manifold runner circuit	-				\square							\square										-		-	-	_		_			_
	P2014,16,17	Intake manifold runner sensor													~				~										_	-			
	P2196,P2198	A/F sensor (rationality) A/F sensor (open)													× ×			× ×	×								× ×				× ×		
	P2237,P2240 P2423,P2424														^													4			슈		
	P2423,P2424 P2714-P2759	HC adsorption catalyst Trans solenoid (SLU-SLD)	-	-			-			\vdash	\vdash			\vdash									_	-	_	+	+			+	_		_
							-						-	$\left - \right $	×			×	$\overline{\mathbf{v}}$	_				+		-	×	$\overline{\mathbf{v}}$	-+		×	-	
	P2A00,P2A03	A/F sensor (slow response)							L						\mathbf{x}			^								[^	\sim			~		

													Мо	nitc	or di	sab	lem	ent	(X	: d	lisa	ble	d)									
	DTC		P0500	P0500	P0500	P0505,P0511	P0560	P0617	P0705	P0710	P0715-P0717	P0715-P0717	P0724	P0741-P0796	P0741-P0796	P0748-P0798	P0850	P1010,P1020	P1120-P2138	P2120,P2103	P1126	P1129	P0011-P0012	P1011,P1012	P1430	P2004,P2006	P2009, P2010	P2196 P2198	P2237,P2240	P2423,P2424	P2714-P2759	
		Component/System	VVS (ECT2sensor)	VVS (ECT1sensor,non-ECT)	VVS (M/T)	ISC valve	Battery	Starter signal	Shift lever position switch	Trans fluid temp sensor	Output speed sensor	Input speed sensor		Trans solenoid (function) *1	Trans solenoid (function) *2	Trans solenoid (range)	PNP switch	WTL	Accel position sensor	Throttle motor	Electronic magenet clutch	Electronic throttle system	VVT system 1,2	VVTL System	Pressure sensor (HC adsorber)	Intake manifold runner conrtol	Intake manifold runner circuit	A/F sensor (rationality)	A/F sensor (open)	HC adsorption catalyst	Yrans solenoid (SLU-SLD)	
	P0010,P0020	VVT VVS1,2												×																		
	P0031-0052	FrO2S heater sensor 1				×	ļ	L	ļ		L	ļ		×																×		1000
	P0031-0052	A/F sensor heater sensor 1				×																						×	_			
	P0037-0058	FrO2S heater sensor 2			1							1																×	(\times		
	P0043-0064	FrO2S heater sensor 3																												×		
	P0100-P0103	MAF sensor			×	\times								\times				×					×	Х				×				
	P0110-P0113	IAT sensor												\times												\times		×				
	P0115-P0118	ECT sensor			\times	×									\times			×					Х	Х		\times		×	×			:
	P0120-P2135	TP sensor		×		×								X														×				
c	P0125	ECT sensor			×	×								×	\times			X					Х					×	$ \times $	×		2
ctio	P0128	Thermostat																														
fun	P0130-P0153	O2S Sensor 1				Х								×																×		No. C.L.
mal	P0134,P0154	Closed Loop				×								\times														×		-		
ed	P0136,P0156	O2S Sensor 2																										×	(×		
tect	P0142,P0162	O2S Sensor 3																												$ \times$		
de.	P0171-P0172	Fuel system	_			×								×														×				2
litor	P0300-P0308	Misfire				×								×														×	$\langle \times$	X		2
Monitor detected malfunction	P0325-P0333	Knock sensor												×																		
e:	P0335	CKP sensor				×								Х				×					×					×				
	P0340,P0341	CMP sensor				×								×				×					Х	×				×	\times	×		
	P0340-P0346	VVT sensor 1,2																														L
	P0351-P0358	Ignitor				×								×																X		
	P0401	EGR system (closed)												×																X		
	P0402	EGR system (open)				×								×														×	$(\times$	X		
	P0405,P0409	Lift sensor																														
	P0420,P0430	Catalyst																														
	P0442-P0456	EVAP system				×																						×	×			
	P0450,P0451	EVAP press sensor																												1		

													Мо	nito	r di	sabl	eme	ent	(X	: di	sab	led)									
	DTC		P0500	P0500	P0500	P0505,P0511	P0560	P0617	P0705	P0710	P0715-P0717	P0715-P0717	P0724	P0741-P0796	P0741-P0796	P0748-P0798	P0850	P1010,P1020	P1120-P2138	PZ102, PZ103	07117	P1129		P1011, P1012	P1430	P2004, P2006	P2009, P2010	P2196.P2198	P2237,P2240	P2423,P2424	P2714-P2759	DOADD DOAD2
		Component/System	VVS (ECT2sensor)	VVS (ECT1 sensor, non-ECT)	VVS (M/T)	ISC valve	Battery	Starter signal	Shift lever position switch				Stop lamp switch	Trans solenoid (function)		Trans solenoid (range)	PNP switch	VVIL :	Accel position sensor			Electronic throttle system			2	Intake manifold runner conrtol	Intake manifold runner circuit Intake manifold runner sensor				Yrans solenoid (SLU-SLD)	A/E cancor (clow recoonce)
	P0500	VVS				X					X	×		×	Х													×		×		×
	P0505,P0511	ISC valve																										×	×			>
	P0560	Battery																														
	P0617	Starter signal																														
	P0705	Shift lever position switch																														
	P0710	Trans fluid temp sensor																														
	P0715-P0717	Output speed sensor												×																		
	P0715-P0717	Input speed sensor																														
	P0724	Stop lamp switch													0.0000000									_			_					
ç	P0741-P0796	Trans solenoid (function)																					_									
ctio	P0748-P0798	Trans solenoid (range)									×	×			×			_		_												
Ifun	P0850	PNP switch				X								X											_							_
Monitor detected malfunction	P1010	OCV for VVTL			ļ																		_				_					_
ted	P2120-P2138	Accel position sensor																100		20.20												
fec	P2102,P2103	Throttle motor																			10000		_	_		_		_				
rde	P1126	Electronic magenet clutch																				0.5610						_		ļ		
lito	P1129	Electronic throttle system																		_			5993	_				_				
δ	P0011,P0012	VVT system 1,2				Х														_				20102			_			×		
	P1011,P1012	VVTL System		-		×														_					9339	_	_					>
	P1430	Pressure sensor (HC adsorber)			-													_														
	P2004,P2006	Intake manifold runner conrtol											$\left - \right $										-									ļ
	P2009,P2010	Intake manifold runner circuit		-									\vdash				-			_		_		_	_	×			+	-		
	P2014,16,17	Intake manifold runner sensor		-									$\left - \right $				+			+			+	+	- ;	×						
	P2196,P2198	A/F sensor (rationality)				××							$\left - \right $	× ×									+						1017	× ×		\rangle
	P2237,P2240	A/F sensor (open)				~								×														+		×		Ľ
	P2423,P2424	HC adsorption catalyst								$\left - \right $			\vdash			_	+			+		_		-		_			+			-
	P2714-P2759	Trans solenoid (SLU-SLD)		-				-					-	× ×									-	+				+		~		
	P2A00,P2A03	A/F sensor (slow response)		1		×								X												-	1		1	X		1

9. PROBLEM SYMPTOM CONFIRMATION

Taking into consideration the results of the customer problem analysis, try to reproduce the symptoms. If the problem is that the transmission does not shift up, shift down, or the shift point is too high or too low, conduct the following road test referring to the automatic shift schedule and simulate the problem symptoms.

10. ROAD TEST

NOTICE:

Perform the test at normal operating ATF temperature 50 to 80°C (122 to 176°F).

- (a) D position test (NORM and PWR pattern):
 - Shift into the D position and fully depress the accelerator pedal and check the following points.
 - (1) Check up-shift operation. Check that $1 \rightarrow 2, 2 \rightarrow 3, 3 \rightarrow 4$ and $4 \rightarrow 5$ th up-shifts take place, and that the shift points conform to the automatic shift schedule (See page SS-23).

HINT:

- ★ 5th Gear Up-shift Prohibition Control (1. Coolant temp. is 55°C (131°F) or less. 2. Vehicle speed is 51 km/h (32 mph) or less.)
- ★ 4th Gear Up-shift Prohibition Control (1. Coolant temp. is 40°C (104°F) or less. 2. Vehicle speed is 45 km/h (28 mph) or less.)
- ★ 5th Gear Lock-up Prohibition Control (1. Brake pedal is depressed. 2. Coolant temp. is 60°C (140°F) or less.)
- ★ When the 2nd start switch is on, there is no 1→2 up-shift and 2→1 down-shift.
 - (2) Check for shift shock and slip.
 - Check for shock and slip at the 1 \rightarrow 2, 2 \rightarrow 3, 3 \rightarrow 4 and 4 \rightarrow 5th up-shifts.
 - (3) Check for abnormal noises and vibration.

Drive in the D position lock-up or 5th gear and check for abnormal noises and vibration.

HINT:

The check for the cause of abnormal noises and vibration must be done very thoroughly as it could also be due to loss of balance in the differential, torque converter clutch, etc.

- (4) Check kick-down operation. While running in the D position, 2nd, 3rd, 4th and 5th gears, check that the possible kick-down vehicle speed limits for 2 → 1, 3 → 2, 4 → 3 and 5th → 4 kick-downs conform to those indicated on the automatic shift schedule (See page SS-23).
- (5) Check abnormal shock and slip at kick-down.
- (6) Check the lock-up mechanism.
 - ★ Drive in D position 5th gear, at a steady speed (lock-up ON) of about 70 km/h (43 mph).
 - ★ Lightly depress the accelerator pedal and check that the engine speed does not change abruptly.

If there is a big jump in engine speed, there is no lock-up.

(b) 4 position test:

Shift into the 4 position and fully depress the accelerator pedal and check the following points.

- (1) Check up-shift operation.
 - Check that the $1 \rightarrow 2$, $2 \rightarrow 3$ and $3 \rightarrow 4$ up-shift takes place and that the shift point conforms to the automatic shift schedule (See page SS-23).

HINT:

- \star There is no 5th up-shift in the 4 position.
- ★ 4th Gear Lock-up Prohibition Control (1. Brake pedal is depressed. 2. Coolant temp. is 60°C (140°F) or less.)

Date :

- (2) Check engine braking.
 - While driving in the 4 position and 4th gear, release the accelerator pedal and check the engine braking effect.
- (3) Check for abnormal noises during acceleration and deceleration, and for shock at up-shift and down-shift.
- (4) Check the lock-up mechanism.
 - ★ Drive in 4 position 4th gear, at a steady speed (lock-up ON) of about 64 km/h (40 mph).
 - ★ Lightly depress the accelerator pedal and check that the engine speed does not change abruptly.

If there is a big jump in engine speed, there is no lock-up.

(c) 3 position test:

Shift into the 3 position and fully depress the accelerator pedal and check the following points.

- Check up-shift operation.
 Check that the 1 → 2 and 2 → 3 up-shift takes place and that the shift point conforms to the automatic shift schedule (See page SS-23).
- Check engine braking.
 While running in the 3 position and 3rd gear, release the accelerator pedal and check the engine braking effect.
- (3) Check for abnormal noises during acceleration and deceleration, and for shock at up-shift and down-shift.

(d) 2 position test:

Shift into the 2 position and fully depress the accelerator pedal and check the following points.

(1) Check up-shift operation. Check that the $1 \rightarrow 2$ up-shift takes place and that the shift point conforms to the automatic shift schedule (See page SS-23).

HINT:

When the 2nd start switch is ON, there is no $1 \rightarrow 2$ up-shift and $2 \rightarrow 1$ down-shift.

(2) Check engine braking.

While running in the 2 position and 2nd gear, release the accelerator pedal and check the engine braking effect.

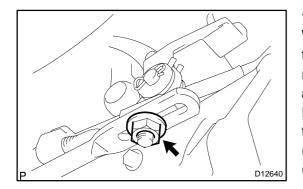
(3) Check for abnormal noises during acceleration and deceleration, and for shock at up-shift and down-shift.

(e) L position test:

Shift into the L position and fully depress the accelerator pedal and check the following points.

- (1) Check no up-shift.
 - While running in the L position, check that there is no up-shift to 2nd gear.
- Check engine braking.
 While running in the L position, release the accelerator pedal and check the engine braking effect.
- (3) Check for abnormal noises during acceleration and deceleration.
- (f) R position test:

Shift into the R position, lightly depress the accelerator pedal, and check that the vehicle moves backward without any abnormal noise or vibration.


CAUTION:

Before conducting this test ensure that the test area is free from people and obstruction.

Date :

(g) P position test:

Stop the vehicle on a grade (more than 5°) and after shifting into the P position, release the parking brake. Then, check that the parking lock pawl holds the vehicle in place.

When shifting the shift lever from the N position to other positions, check that the lever can be shifted smoothly and accurately to each position and that the position indicator is not aligned with the correct position.

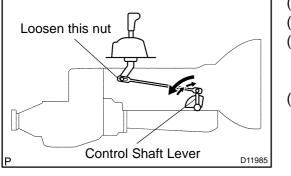
If the indicator is not aligned with the correct position, carry out the following adjustment procedures.

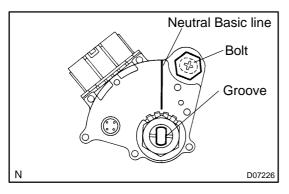
(a) Loosen the nut on the shift lever.

(b) Push the control shaft fully rearward.

- (c) Return the control shaft lever 2 notches to N position.
- (d) Set the shift lever to N position.
- (e) While holding the shift lever lightly toward the R position side, tighten the shift lever nut.
 - Torque: 13 N·m (130 kgf·cm, 9 ft·lbf)
- (f) Start the engine and make sure that the vehicle moves forward when shifting the lever from the N to D position and reverses when shifting it to the R position.

12. ADJUST PARK/NEUTRAL POSITION SWITCH


★ Check that the engine can be started with the shift lever only in the N or P position, but not in other positions.


If it is not as stated above, carry out the following adjustment procedures.

- ★ Loosen the park/neutral position switch bolt and set the shift lever to the N position.
- \star Align the groove with neutral basic line.
- \star Hold in position and tighten the bolt.

Torque: 13 N·m (130 kgf·cm, 9 ft·lbf)

- ★ For continuity inspection of the park/neutral position switch, see page DI-394.
- 13. CHECK IDLE SPEED
 Idle speed (In N position and air conditioner OFF):
 700 ± 50 rpm

14. MECHANICAL SYSTEM TESTS

 Measure the stall speed.
 The object of this test is to check the overall performance of the transmission and engine by measuring the stall speeds in the D and R positions.

NOTICE:

- \star Do the test at normal operating fluid temperature 70 to 80 °C (158 to 176 °F).
- \star Do not continuously run this test longer than 5 seconds.
- ★ To ensure safety, conduct this test in a wide, clear level area which provides good traction.
- ★ The stall test should always be carried out in pairs. One technician should observe the conditions of wheels or wheel stoppers outside the vehicle while the other is doing the test.
 - (1) Chock all 4 wheels.
 - (2) Connect an OBD II scan tool or hand-held tester to DLC3.
 - (3) Fully apply the parking brake.
 - (4) Keep your left foot pressing firmly on the brake pedal.
 - (5) Start the engine.
 - (6) Shift into the D position. Press all the way down on the accelerator pedal with your right foot. Quickly read the stall speed at this time.

Stall speed: 2,150 ± 150 rpm

- (7) Do the same test in R position.
- Stall speed: 2,150 ± 150 rpm

Evaluation:

Problem	Possible cause
(a) Engine stall speed low in D and R positions	 ★Engine output may be insufficient ★Stator one-way clutch is not operating properly HINT: If the value is less than the specified value by 600 rpm or more, the torque converter could be faulty.
(b) Engine stall speed high in D position	 ★Line pressure too low ★Clutch No. 1 (C₁) slipping ★One-way clutch No.3 (F₃) not operating properly
(c) Engine stall speed high in R position	 ★Line pressure too low ★Brake No. 4 (B₄) slipping ★Clutch No. 3 (C₃) slipping ★One-way clutch No.1 (F₁) not operating properly
(d) Engine stall speed high in D and R positions	

(b) Measure the time lag.

When the shift lever is shifted while the engine is idling, there will be a certain time lapse or lag before the shock can be felt. This is used for checking the condition of the clutch and brake.

NOTICE:

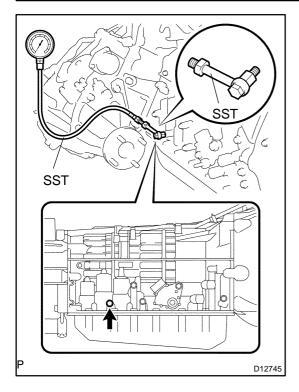
- ★ Do the test at normal operating fluid temperature 70 to 80 °C (158 to 176 °F).
- ★ Be sure to allow 1 minute interval between tests.
- \star Take 3 measurements and take the average value.
 - (1) Fully apply the parking brake.
 - (2) Start the engine and check idle speed.

Idle speed (In N position and air conditioner OFF): 700 \pm 50 rpm.

(3) Shift the shift lever from N to D position. Using a stop watch, measure the time from when the lever is shifted until the shock is felt.

Time lag:

$N \rightarrow D$ Less than 1.2 seconds


(4) In the same manner, measure the time lag for $N \rightarrow R$.

Time lag:

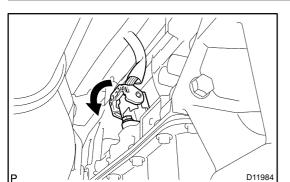
$N \to R$ Less than 1.5 seconds

Evaluation (If $N \rightarrow D$ time or $N \rightarrow R$ time lag is longer than the specified):

Problem	Possible cause
$N\toD$ time lag is longer	★Line pressure too low ★Clutch No. 1 (C ₁) worn ★One-way clutch No.3 (F ₃) not operating properly
$N\toR$ time lag is longer	 ★Line pressure too low ★Clutch No. 3 (C₃) worn ★Brake No. 4 (B₄) worn ★One-way clutch No.1 (F₁) not operating properly

15. HYDRAULIC TEST

Measure the line pressure. **NOTICE:**


- ★ Do the test at normal operation fluid temperature 70 to 80°C (158 to 176°F).
- ★ The line pressure test should always be carried out in pairs. One technician should observe the conditions of wheels or wheel stoppers outside the vehicle while the other is doing the test.
- ★ Be careful to prevent SST's hose from interfering with the exhaust pipe.
- ★ This check must be conducted after checking and adjusting engine.
- \star Perform under condition that A/C is OFF.
- ★ When conducting stall test, do not continue more than 10 seconds.
 - (1) Warm up the ATF.
 - (2) Remove the test plug on the transmission case center right side and connect SST.
 - SST 09992-00095 (09992-00231, 09992-00271)
 - (3) Fully apply the parking brake and chock the 4 wheels.
 - (4) Start the engine and check idling speed.
 - (5) Keep your left foot pressing firmly on the brake pedal and shift into D position.
 - (6) Measure the line pressure when the engine is idling.
 - (7) Depress the accelerator pedal all the way down. Quickly read the highest line pressure when engine speed reaches stall speed.
 - (8) In the same manner, do the test in R position.

Specified line pressure:

Condition	D position kPa (kgf/cm ² , psi)	R position kPa (kgf/cm ² , psi)
Idling	362 to 420 (3.7 to 4.2, 53 to 59)	500 to 580 (5.1 to 5.9, 73 to 84)
Stall	1,360 to 1,460 (13.8 to 14.9, 196 to 212)	1,295 to 1,415 (13.2 to 14.4, 188 to 205)

Evaluation

Problem	Possible cause
If the measured value at all positions are higher	★Shift solenoid valve SLT defective ★Regulator valve defective
If the measured value at all positions are lower	 ★Shift solenoid valve SLT defective ★Regulator valve defective ★Oil pump defective
If pressure is low in the D position only	 ★D position circuit fluid leakage ★Clutch No. 1 (C₁) defective
If pressure is low in the R position only	 ★R position circuit fluid leakage ★Clutch No. 3 (C₃) defective ★Brake No. 4 (B₄) defective

16. MANUAL SHIFTING TEST

HINT:

By this test, it can be determined whether the trouble is within the electrical circuit or is a mechanical problem in the transmission.

- (a) Disconnect the transmission wire.
- (b) Inspect the manual driving operation. Check that the shift and gear positions correspond with the table below.

While driving, shift through the L, 2, 3, 4 and D positions. Check that the gear change corresponds to the shift position.

Shift Position	Gear Position
D	4th
4	4th
3	Зrd
2	1st
L	1st
R	Reverse
Р	Pawl Lock

HINT:

If the gear positions of the L, 2, 3, 4 and D are difficult to distinguish, do the following road test.

If any abnormality is found in the above test, the problem is in the transmission itself.

- (c) Connect the transmission wire.
- (d) Cancel out DTC.

17. RESET MEMORY

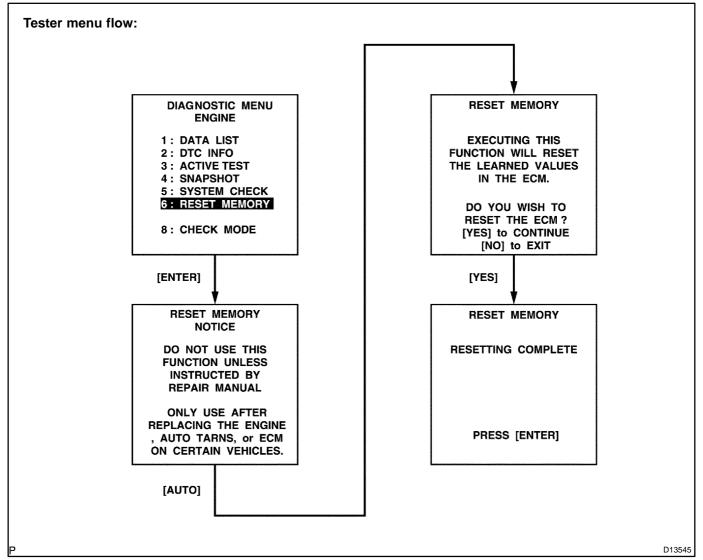
CAUTION:

Perform the RESET MEMORY (AT initialization) when replacing the automatic transmission assy, engine assy or the ECM.

NOTICE:

Hand-held tester only

HINT:


The ECM memorizes the condition that the ECT controls the automatic transmission assy and engine assy according to those characteristics. Therefore, when the automatic transmission assy, engine assy, or ECM has been replaced, it is necessary to reset the memory so that the ECM can memorize the new information.

Reset procedure is as follows.

- (a) Turn the ignition switch off.
- (b) Connect the hand-held tester to the DLC3.
- (c) Turn the ignition switch to the ON position and push the hand-held tester main switch on.
- (d) Select the item "DIAGNOSIS/ENHANCED OBD II".
- (e) Perform the reset memory procedure from the ENGINE menu.

CAUTION:

After performing the RESET MEMORY, be sure to perform the ROAD TEST described earlier.

MEMO

PROBLEM SYMPTOMS TABLE

If a normal code is displayed during the diagnostic trouble code check although the trouble still occurs, check the electrical circuits for each symptom in the order given in the charts on the following pages and proceed to the page given for troubleshooting.

The Matrix Chart is divided into 3 chapters.

Chapter 1: Electronic Circuit Matrix Chart

Chapter 2: On-vehicle Repair Matrix Chart

Chapter 3: Off-vehicle Repair Matrix Chart

- □ If the instruction "Proceed to next circuit inspection shown on matrix chart" is given in the flow chart for each circuit, proceed to the circuit with the next highest number in the table to continue the check.
- □ If the trouble still occurs even though there are no abnormalities in any of the other circuits, then check and replace the ECM.

Chapter 1: Electronic Circuit Matrix Chart HINT:

*1: When a malfunction is on the circuit *1 mark is attached, DTC is output.

Symptom	Suspect Area	See page
No up-shift (A particular gear, from 1st to 4th gear, is not up-shifted)	 Shift solenoid valve (S1) circuit ^{*1} Shift solenoid valve (S2) circuit ^{*1} ECM 	DI-460 DI-464 IN-36
No up-shift (4th \rightarrow 5th)	 Transmission control switch circuit (D - 4) *1 Engine coolant temp. sensor circuit *1 Speed sensor NT circuit *1 Shift solenoid valve (SL1) circuit *1 Shift solenoid valve (SL2) circuit *1 Shift solenoid valve (SR) circuit *1 ECM 	DI-402 DI-36 DI-418 DI-426 DI-426 DI-449 DI-468 IN-36
No up-shift (3rd \rightarrow 4th)	 Engine coolant temp. sensor circuit *1 Shift solenoid valve (S2) circuit *1 ECM 	DI-36 DI-464 IN-36
No up-shift (1st \rightarrow 2nd)	 Transmission control switch circuit (2 - L) *1 Shift solenoid valve (S2) circuit *1 ECM 	DI-402 DI-464 IN-36
No down-shift (5th \rightarrow 4th)	 Transmission control switch circuit (D - 4) *1 Shift solenoid valve (SL1) circuit *1 Shift solenoid valve (SL2) circuit *1 Shift solenoid valve (SR) circuit *1 ECM 	DI-402 DI-426 DI-449 DI-468 IN-36
No down-shift (2nd \rightarrow 1st)	 Transmission control switch circuit (2 - L) *1 Shift solenoid valve (S2) circuit *1 ECM 	DI-402 DI-464 IN-36
No down-shift (A particular gear, from 1st to 4th gear, is not down-shifted)	 Shift solenoid valve (S1) circuit ^{*1} Shift solenoid valve (S2) circuit ^{*1} ECM 	DI-460 DI-464 IN-36
No lock-up	 ATF temperature sensor circuit *1 Transfer L4 position switch circuit *1 Stop light switch circuit *1 Speed sensor NT circuit *1 Shift solenoid valve (SLU) circuit *1 ECM 	DI-410 DI-472 DI-424 DI-418 DI-491 IN-36
No lock-up off	ECM	IN-36

DI3BT-04

Shift point too high or too low	 Shift solenoid valve (SLT) circuit *1 Speed sensor NT circuit *1 Speed sensor SP2 circuit *1 Throttle position sensor circuit *1 ATF temperature sensor circuit *1 Pattern select switch circuit (PWR mode switch) Transfer L4 position switch circuit *1 ECM 	DI-479 DI-418 DI-421 DI-36 DI-410 DI-495 DI-472 IN-36
Up-shift to 5th from 4th while shift lever is 4 position	1. Transmission control switch circuit (D - 4) ^{*1} 2. ECM	DI-402 IN-36
Up-shift to 5th from 4th while engine is cold	 Engine coolant temp. sensor circuit *1 ECM 	DI-36 IN-36
Up-shift to 4th from 3rd while shift lever is 3 position	 Park/neutral position switch circuit ^{*1} ECM 	DI-402 IN-36
Up-shift to 3rd from 2nd while shift lever is 2 position	1. Park/neutral position switch circuit ^{*1} 2. ECM	DI-402 IN-36
Up-shift to 2nd from 1st while shift lever is L position	1. Transmission control switch circuit (2 - L) ^{*1} 2. ECM	DI-402 IN-36
Harsh engagement (N \rightarrow D)	 Speed sensor NT circuit *1 Shift solenoid valve (SL1) circuit *1 Shift solenoid valve (SLT) circuit *1 ECM 	DI-418 DI-426 DI-479 IN-36
Harsh engagement (Lock-up)	 Speed sensor NT circuit *1 Speed sensor SP2 circuit *1 Shift solenoid valve (SLU) circuit *1 ECM 	DI-418 DI-421 DI-491 IN-36
Harsh engagement (Any driving position)	ECM	IN-36
Poor acceleration	1. ATF temperature sensor No.2 circuit ^{*1} 2. ECM	DI-483 IN-36
No engine braking	ECM	IN-36
No kick-down	ECM	IN-36
Engine stalls when starting off or stopping	ECM	IN-36
No pattern select (PWR)	 Pattern select switch circuit (PWR mode switch) ECM 	DI-495 IN-36
No 2nd start	 Pattern select switch circuit (2nd start switch) Transmission control switch circuit (2 - L) ^{*1} ECM 	DI-497 DI-402 IN-36
AT Oil Temp. warning light remains on		
Lock-up at 3rd gear	1. ATF temperature sensor No.2 circuit ^{*1} 2. ECM	DI-483 IN-36
Shift point too high		114-00
A/T.P. indicator light does not light up	 A/T.P. indicator light circuit Combination meter circuit ECM 	DI-500 BE-58 IN-36

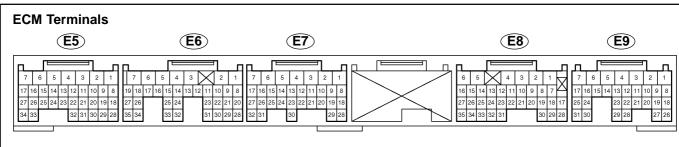
Chapter 2: On-Vehicle Repair (★: A750E, A750F AUTOMATIC TRANSMISSION Repair Manual Pub. No. RM999U)

Symptom	Suspect Area	See page
Vehicle does not move in any forward position and reverse posi- tions	 Transmission control rod Manual valve Parking lock pawl Off-vehicle repair matrix chart 	DI-361 ★ ★ -
Vehicle does not move in R position	 Valve body assy Off-vehicle repair matrix chart 	AT-8
No up-shift (1st \rightarrow 2nd)	 Valve body assy Off-vehicle repair matrix chart 	AT-8
No up-shift (2nd $ ightarrow$ 3rd)	 Valve body assy Off-vehicle repair matrix chart 	AT-8
No up-shift (3rd \rightarrow 4th)	 Valve body assy Off-vehicle repair matrix chart 	AT-8
No up-shift (4th $ ightarrow$ 5th)	 Valve body assy Off-vehicle repair matrix chart 	AT-8
No down-shift (5th $ ightarrow$ 4th)	 Valve body assy Off-vehicle repair matrix chart 	AT-8 -
No down-shift (4th $ ightarrow$ 3rd)	 Valve body assy Off-vehicle repair matrix chart 	AT-8 -
No down-shift (3rd $ ightarrow$ 2nd)	 Valve body assy Off-vehicle repair matrix chart 	AT-8 -
No down-shift (2nd \rightarrow 1st)	 Valve body assy Off-vehicle repair matrix chart 	AT-8
No lock-up or No lock-up off	 Shift solenoid valve (SLU) Valve body assy Off-vehicle repair matrix chart 	DI-487 AT-8
Harsh engagement (N \rightarrow D)	 Shift solenoid valve (SL1) Valve body assy C₁ accumulator Off-vehicle repair matrix chart 	DI-441 AT-8 ★ -
Harsh engagement (Lock-up)	 Shift solenoid valve (SLU) Valve body assy Off-vehicle repair matrix chart 	DI-487 AT-8 -
Harsh engagement (N \rightarrow R)	 Shift solenoid valve (SLT) Shift solenoid valve (SLU) Valve body assy C₃ accumulator Off-vehicle repair matrix chart 	DI-476 DI-487 AT-8 ★
Harsh engagement (1st \rightarrow 2nd \rightarrow 3rd \rightarrow 4th \rightarrow 5th)	 Shift solenoid valve (SLT) Shift solenoid valve (SL1) Valve body assy 	DI-476 DI-441 AT-8
Harsh engagement (1st $ ightarrow$ 2nd)	 Valve body assy B₃ accumulator Off-vehicle repair matrix chart 	AT-8 *
Harsh engagement (2nd \rightarrow 3rd)	 Valve body assy C₃ accumulator Off-vehicle repair matrix chart 	AT-8 *
Harsh engagement (3rd \rightarrow 4th)	 Valve body assy C₂ accumulator Off-vehicle repair matrix chart 	AT-8

DIAGNOSTICS - AUTOMATIC TRANSMISSION

Harsh engagement (4th \rightarrow 5th)	 Shift solenoid valve (SL1) Shift solenoid valve (SL2) Valve body assy Off-vehicle repair matrix chart 	DI-441 DI-445 AT-8 -
Harsh engagement (5th \rightarrow 4th)	 Shift solenoid valve (SL1) Shift solenoid valve (SL2) Valve body assy Off-vehicle repair matrix chart 	DI-441 DI-445 AT-8
Slip or shudder (Forward and reverse)	 Transmission control rod Valve body assy Oil strainer Off-vehicle repair matrix chart 	DI-361 AT-8 AT-8 -
No engine braking (1st: L position)	 Valve body assy Off-vehicle repair matrix chart 	AT-8
No engine braking (2nd: 2 position)	 Valve body assy Off-vehicle repair matrix chart 	AT-8
No kick-down	Valve body assy	AT-8
Shift point too high or too low	 Shift solenoid valve (SLT) Shift solenoid valve (SL1) Valve body assy 	DI-476 DI-441 AT-8
Poor acceleration	 Shift solenoid valve (SLT) Valve body assy 	DI-476 AT-8
Engine stalls when starting off or stopping	 Shift solenoid valve (SLU) Valve body assy 	DI-487 AT-8

592

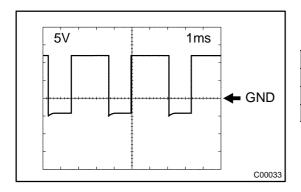

Chapter 3: Off-Vehicle Repair (★: A750E, A750F AUTOMATIC TRANSMISSION Repair Manual Pub. No. RM999U)

Symptom	Suspect Area	See page
Vehicle does not move in any forward position and reverse posi- tions	 Rear planetary gear unit Torque converter clutch 	★ AT-34
Vehicle does not move in R position	 Brake No. 4 (B₄) Clutch No. 3 (C₃) One-way clutch No.4 (F₁) 	* * *
No up-shift (1st $ ightarrow$ 2nd)	 Brake No. 3 (B₃) One-way clutch No.1 (F₁) One-way clutch No. 2 (F₂) 	* * *
No up-shift (2nd $ ightarrow$ 3rd)	Clutch No. 3 (C ₃)	*
No up-shift (3rd \rightarrow 4th)	Clutch No. 2 (C ₂)	*
No up-shift (4th \rightarrow 5th)	1. Brake No. 1 (B ₁) 2. Clutch No. 1 (C ₁)	*
No lock-up or No lock-up off	Torque converter clutch	AT-34
Harsh engagement (N \rightarrow D)	1. Clutch No. 1 (C ₁) 2. One-way clutch No.3 (F ₃)	*
Harsh engagement (N \rightarrow R)	1. Clutch No. 3 (C ₃) 2. Brake No. 4 (B ₄) 3. One-way clutch No.1 (F ₁)	* *
Harsh engagement (1 \rightarrow 2)	 Brake No. 3 (B₃) One-way clutch No.1 (F₁) One-way clutch No. 2 (F₂) 	* * *
Harsh engagement (2 $ ightarrow$ 3)	Clutch No. 3 (C ₃)	*
Harsh engagement (3 \rightarrow 4)	Clutch No. 2 (C ₂)	*
Harsh engagement (4 \rightarrow 5th)	1. Brake No. 1 (B ₁) 2. Clutch No. 1 (C ₁)	*
Harsh engagement (Lock-up)	Torque converter clutch	AT-34
Slip or shudder (Forward and reverse: After warm-up)	 One-way clutch No.1 (F₁) Clutch No. 3 (C₃) Torque converter clutch clutch 	* *
Slip or shudder (Particular position: Just after engine starts)	Torque converter clutch	AT-34
Slip or shudder (R position)	 Brake No. 4 (B₄) One-way clutch No.1 (F₁) Clutch No. 3 (C₃) 	* *
Slip or shudder (1st)	1. Clutch No. 1 (C ₁) 2. One-way clutch No.3 (F ₃)	*
Slip or shudder (2nd)	 Clutch No. 1 (C₁) Brake No. 3 (B₃) One-way clutch No.1 (F₁) One-way clutch No.2 (F₂) 	* * *
Slip or shudder (3rd)	1. Clutch No. 1 (C ₁) 2. Clutch No. 3 (C ₃) 3. One-way clutch No.1 (F ₁)	* * *
Slip or shudder (4th)	1. Clutch No. 1 (C ₁) 2. Clutch No. 2 (C ₂)	*
Slip or shudder (5th)	1. Clutch No. 2 (C ₂) 2. Clutch No. 3 (C ₃) 3. Brake No. 1 (B ₁)	* *
No engine braking (1st – 4th: D position)	Clutch No. 1 (C ₁)	*

DIAGNOSTICS - AUTOMATIC TRANSMISSION

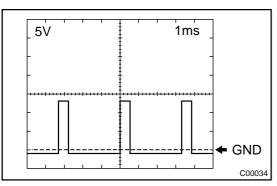
No engine braking (1st: L position)	Brake No. 4 (B ₄)	*
No engine braking (2nd: 2 position)	Brake No. 2 (B ₂)	*
No engine braking (3rd: 3 position)	Brake No. 1 (B ₁)	*
Poor acceleration (All positions)	Torque converter clutch	AT-34
Poor acceleration (5th)	1. Clutch No. 1 (C ₁) 2. Clutch No. 3 (C ₃) 3. Brake No. 1 (B ₁) 4. Front planetary gear unit	* * *
Engine stalls when starting off or stopping	Torque converter clutch	AT-34

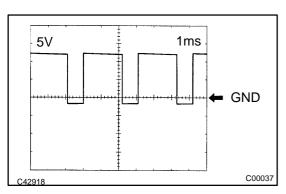
TERMINALS OF ECM


A14471

Symbols (Terminals No.)	Wiring Color	Condition	STD Voltage (V)
	G-W - BR	IG switch ON and shift lever P position	10 to 14
P (E9-6) - E1 (E7-1)		IG switch ON and shift lever other than P position	Below 1
		IG switch ON and shift lever N position	10 to 14
N (E9-7) - E1 (E7-1)	G-R - BR	IG switch ON and shift lever other than N position	Below 1
		IG switch ON and Transfer shift lever L position	9 to 14
L4 (E8-4) - E1 (E7-1)	B-L - BR	IG switch ON and Transfer shift lever other than L position	Below 1.5
		IG switch ON	9 to 14
SNWI (E8-5) - E1 (E7-1)	L-R - BR	IG switch ON and Press continuously 2nd start switch	Below 1
		IG switch ON and shift lever L position	9 to 14
L (E8-8) - E1 (E7-1)	R-L - BR	IG switch ON and shift lever other than L position	Below 1.5
		IG switch ON and shift lever 2 and L position	9 to 14
2 (E8-9) - E1 (E7-1)	G-B - BR	IG switch ON and shift lever other than 2 and L position	Below 1.5
		IG switch ON and shift lever D and 4 position	9 to 14
D (E8-10) - E1 (E7-1)	G-Y - BR	IG switch ON and shift lever other than D and 4 position	Below 1.5
		IG switch ON and shift lever R position	9 to 14
R (E8-11) - E1 (E7-1)	R-B - BR	IG switch ON and shift lever other than R position	Below 1.5
	G-W - BR	Brake pedal is depressed	7.5 to 14
STP (E8-19) - E1 (E7-1)		Brake pedal is released	Below 1.5
	G - BR	IG switch ON and shift lever 3 position	9 to 14
3 (E8-20) - E1 (E7-1)		IG switch ON and shift lever other than 3 position	Below 1.5
	G-R - BR	IG switch ON and shift lever 4 position	9 to 14
4 (E8-23) - E1 (E7-1)		IG switch ON and shift lever other than 4 position	Below 1.5
		IG switch ON and Pattern select switch " PWR" OFF	9 to 14
PWR (E8-28) - E1 (E7-1)	L-W - BR	IG switch ON and Pattern select switch "PWR" ON	Below 1
	Y-G - BR	IG switch ON and Transfer shift lever N position	Below 1.5
TFN (E7-11) - E1 (E7-1)		IG switch ON and Transfer shift lever other than N position	9 to 14
SLU+ (E7-16) - SLU- (E7-15)	P-G - B	Engine idle speed	Pulse generation 2 reference
S2 (E6-10) - E1 (E7-1)	W - BR	IG switch ON	Below 1.5
		2nd or 3rd gear	9 to 14
		1st, 4th or 5th gear	Below 1.5
		IG switch ON	9 to 14
S1 (E6-11) - E1 (E7-1)	R - BR	1st or 2nd gear	9 to 14
		3rd, 4th or 5th gear	Below 1.5

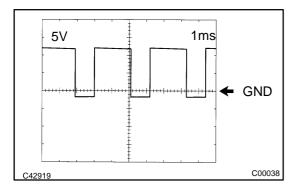
DIB31-02


DIAGNOSTICS - AUTOMATIC TRANSMISSION


SLT+ (E6-13) - SLT- (E6-12)	G-W - G-B	Engine idle speed	Pulse generation 1 reference
		IG switch ON	Below 1.5
SR (E6-15) - E1 (E7-1)	G - BR	5th gear	9 to 14
		1st gear	Below 1
SL2+ (E6-17) - SL2- (E6-16)	P-B - P-L	Engine idle speed	Pulse generation 3 reference
SL1+ (E6-19) - SL1- (E6-18)	R-L - R-W	Engine idle speed	Pulse generation 4 reference
THO2 (E6-24) - E2 (E5-28)	L - BR-W	ATF temperature: 115°C (239°F) or more	Below 1.5
SP2 ⁺ (E6-26) - SP2 ⁻ (E6-34)	R - G	Vehicle speed 20 km/h (12 mph)	Pulse generation 6 reference
NT ⁺ (E6-27) - NT ⁻ (E6-35)	L - W	Engine idle speed	Pulse generation 5 reference
THO1 (E6-32) - E2 (E5-28)	G-Y - BR-W	ATF temperature: 115°C (239°F) or more	Below 1.5
	D.144 D.D.	IG switch ON and shift lever P and N position	Below 1.5
NSW (E5-16) - E1 (E7-1)	B-W - BR	IG switch ON and shift lever other than P and N position	9 to 14

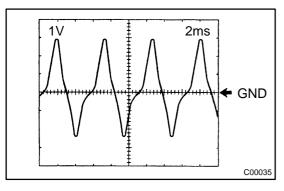
Pulse generation 1 Reference:

Item	Condition
Terminal	SLT+ - SLT-
Tool setting	5V/DIV, 1ms/DIV
Vehicle condition	Engine idle speed

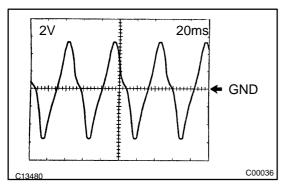


Pulse generation 2 Reference:

Item	Condition
Terminal	SLU+ - SLU-
Tool setting	5V/DIV, 1ms/DIV
Vehicle condition	Engine idle speed


Pulse generation 3 Reference:

Item	Condition
Terminal	SL2+ - SL2-
Tool setting	5V/DIV, 1ms/DIV
Vehicle condition	Engine idle speed

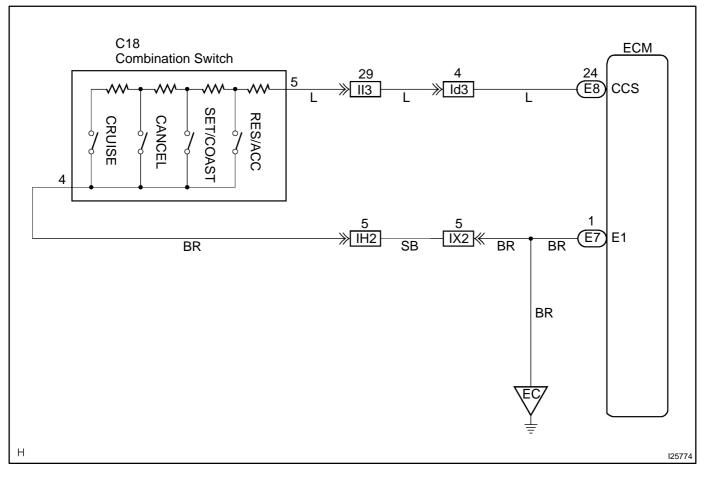

Pulse generation 4 Reference:

Item	Condition
Terminal	SL1+ - SL1-
Tool setting	5V/DIV, 1ms/DIV
Vehicle condition	Engine idle speed

Pulse generation 5 **Reference:**

Item	Condition
Terminal	NT+ - NT-
Tool setting	1V/DIV, 2ms/DIV
Vehicle condition	Engine idle speed

Pulse generation 6 **Reference:**

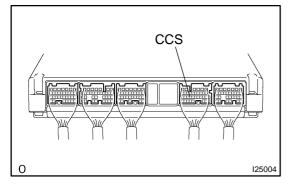

Item	Condition	
Terminal	SP2+ - SP2-	
Tool setting	2V/DIV, 20ms/DIV	
Vehicle condition	Vehicle speed 20 km/h (12 mph)	

Main Switch Circuit (Cruise Control Switch)

CIRCUIT DESCRIPTION

This circuit carries the -/SET, +/RESUME and Cancel signals (each voltage) to the ECM.

WIRING DIAGRAM



DIB6C-01

INSPECTION PROCEDURE

1

Check voltage between terminal CCS of ECM connector and body ground.

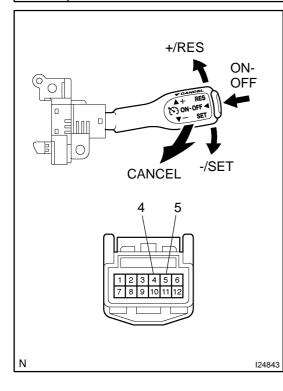
PREPARATION:

- (a) Remove the ECM with connector still connected.
- (b) Turn ignition switch ON.

CHECK:

Measure voltage between terminal CCS of ECM connector and body ground, when each of the -/SET, +RES and CANCEL is turned ON.

<u> 0K:</u>


Switch Position	Voltage
Neutral	9 - 14 V
+/RES	2.1 - 4 V
-/SET	4 - 7.1 V
CANCEL	6 - 10.1 V

ОК

Proceed to next circuit inspection shown on problem symptom table (See page DI-991).

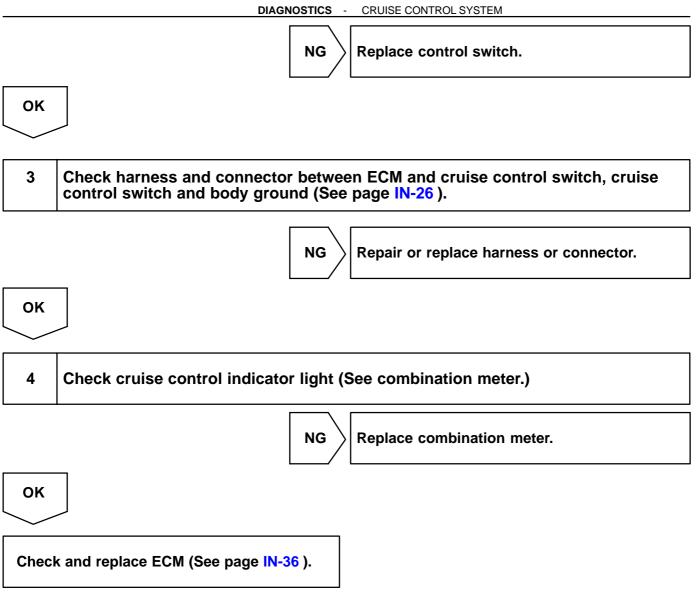
NG

2 Check main switch continuity.

PREPARATION:

- (a) Remove steering wheel center pad (See page SR-9).
- (b) Disconnect the control switch connector.

CHECK:


(a) Measure resistance between terminals 4 and 5 of cruise control switch connector when control switch is operated.

Switch position	Resistance (Ω)
Neutral	∞ (No continuity)
+/RES	210 - 270
-/SET	560 - 700
CANCEL	1380 - 1700

(b) Check continuity between terminals 4 and 5 of control switch connector when main switch is held on and off.

<u>OK:</u>

Switch position	Tester connection	Specified condition
OFF	4 - 5	No continuity
ON	4 - 5	Continuity

CIRCUIT INSPECTION

DTC	P0500/21	Vehicle Speed Sensor "A"	

DTC	P0503/23	Vehicle Speed Sensor "A" Intermittent/Errat- ic/High
-----	----------	---

CIRCUIT DESCRIPTION

See page .DI-274

DTC No.	DTC Detection Condition	Trouble Area
	No vehicle speed sensor signal to ECM under following condi-	*Combination meter
P0500/21	tions (a) and (b): (2 trip detection logic)	Hopen or short in vehicle speed sensor circuit
P0503/23	(a) Park/neutral position switch is OFF	★Vehicle speed sensor
	(b) Vehicle is being driven	★ECM

WIRING DIAGRAM

See page .DI-274

INSPECTION PROCEDURE

See page .DI-274

DI3CI-14

DIB6A-01

DTC

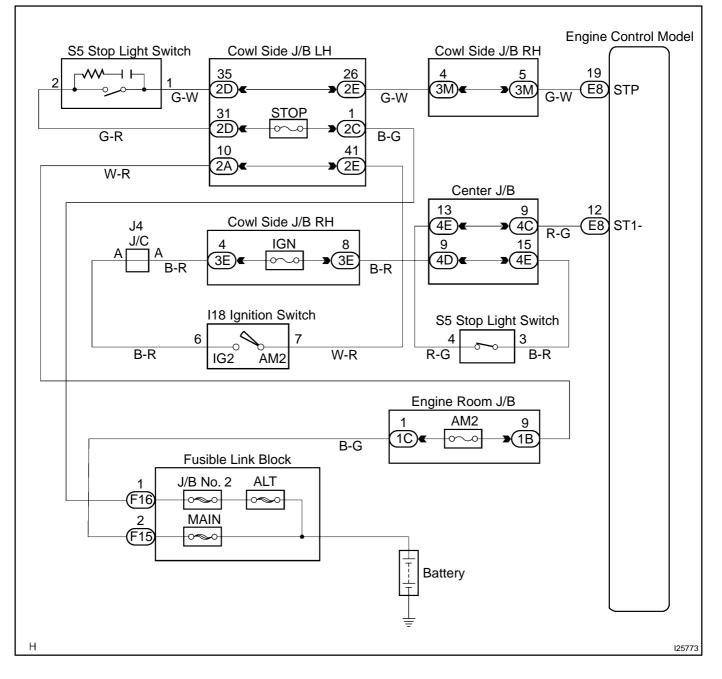
P0571/52

52 Brake Switch "A" Circuit

CIRCUIT DESCRIPTION

When the brake pedal is depressed, the stop light switch sends a signal to the ECM. When the ECM receives this signal, it cancels the cruise control.

A fail-safe function is provided so that the cancel functions normally, even if there is a malfunction in the stop light signal circuit.


The cancel condition is that battery positive voltage is supplied to terminal STP.

When the brake is on, battery positive voltage is normally applied through the STOP fuse and stop light switch to terminal STP of the ECM, and the ECM turns the cruise control OFF.

If the harness connected to terminal STP has an open circuit, terminal STP will have battery positive voltage and the cruise control will be turned OFF.

DTC No.	Detection Item	Trouble Area
P0571/52	Stop light switch circuit.	★Stop light switch #Harness or connector between ECM and stop light switch circuit ★ECM

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

In case of using the hand-held tester, start the inspection from step 1 and in case of not using the hand-held tester, start from step 2.

Check stop light switch using hand-held tester.

PREPARATION:

Connect the hand-held tester to the DLC3.

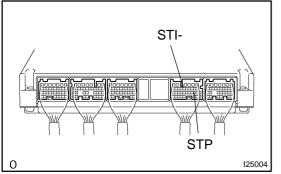
- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester main SW ON.

CHECK:

Select the item "STOP LIGHT SW" in the DATA LIST and read its valve displayed. **OK:**

Brake pedal depressed: ON Brake pedal released: OFF

CHECK:


Check that stop light comes on when brake pedal is depressed, and turns off when brake pedal is released.

NG Check stop light system (See page BE-49).

OK

DI-996

Check voltage between terminal STP/STI- of ECM connector and body ground.

PREPARATION:

(a) Remove the ECM with connectors still connected.

(b) Turn ignition switch ON.

CHECK:

Measure voltage between terminal STP/STI- of ECM connector and body ground when the brake pedal is depressed and released.

<u>OK:</u>

Depressed	10 - 14 V
Released	Below 1 V

ок

ΚÒ	\setminus	Proceed	to next	circuit	inspection	shown	in
	/	problem	sympton	n table ((See page <mark>D</mark>	I-991).	

 NG

 4
 Check wire harness and connector between terminal STP of ECM and stop light switch, and terminal STI- of ECM and stop light switch (See page IN-36).

 NG
 Repair or replace harness or connector.

 OK
 Check and replace ECM (See page IN-36).

Control Module Performance

DIB6B-01

CIRCUIT INSPECTION

DTC

This DTC expresses the internal abnormalities of ECM.

P0607/54

DTC No.	Detection Item	Trouble Area
P0607/54	 ★Cruise control input signal abnormal. ★Stop light switch input signal abnormal. 	∠E CM

INSPECTION PROCEDURE

Check and replace ECM (See page IN-36).

CRUISE MAIN Indicator Light Circuit

CIRCUIT DESCRIPTION

When the cruise control main switch is turned ON, CRUISE MAIN indicator light lights up.

INSPECTION PROCEDURE

	1

Perform Active Test of hand-held tester.

PREPARATION:

Connect the hand-held tester to the DLC3.

CHECK:

Check the cruise indicator of the combination meter using Active Test.

<u> 0K:</u>

Check condition
ON/OFF
•

Proceed to next circuit inspection shown on problem symptom table (See page DI-991).

NG

Check and replace combination meter. (See page IN-36).

DIB6D-01

DI-980

CUSTOMER PROBLEM ANALYSIS CHECK

CRUISE CONTROL SYSTEM Check Sheet

Inspector's name: _____

DI26S-20

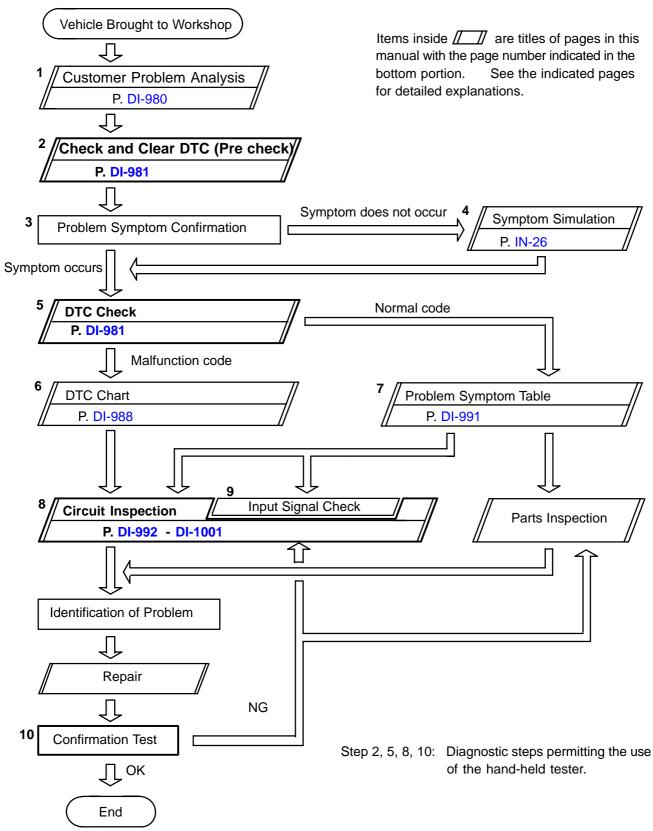
		Registration No.	
Customer's Name		Registration Year	
		Frame No.	
Date of Vehicle Brought in	/ /	Odometer Reading	km Mile

	Date of Problem Occurrence		/	/
Condition of Problem Occurrence	Frequency Problem Occurs?	2 Continuous	Intermittent (Times a day)
	Vehicle Speed when Problem Occurred		km Mile	

	Auto cancel occurs	 ★Driving condition □ City driving □ Freeway □ Up hill □ Down hill ★After cancel occurred, did the driver activate cruise control again? □ Yes □ No 	
	Cancel does not occur	 With brake ON Except D position shift When control SW turns to CANCEL position 	
Symptoms malfunction Slip to decel Hunting occu O/D cut off control		 Slip to acceleration side Slip to deceleration side Hunting occurs O/D cut off does not occur O/D does not return 	
	Switch malfunction		
	Cruise main indicator light	□ Remains ON □ Does not light up □ Blinks	

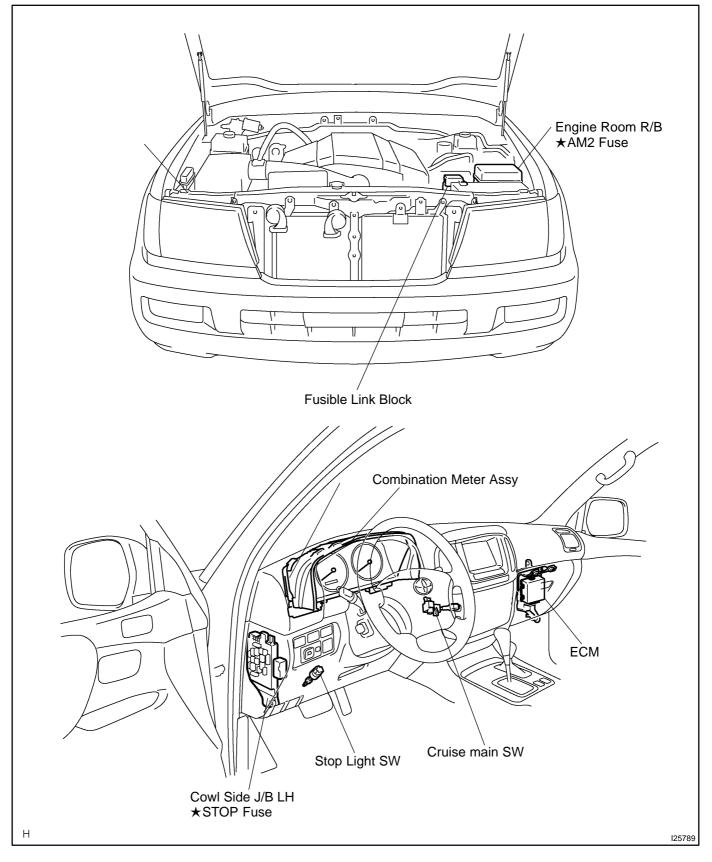
DTC Cheek	1st Time	🗆 Normal Code	□ Malfunction Code (Code)
DTC Check	2nd Time	🗆 Normal Code	□ Malfunction Code (Code)

DIAGNOSTIC TROUBLE CODE CHART

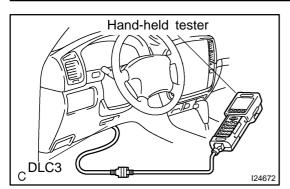

If a malfunction code is displayed during the DTC check, check the circuit listed for that code in the table below and proceed to the appropriate page.

DTC No. (See Page)	Circuit Inspection	Trouble Area	
P0500/21 (DI-992)	Vehicle Speed Sensor "A"	★Combination meter ★Open or short in vehicle speed sensor circuit	
P0503/23 (DI-992)	Vehicle Speed Sensor "A" Intermittent/Erratic/High	★Vehicle speed sensor ★ECM	
P0571/52 (DI-993)	Brake Switch "A" Circuit	★Short in stop light switch circuit ★Stop light switch ★ECM	
P0607/54 (DI-997)	Control Module Performance	∠E CM	

DI26U-32


CRUISE CONTROL SYSTEM HOW TO PROCEED WITH TROUBLESHOOTING

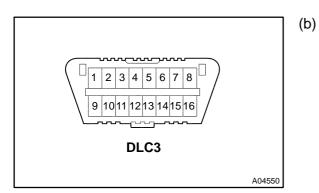
Troubleshoot in accordance with the procedure on the following page.



DI26R-35

PARTS LOCATION

DI3CG-08


PRE-CHECK

1. DIAGNOSIS SYSTEM

(a) Description

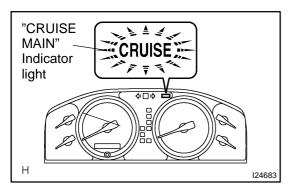
ECM controls the function of cruise control on this vehicle. Data of the cruise control or DTC can be read from DLC3 of the vehicle. When a trouble occurs on cruise control, Check CRUISE MAIN indicator does not light up but DTC inspection is performed.

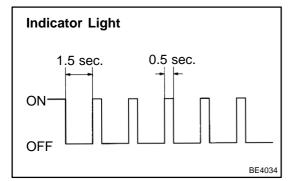
Therefore when there seems to be a trouble on cruise control, use hand-held tester or SST to check and troubleshoot it.

) Check the DLC3.

The vehicle's ECM uses ISO 9141-2 for communication. The terminal arrangement of DLC3 complies with SAE J1962 and matches the ISO 9141-2 format.

Terminal No.	Connection/Specified Condition	Condition
4	Chassis Ground \leftrightarrow Body Ground/1 or less	Always
13	$TC \leftrightarrow Body Ground/9 - 14 V$	Always


HINT:


If your display shows "UNABLE TO CONNECT TO VEHICLE" when you have connected the cable of the hand-held tester to DLC3, turned the ignition switch ON and operated the hand-held tester, there is a problem on the vehicle side or tool side.

- ★ If communication is normal when the tool is connected to another vehicle, inspect DLC3 on the original vehicle.
- ★ If communication is still not possible when the tool is connected to another vehicle, the problem is probably in the tool itself, so consult the Service Department listed in the tool's instruction manual.

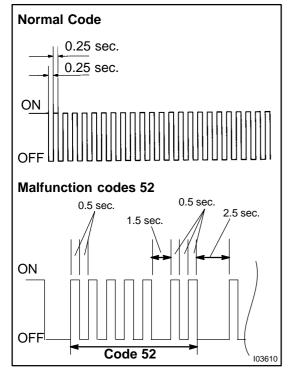
DIB69-01

DIAGNOSTICS - CRUISE CONTROL SYSTEM

(c) Check the indicator.

- (1) Turn the ignition switch to ON.
- (2) Check that the CRUISE MAIN indicator light comes on when the cruise control main switch is turned ON, and that the indicator light goes off when the main switch is turned OFF.

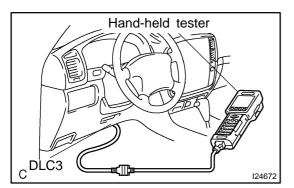
HINT:


If the indicator check result is not normal, proceed to troubleshooting (See page BE-2) for the combination meter section.

(d) Check the DTC.

HINT:

If a malfunction occurs in the speed sensor or stop light switch, etc. during cruise control driving, the ECM actuates AUTO CANCEL of the cruise control and turns ON and OFF the CRUISE MAIN indicator light to inform the driver of a malfunction. At the same time, the malfunction is stored in memory as a diagnostic trouble code.


- (e) Output DTC using diagnosis check wire.
 - (1) Turn the ignition switch ON.
 - (2) Using SST, connect terminals Tc and CG of DLC3.
 - SST 09843-18040
 - (3) Read the DTC on the CRUISE MAIN indicator light.

HINT:

- ★ If the DTC is not output, inspect the diagnosis circuit.
- ★ As an example, the blinking patterns for codes; normal 52 are shown in the illustration.

²⁰⁰⁴ LAND CRUISER (RM1071U)

USING HAND-HELD TESTER

- (a) Hook up the hand-held tester to the DLC3.
- (b) Monitor the ECU data by following the prompts on the tester screen.

HINT:

2.

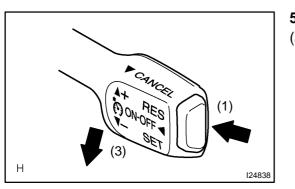
Hand-held tester has a "Snapshot" function which records the monitored data.

Please refer to the hand-held tester operator's manual for further details.

3. DTC CLEARANCE

- (a) The following actions will erase the DTCs and freeze frame data.
 - (1) Operating the hand-held tester to erase the codes (See the hand-held tester instruction book for operating instructions.).
 - (2) Disconnecting the battery terminals or EFI fuse.
- (b) After completing repairs, the DTC retained in memory can be cleared by removing the EFI fuse for 10 seconds or more with the ignition switch off.
- (c) Check that the normal code is displayed after connecting the fuse.
- 4. DATA LIST

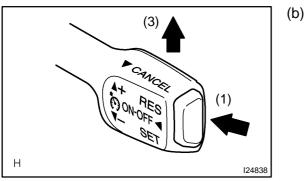
HINT:


According to the DATA LIST displayed by the hand-held tester, you can read the value of the switch, sensor, actuator and so on without parts removal. Reading the DATA LIST as a first step of troubleshooting is one of the method to shorten the labor time.

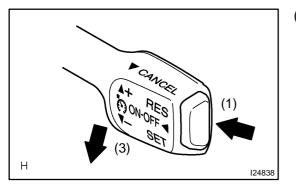
- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON.
- (c) According to the display on tester, read the "DATA LIST".

Item	Measurement Item/Display (Range)	Normal Condition	Diagnostic Note
VEHICLE SPD	Vehicle speed/ min.: 0 km/h (0 mph)max.: 255 km/h (158 mph)	Actual vehicle speed	-
MEMORY SPD	Vehicle speed/ min.: 0 km/h (0 mph)max.: 255 km/h (158 mph)	Actual vehicle speed	-
THROTTLE	Throttle operating angle/ min.: 0 km/h (0 mph)max.: 125 km/h (mph)	Actual vehicle speed	-
CRUISE CONTROL	Cruise control	ON: Cruise control is SET OFF: Cruise control is UNSET	-
MAIN SW (MAIN)	Main switch (Main CPU)	ON: Main switch (Main CPU) is SET OFF: Main switch (Main CPU) is UNSET	-

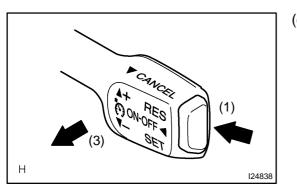
DIAGNOSTICS - CRUISE CONTROL SYSTEM


	1		
MAIN SW (SUB)	Main switch (Sub CPU)	ON: Main switch (Sub CPU) is SET OFF: Main switch (Sub CPU) is UNSET	-
CCS READY M	Switch ready (Main CPU)	ON: Switch ready (Main CPU) is SET OFF: Switch ready (Main CPU) is UNSET	-
CCS READY S	Switch ready (Sub CPU)	ON: Switch ready (Sub CPU) is SET OFF: Switch ready (Sub CPU) is UNSET	-
CCS INDICATOR M	Switch indicator (Main CPU)	ON: Switch indicator (Main CPU) is ON OFF: Switch indicator (Main CPU) is OFF	-
CCS INDICATOR S	Switch indicator (Sub CPU)	ON: Switch indicator (Sub CPU) is ON OFF: Switch indicator (Sub CPU) is OFF	-
CANCEL SW	CANCEL switch	ON: CANCEL switch is SET OFF: CANCEL switch is UNSET	-
SET/COAST SW	SET/COAST switch	ON: SET/COAST switch is SET OFF: SET/COAST switch is UN- SET	-
RES/ACC SW	RES/ACC switch	ON: RES/ACC switch is SET OFF: RES/ACC switch is UNSET	-
STP LIGHT SW2-M	Stop light SW signal (Main CPU)	ON: Brake pedal depressed OFF: Brake pedal released	-
STP LIGHT SW2-S	Stop light SW signal (Sub CPU)	ON: Brake pedal depressed OFF: Brake pedal released	-
STP LIGHT SW1-M	Stop light SW signal (Sub CPU)	ON: Brake pedal depressed OFF: Brake pedal released	-
SHIFT D POS	Shift D position	ON: Shift is D position OFF: Shift is except D position	-

PROBLEM SYMPTOM CONFIRMATION (ROAD TEST) 5.


- Inspect the SET switch. (a)
 - (1) Push the main switch ON.
 - (2) Drive at a desired speed [40 km/h (25 mph) or higher].
 - (3) Press the control switch to the -/SET.
 - (4) After releasing the switch, check that the vehicle cruises at the desired speed.

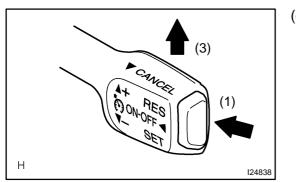
Date :


) Inspect the ACCEL switch.

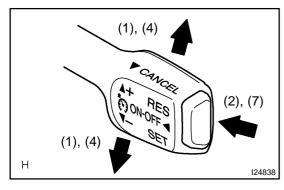
- (1) Push the main switch button to ON.
- (2) Drive at a desired speed [40 km/h (25 mph) or higher].
- (3) Check that the vehicle speed increases while the control switch is pulled up to +/RES, and that the vehicle cruises at the set speed when the switch is released.
- (4) Momentarily press the control switch upward to the +/RES and then immediately release it. Check that the vehicle speed increases by about 1.5 km/h (Tap-up function).

(c) Inspect the COAST switch.

- (1) Push the main switch button to ON.
- (2) Drive at a desired speed [40 km/h (25 mph) or higher].
- (3) Check that the vehicle speed decreases while the control switch is push down to -/SET, and the vehicle cruises at the set speed when the switch is released.
- (4) Momentarily press the control switch downward to -/SET, and then immediately release it. Check that the vehicle speed decreases by about 1.5 km/h (Tap-down function).


(d) Inspect the CANCEL switch.

- (1) Push the main button to ON.
- (2) Drive at a desired speed [40 km/h (25 mph) or higher].
- (3) When operating one of the followings, check that the cruise control system is cancelled and that the normal driving mode is reset.
 - \star Depress the brake pedal
 - ★ Shift to except D position
 - ★ Push the main switch button to OFF

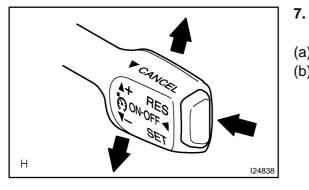

2004 LAND CRUISER (RM1071U)

Author :

★ Pull the cruise control switch to CANCEL

- (e) Inspect the RESUME switch.
 - (1) Push the main switch button to ON.
 - (2) Drive at a desired speed [40 km/h (25 mph) or higher].
 - (3) When operating one of the followings, check that the cruise control system is cancelled and that the normal driving mode is reset.
 - ★ Depress the brake pedal
 - ★ Shift to except D position
 - ★ Press the main switch button to OFF
 - (4) After the control switch is pulled up to +/RES at the driving speed of more than 40 km/h (25 mph), check that the vehicle restores the speed before the cancellation.

6. INPUT SIGNAL CHECK


HINT:

- ★ For check No.1 No. 3 Turn the ignition switch to ON.
- ★ For check No. 4 Jack up the vehicle. Start the engine. Shift to D position
- (a) Check the input signal
 - Keep the main switch to -/SET or +/RES position and hold it down or hold it up.
 - (2) Press the switch button to ON.
 - (3) Check that the CRUISE mainindicator light blinks twice or 3 times repeatedly after 3 seconds.
 - (4) Turn the -/SET or +/RES switch to OFF.
 - (5) Operate each switch as listed in the table below.
 - (6) Read the blinking pattern of the CRUISE main indicator light.
 - (7) After performing the check, turn the main switch button to OFF.

HINT:

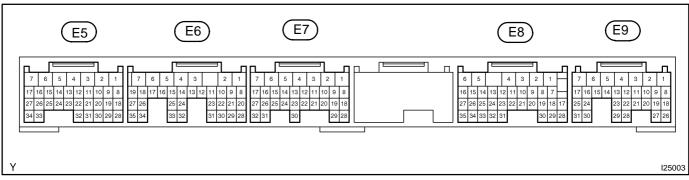
When 2 or more signals are input to the ECM, the lowest numbered code will be displayed first.

No.	Operation Method	CRUISE Main Indicator Light Blinking Pattern	Diagnosis
1	Turn -/SET switch ON	0.5 sec.	-/SET switch circuit is normal
2	Turn +/RES switch ON		+/RES switch circuit is normal
	Turn CANCEL switch ON	ON Switch OFF	CANCEL switch circuit is normal
3	Depress brake pedal (Turn stop lamp switch assy ON)	Light Switch ON	Stop light switch circuit is normal
	Shift to except D position (Turn PNP switch OFF)	ON Switch ON Light OFF Switch OFF	PNP switch circuit is normal

INPUT SIGNAL CHECK (Using hand-held tester)

(a) Connect the hand-held tester to DLC3.

(b) Check the control switch (MAIN, CANCEL, SET/COAST, RES/ACC).


PROBLEM SYMPTOMS TABLE

DI2	6X-	37

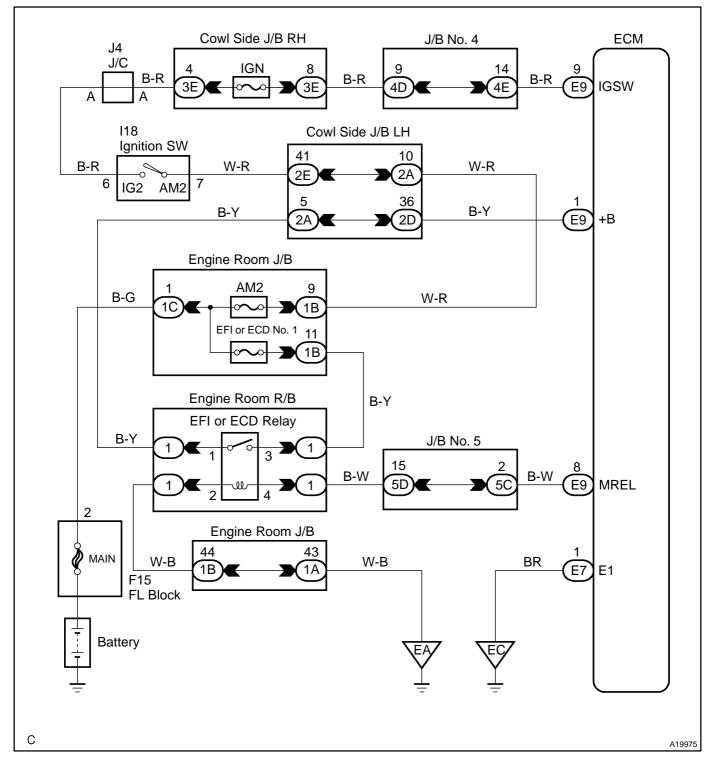
DI-991

Symptom	Suspect Area	See page
SET not occurring or CANCEL occurring. (DTC is Normal)	 Input Signal Circuit Vehicle Speed Sensor Circuit Stop Light Switch Circuit Park/Neutral Position Switch Circuit ECM 	DI-997 DI-992 DI-993 IN-36
SET not occurring or CANCEL occurring. (DTC is not output)	1. ECM	IN-36
Actual vehicle speed deviates above or below the set speed.	 Input Signal Circuit ECM 	DI-997 IN-36
Gear shifting occurs frequently between 3rd and O/D when driving on uphill road. (Hurting)	1. ECM	IN-36
Cruise control not cancelled, even when brake pedal is depressed.	 Stop Light Switch Circuit ECM 	DI-993 IN-36
Cruise control not cancelled, even when transmission is shifted to "N" position.	 Park/Neutral Position Switch Circuit ECM 	IN-36
Control switch does not operate. (+/SET, +/RES, CANCEL not possible)	 Cruise Control Switch Circuit ECM 	DI-998 IN-36
SET possible at 40 km/h (25 mph) or less, or CANCEL does not operate at 40 km/h (25 mph) or less.	 Input Signal Circuit ECM 	DI-997 IN-36
Poor response is ACCEL and RESUME modes.	1. ECM	IN-36
O/D does not resume, even though the road is not uphill.	1. ECM	IN-36
DTC memory is erased.	1. ECM	IN-36
DTC is not output, or is output when should not be.	 Diagnosis Circuit ECM 	IN-36
Cruise MAIN indicator light remains ON or falls to light up.	 Input Signal Circuit ECM 	DI-997 IN-36
Cruise MAIN indicator light does not light up.	1. Cruise MAIN indicator Light Circuit	DI-1001

TERMINALS OF ECM

Symbols (Terminals No.)	Wiring Color	Condition	Specified condition
$\begin{array}{l} STP\leftrightarrowE1\\ (E8\text{-}19\leftrightarrowE7\text{-}1) \end{array}$	$G\text{-}W\leftrightarrowBR$	Depress brake pedal	10 - 16 V
		Release brake pedal	Below 1 V
CCS ↔ E1 (E8-24 ↔ E7-1)	L ↔ BR	Ignition switch ON	10 - 16 V
		Ignition switch ON CANCEL switch hold ON	3.6 - 7.2 V
		Ignition switch ON -/SET switch hold ON	2.1 - 4.9 V
		Ignition switch ON +/RES switch hold ON	0.7 - 2.6 V
		Ignition switch ON Main switch OFF	Below 1 V
		Ignition switch ON Main switch ON	10 - 14 V
ST1- ↔ E1 (E8-12 ↔ E7-1)	$R\text{-}G \leftrightarrow BR$	Depress brake pedal	Below 1 V
		Release brake pedal	10 - 14 V

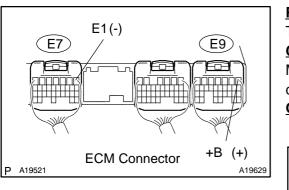
ECM Power Source Circuit


CIRCUIT DESCRIPTION

When the ignition switch is turned ON, battery positive voltage is applied to terminal IGSW of the ECM and the EFI or ECD relay control circuit in the ECM sends a signal to terminal MREL of the ECM switching on the EFI or ECD relay.

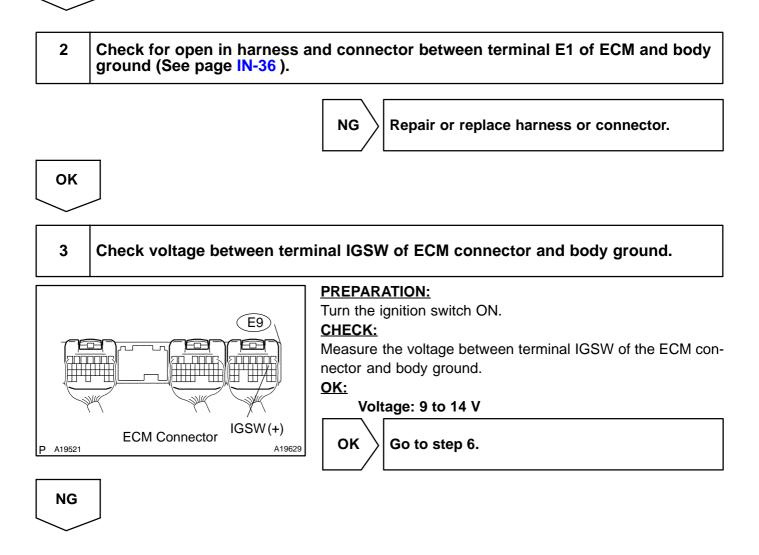
This signal causes current to flow to the coil, closing the contacts of the EFI or ECD relay and supplying power to terminal +B of the ECM.

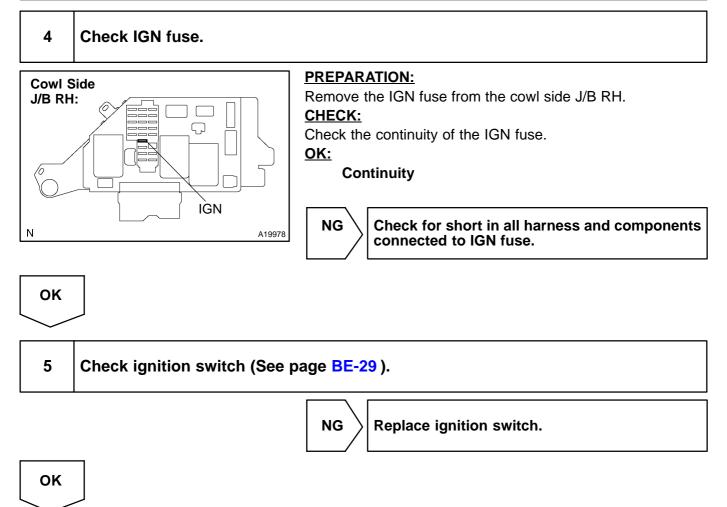
DI-345


WIRING DIAGRAM

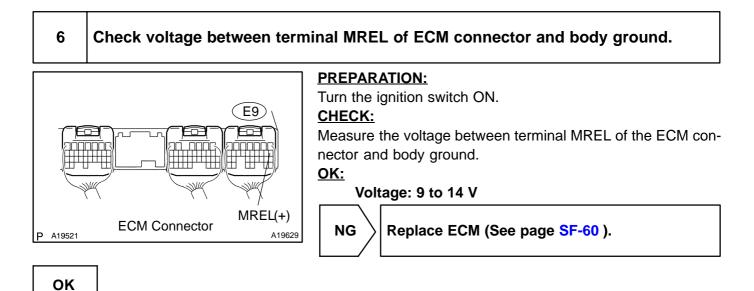
INSPECTION PROCEDURE

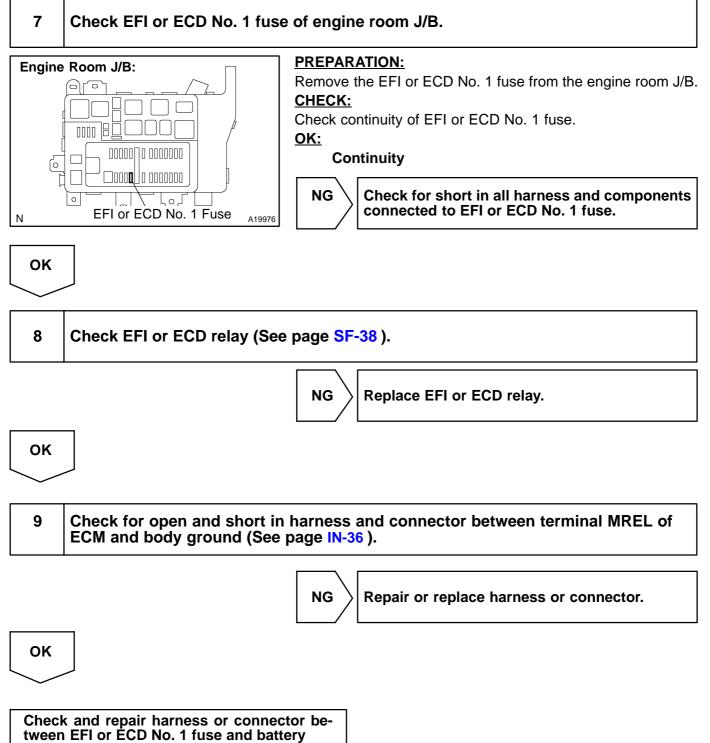
Check voltage between terminals +B and E1 of ECM connectors.


PREPARATION: Turn the ignition switch ON. <u>CHECK:</u> Measure the voltage between terminals +B and E1 of the ECM connectors. <u>OK:</u>


Voltage: 9 to 14 V

Proceed to next circuit inspection shown on problem symptoms table (See page BE-2).


NG



Chack and repair barness and a

Check and repair harness and connector between battery and ignition switch, and ignition switch and ECM (See page IN-36).

(See page IN-36).

Fuel Pump Control Circuit

CIRCUIT DESCRIPTION

Refer to DTC P0230 on page DI-162. WIRING DIAGRAM

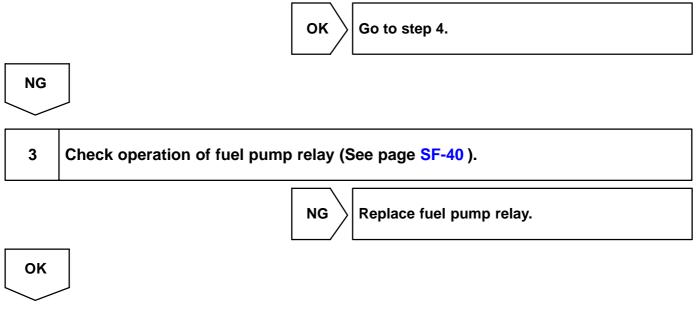
Refer to DTC P0230 on page DI-162.

INSPECTION PROCEDURE

Hand-held tester:

1 Check fuel pump operation (See page SF-7).

OK \rangle Go to step 8.

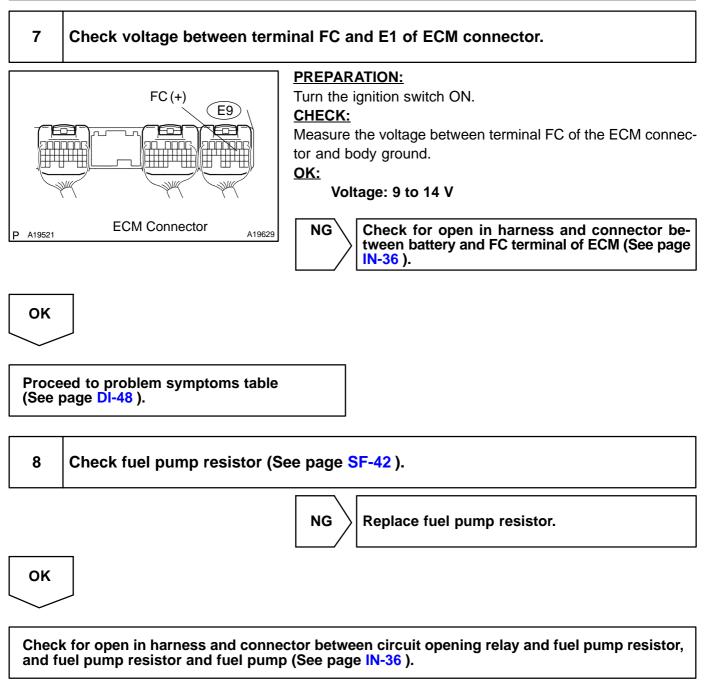

2 Connect hand-held tester, and check operation of fuel pump relay.

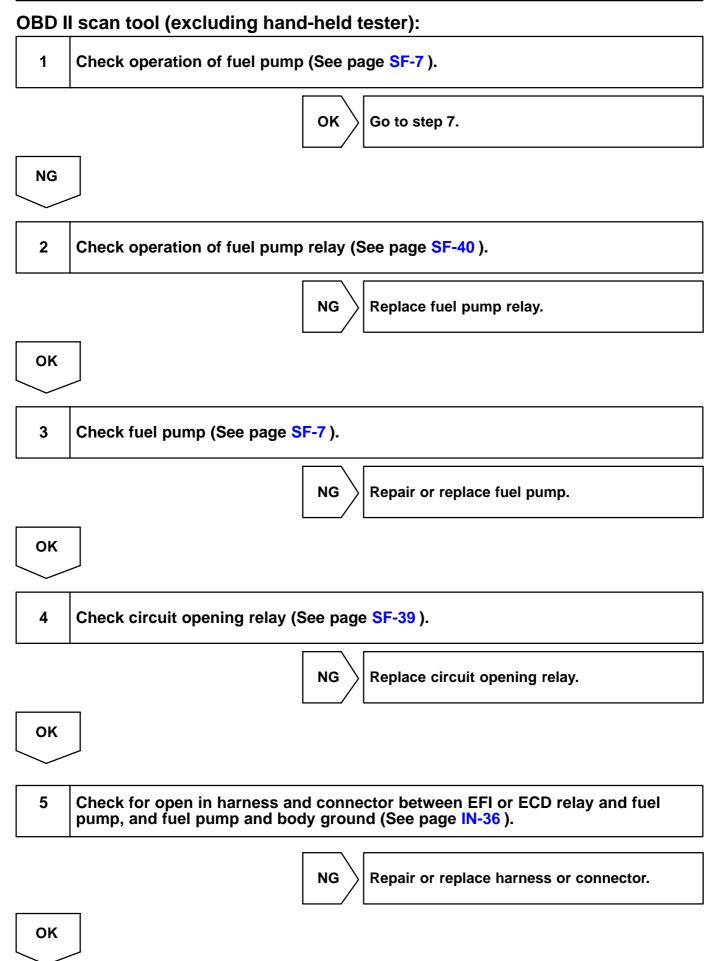
PREPARATION:

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester main switch ON.
- (c) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / ACTIVE TEST / FUEL PUMP / SPD. **CHECK:**

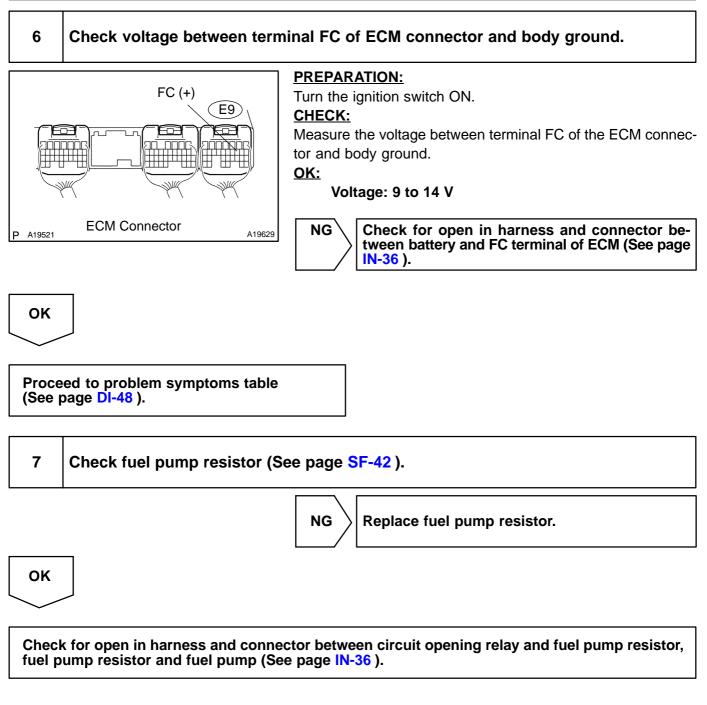
Check the operation of the fuel pump relay when it is switched ON and OFF by the hand-held tester. **OK:**

Operating noise can be heard from the relay.



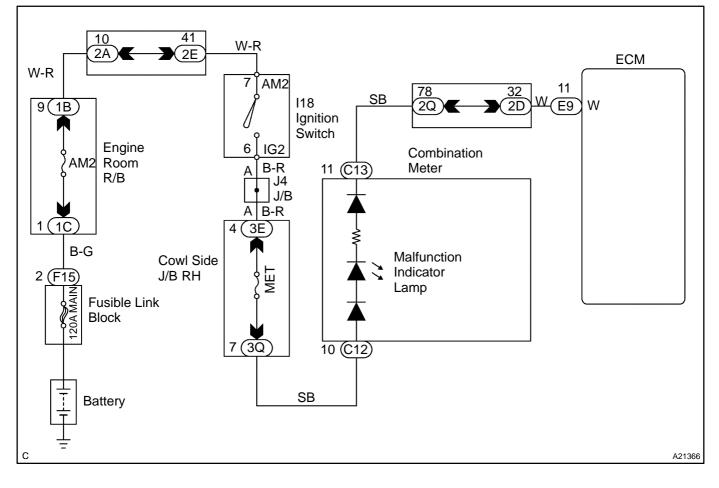

Date :

DIB2Y-02


4	Check fuel pump (See page SF-7).
	NG Repair or replace fuel pump.
ОК	
5	Check circuit opening relay (See page SF-39).
	NG Replace circuit opening relay.
ОК	
6	Check for open in harness and connector between EFI or ECD relay and fuel pump, and fuel pump and body ground (See page IN-36).
	NG Repair or replace harness or connector.
ОК	

DI-352

DI-354

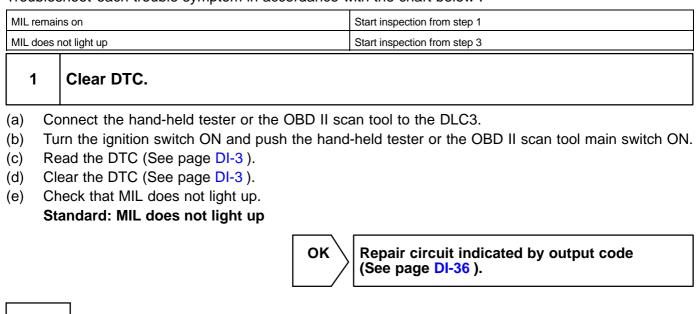


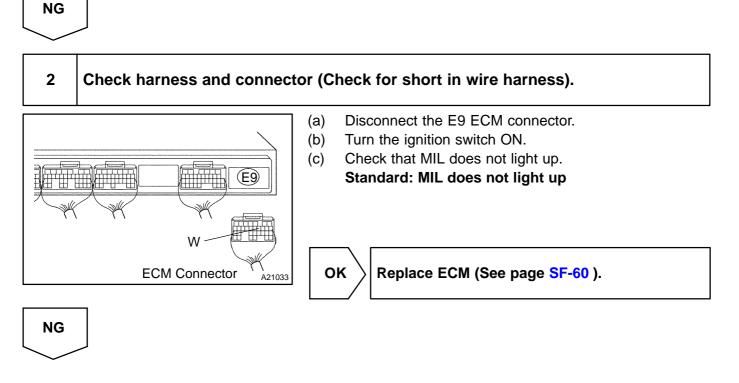
MIL Circuit

CIRCUIT DESCRIPTION

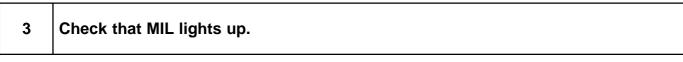
If the ECM detects a trouble, the MIL lights up. At this time, the ECM records a DTC in the memory.

WIRING DIAGRAM

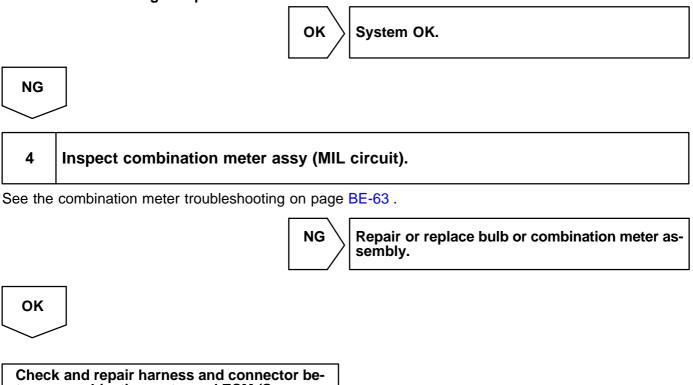



DIC2V-01

INSPECTION PROCEDURE


HINT:

Troubleshoot each trouble symptom in accordance with the chart below .



Check and repair harness and connector between combination meter and ECM (See page IN-36).

Check that MIL lights up when turning the ignition switch ON.

Standard: MIL lights up

tween combination meter and ECM (See page IN-36).

CIRCUIT INSPECTION

DTC	Oxygen Sensor Heater Control Circuit Low (Bank 1 Sensor 1)

DTC		Oxygen Sensor Heater Control Circuit High (Bank 1 Sensor 1)	
-----	--	---	--

DTC P0037 Oxygen Sensor Heater Control Circuit Lov (Bank 1 Sensor 2)

DTC P0038 Oxygen Sensor Heater Control Circuit (Bank 1 Sensor 2)	ligh
---	------

DTC		Oxygen Sensor Heater Control Circuit Low (Bank 2 Sensor 1)
-----	--	---

DTC		Oxygen Sensor Heater Control Circuit High (Bank 2 Sensor 1)
-----	--	---

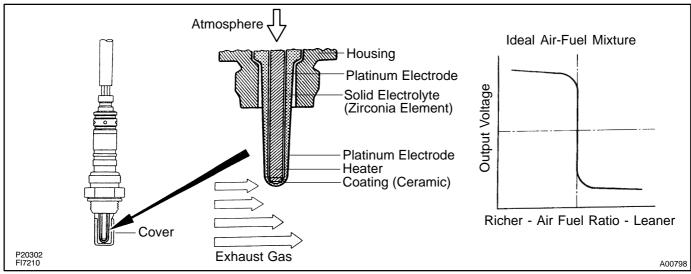
DTC	Oxygen Sensor Heater Control Circuit Low (Bank 2 Sensor 2)

DTC		Oxygen Sensor Heater Control Circuit High (Bank 2 Sensor 2)	
-----	--	--	--

Date :

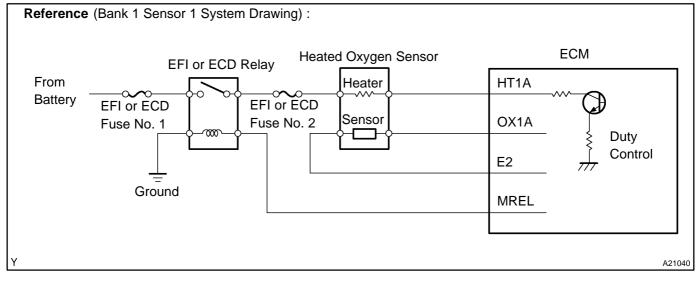
242

DIC22-01


CIRCUIT DESCRIPTION

To obtain a high purification rate for the CO, HC and NOx components of the exhaust gas, a three-way catalytic converter is used, but for the most efficient use of the three-way catalytic converter, the air-fuel ratio must be precisely controlled so that it is always close to the stoichiometric air-fuel ratio.

The heated oxygen sensor has the characteristic which its output voltage changes suddenly in the vicinity of the stoichiometric air-fuel ratio. This characteristic is used to detect the oxygen concentration in the exhaust gas and provide the ECM with feedback to control the air-fuel ratio.


When the air-fuel ratio becomes LEAN, the oxygen concentration in the exhaust increases and the heated oxygen sensor informs the ECM of the LEAN condition (low voltage, i.e. less than 0.45 V).

When the air-fuel ratio is RICHER than the stoichiometric air-fuel ratio, the oxygen concentration in the exhaust gas is reduced and the heated oxygen sensor informs the ECM of the RICH condition (high voltage, i.e. more than 0.45 V). The ECM judges by the voltage output from the heated oxygen sensor whether the air-fuel ratio is RICH or LEAN and controls the injection time accordingly. However, if malfunction of the heated oxygen sensor causes output of abnormal voltage, this disables the ECM for performing an accurate air-fuel ratio control. The heated oxygen sensors include a heater which heats the zirconia element. The heater is controlled by the ECM. When the intake air volume is low (the temperature of the exhaust gas is low) current flows to the heater to heat the sensor for accurate oxygen concentration detection.

HINT:

The ECM provides a pulse width modulated control circuit to adjust current through the heater. The heated oxygen sensor heater circuit uses a relay on the B+ side of the circuit.

DTC No.	DTC Detecting Condition	Trouble Area
P0031 P0037 P0051 P0057	Heater current is 0.25 A or less when the heater operates with more than 10.5 V positive battery voltage	★Open in heater circuit of heated oxygen sensor ★Heated oxygen sensor heater ★EFI or ECD relay ★ECM
P0032 P0038 P0052 P0058	When heater operates, heater current exceeds 2.0 A	 ★Short in heater circuit of heated oxygen sensor ★Heated oxygen sensor heater ★EFI or ECD relay ★ECM

HINT:

- ★ Bank 1 refers to bank the includes cylinder No. 1.
- \star Bank 2 refers to bank that does not includes cylinder No. 1.
- \star Sensor 1 refers to the sensor closer to the engine assembly.
- ★ Sensor 2 refers to the sensor farther away from the engine assembly.

MONITOR DESCRIPTION

The sensing portion of the heated oxygen sensor has a zirconia element which is used to detect oxygen concentration in the exhaust. If the zirconia element is at the proper temperature and difference of the oxygen concentration between the inside and outside surface of sensor is large, the zirconia element will generate voltage signals. In order to increase the oxygen concentration detecting capacity in the zirconia element, the ECM supplements the heat from the exhaust with heat from a heating element inside the sensor. When current in the sensor is out of the standard operating range, the ECM interprets this as a fault in the heated oxygen sensor and sets a DTC.

Example:

The ECM will set a high current DTC if the current in the sensor is more than 2.0 A when the heater is OFF. Similarly, the ECM will set a low current DTC if the current is less than 0.25 A when the heater is ON.

MONITOR STRATEGY

	P0031	Heated oxygen sensor heater current bank 1 sensor 1 (Low current)	
	P0032	Heated oxygen sensor heater current bank 1 sensor 1 (High current)	
	P0037	Heated oxygen sensor heater current bank 1 sensor 2 (Low current)	
	P0038	Heated oxygen sensor heater current bank 1 sensor 2 (High current)	
Related DTCs	P0051	Heated oxygen sensor heater current bank 2 sensor 1 (Low current)	
	P0052	Heated oxygen sensor heater current bank 2 sensor 1 (High current)	
	P0057	Heated oxygen sensor heater current bank 2 sensor 2 (Low current)	
	P0058	Heated oxygen sensor heater current bank 2 sensor 2 (High current)	
	Main sensors/components	Heated oxygen sensor	
Required sensors/components	Related sensors/components	Vehicle speed sensor	
Frequency of operation	Continuous		
Duration	0.3 sec.		
	P0031, P0037, P0051, P0057: 1 driving cycle		
MIL operation	P0032, P0038, P0052, P0058: Immediate		
Sequence of operation	None		

TYPICAL ENABLING CONDITIONS

	Spe	cification	
Item	Minimum	Maximum	
The monitor will run whenever the follow- ing DTCs are not present	See "List of disable a monitor" (on page DI-3)		
P0031, P0037, P0051, P0057 (Low current):			
Either of the following conditions is met:	ŀ	A or B	
A. Following conditions are met:	1, 2,	3, 4 and 5	
1. Time after engine start	250 sec.	500 sec.	
2. Battery voltage	10.5 V	-	
3. Vehicle speed	-	90 km/h (56 mph)	
4. Misfire	Not detected		
5. Pass/Fail detection in this driving cycle	Not detected		
B. Following conditions are met:	1, 2,	3, 4 and 5	
1. Time after engine start	500 sec.	-	
2. Battery voltage	10.5 V	-	
3. Vehicle speed	40 km/h (25 mph)	-	
4. Misfire	Not detected		
5. Pass/Fail detection in this driving cycle	5. Pass/Fail detection in this driving cycle Not detected		
P0032, P0038, P0052, P0058 (High current):			
Intrusive heating is OFF			

TYPICAL MALFUNCTION THRESHOLDS

Detection Criteria	Threshold
P0031, P0037, P0051, P0057 (Low current):	
Heated oxygen sensor heater current	Less than 0.25 A (at 0.3 sec. after heater "ON")
P0032, P0038, P0052, P0058 (High current):	
Heated oxygen sensor heater current	More than 2.0 A (while intrusive heating is OFF)

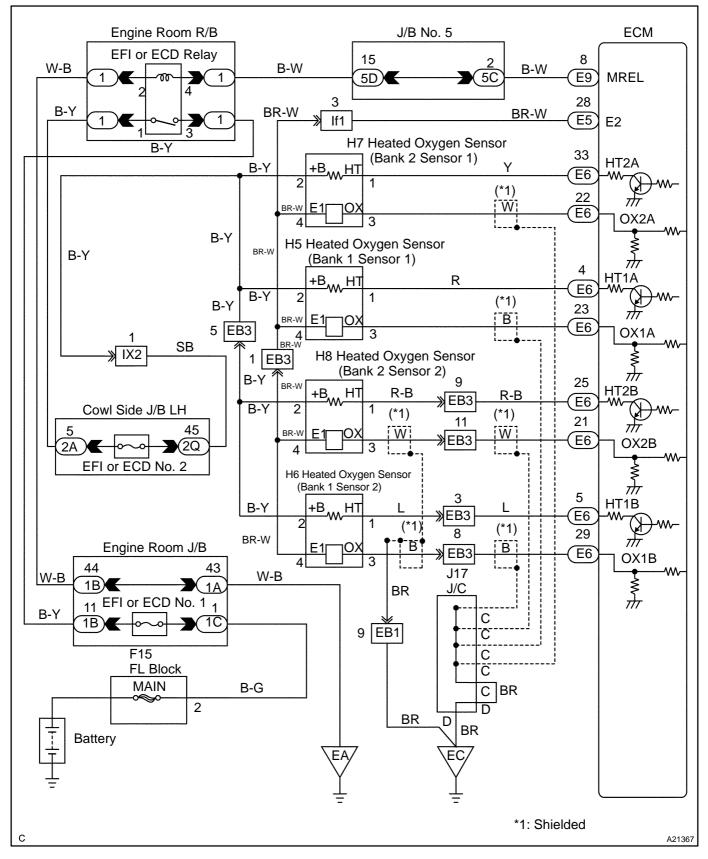
COMPONENT OPERATING RANGE

Parameter	Standard Value
Heated oxygen sensor heater current under the following conditions: (a) Engine has been warmed up (b) Engine is idling (c) Battery voltage is 11 to 14 V	0.4 to 1.0 A

MONITOR RESULT

The detailed information is described in "CHECKING MONITOR STATUS" (see page DI-3).

- \star TID (Test Identification) is assigned to each emission-related component.
 - ★ TLT (Test Limit Type):

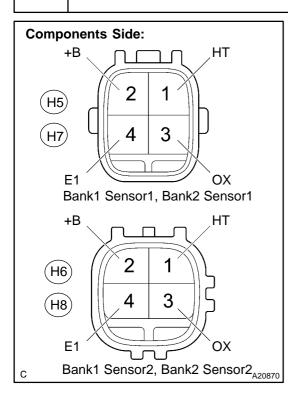

If TLT is 0, the component is malfunctioning when the test value is higher than the test limit. If TLT is 1, the component is malfunctioning when the test value is lower than the test limit.

- ★ CID (Component Identification) is assigned to each test value.
- ★ Unit Conversion is used to calculate the test value indicated on generic OBD scan tools.

TID \$04: HO2S Heater

TLT	CID	Unit Conversion	Description of Test Value	Description of Test Limit
1	\$01	Multiply by 0.000076 (A)	Maximum HO2S heater current (bank 1 sensor 1) Malfunction criterion	
1	\$02	Multiply by 0.000076 (A)	Maximum HO2S heater current (bank 1 sensor 2)	Malfunction criterion
1	1 \$10 Multiply by 0.000076 (A) Maximum HO2S heater current (bank 2 sensor 1) Malfunction criterio		Malfunction criterion	
1	\$20	Multiply by 0.000076 (A)	Maximum HO2S heater current (bank 2 sensor 2) Malfunction criterion	

WIRING DIAGRAM


INSPECTION PROCEDURE

HINT:

Read freeze frame data using hand-held tester or OBD II scan tool. Because freeze frame records the engine conditions when the malfunction is detected. When troubleshooting, it is useful to determine whether the vehicle was running or stopped, the engine was warmed up or not, the air-fuel ratio was lean or rich, etc. at the time of the malfunction.

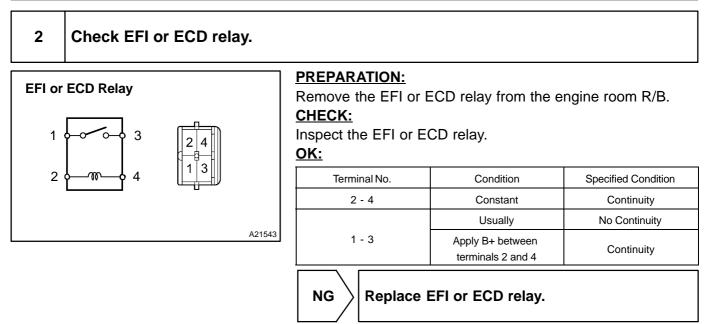
Check resistance of heated oxygen sensor heater.

PREPARATION:

Disconnect the H5, H6, H7 or H8 heated oxygen sensor connector.

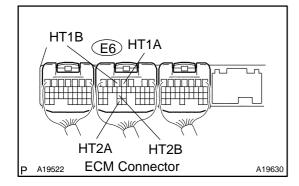
CHECK:

Measure resistance between terminals of the heated oxygen sensor.


<u>OK:</u>

Tester Connection	Specified Condition
HT (H5-1) - +B (H5-2)	11 to 16 Ω (20°C)
HT (H6-1) - +B (H6-2)	11 to 16 Ω (20°C)
HT (H7-1) - +B (H7-2)	11 to 16 Ω (20°C)
HT (H8-1) - +B (H8-2)	11 to 16 Ω (20°C)

NG


Replace heated oxygen sensor.

OK

OK

3 Check voltage between terminals HT1A, HT2A, HT1B, HT2B of ECM connectors and body ground.

PREPARATION:

Turn the ignition switch ON.

CHECK:

Measure the voltage between terminals of the ECM connectors and body ground.

HINT:

- ★ Connect terminal HT1A to the bank 1 sensor 1.
- ★ Connect terminal HT1B to the bank 1 sensor 2.
- \star Connect terminal HT2A to the bank 2 sensor 1.
- ★ Connect terminal HT2B to the bank 2 sensor 2.

<u>OK:</u>

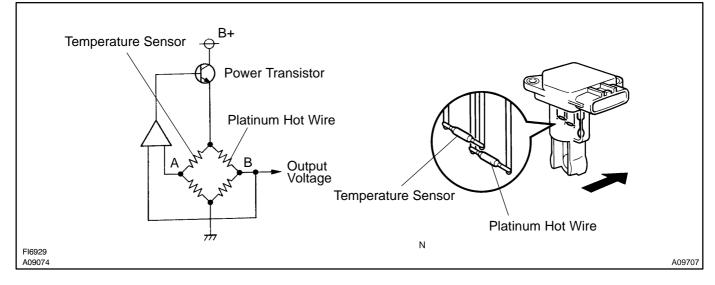
Tester Connection	Specified Condition
HT1A (E6-4) - Body ground	9 to 14 V
HT1B (E6-5) - Body ground	9 to 14 V
HT2A (E6-33) - Body ground	9 to 14 V
HT2B (E6-25) - Body ground	9 to 14 V

OK \rangle Replace ECM (See page SF-60).

NG

Check and repair harness or connector between EFI or ECD relay and heated oxygen sensor, and heated oxygen sensor and ECM (See page IN-36).

Date :


		DIC23-01
DTC	P0100	Mass or Volume Air Flow Circuit
	1	
DTC	P0102	Mass or Volume Air Flow Circuit Low Input
	-	
DTC	P0103	Mass or Volume Air Flow Circuit High Input

CIRCUIT DESCRIPTION

The Mass Air Flow (MAF) meter measures the amount of air flowing through the throttle valve. The ECM uses this information to determine the fuel injection time and provide a proper air fuel ratio. Inside the MAF meter, there is a heated platinum wire exposed to the flow of intake air.

By applying a specific current to the wire, the ECM heats this wire to a given temperature. The flow of incoming air cools the wire and an internal thermistor, affecting their resistance. To maintain a constant current value, the ECM varies the voltage applied to these components in the MAF meter. The voltage level is proportional to the airflow through the sensor. The ECM interprets this voltage as the intake air amount.

The circuit is constructed so that the platinum hot wire and temperature sensor provide a bridge circuit, with the power transistor controlled so that the potential of A and B remains equal to maintain the set temperature.

DTC No.	DTC Detection Condition	Trouble Area
P0100	Open or short in mass air flow meter circuit for more than 3 sec.	
P0102	Open or short in mass air flow meter circuit for more than 3 sec.	★Open or short in mass air flow meter circuit ★Mass air flow meter
P0103	Open in mass air flow meter circuit for more than 3 sec. (EVG circuit) Short in mass air flow meter circuit for more than 3 sec. (+B circuit)	₩iass an now meter ★ECM

HINT:

After confirming DTC P0100, P0102 or P0103, use the hand-held tester or the OBD II scan tool to confirm the MAF ratio from the ALL menu (to reach the ALL menu: DIAGNOSIS / ENHANCED OBD II / DATA LIST / ALL).

Mass Air Flow Value (gm/sec.)	Malfunction
Approx. 0.0	₩Mass air flow meter power source circuit open ★VG circuit open or short
271.0 or more	₩ VG circuit open

MONITOR DESCRIPTION

If there is a defect in the MAF (Mass Air Flow) meter or an open or short circuit, the voltage level will deviate outside the normal operating range. The ECM interprets this deviation as a defect in the MAF meter and sets a DTC.

Example:

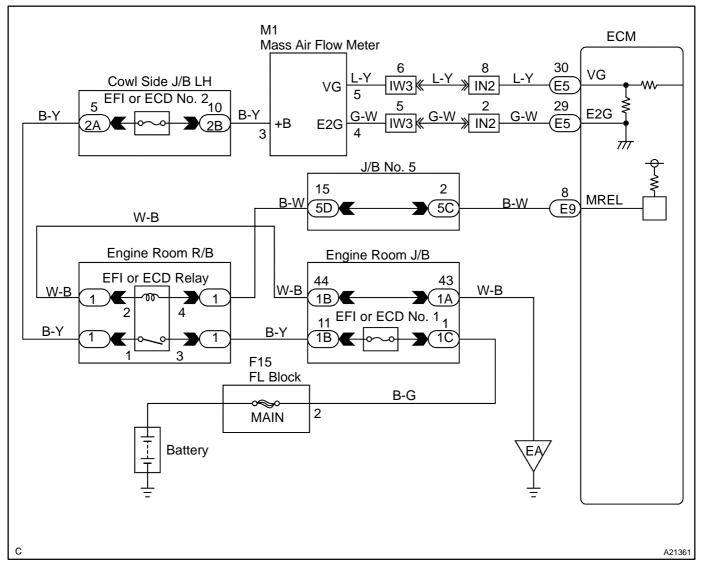
When the MAF meter voltage output is less than 0.2 V, or more than 4.9 V, and if either the condition continues for more than 3 sec.

MONITOR STRATEGY

	P0100	Mass air flow meter circuit range check (Fluttering)	
Related DTCs	P0102	Mass air flow meter circuit range check (Low voltage)	
	P0103	Mass air flow meter circuit range check (High voltage)	
Required sensors/components	Mass air flow meter		
Frequency of operation	Continuous	Continuous	
Duration	3 sec.		
MIL operation	Immediate (When engine speed is at less than 4,000 rpm) 2 driving cycles (When engine speed is at 4,000 rpm or more)		
Sequence of operation	None		

TYPICAL ENABLING CONDITIONS

The monitor will run whenever the follow- ing DTCs are not present	See "List of disable a monitor" (on page DI-3)
The typical enabling condition is not available	-


TYPICAL MALFUNCTION THRESHOLDS

Detection Criteria	Threshold
P0100:	
Mass air flow meter voltage Less than 0.2 V or more than 4.9 V	
P0102:	
Mass air flow meter voltage	Less than 0.2 V
P0103:	
Mass air flow meter voltage	More than 4.9 V

COMPONENT OPERATING RANGE

Parameter	Standard Value
Mass air flow meter voltage	0.4 to 2.2 V

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

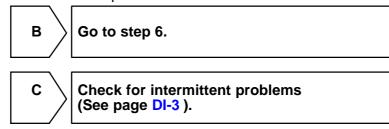
1

Read freeze frame data using the hand-held tester or the OBD II scan tool. Freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.

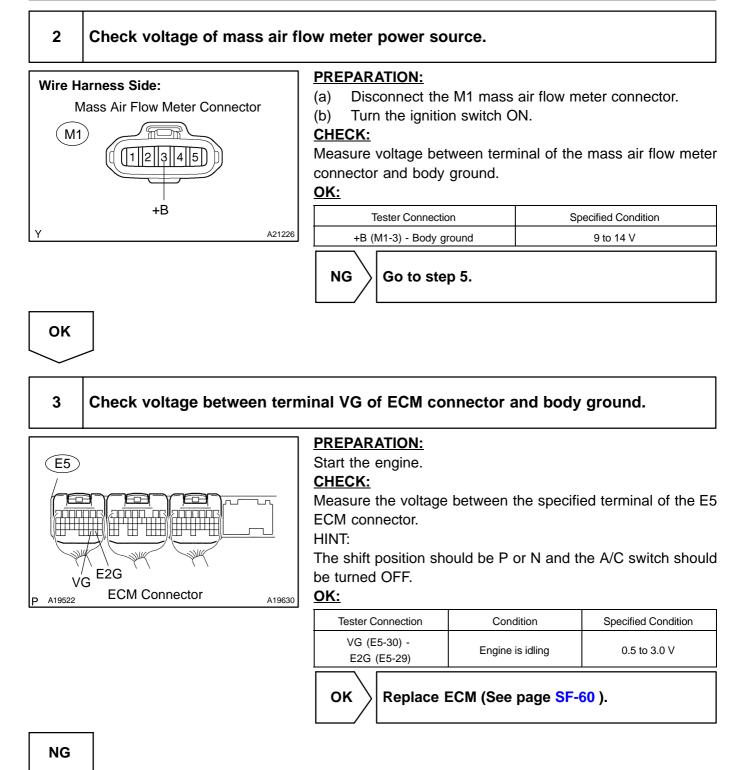
Connect OBD II scan tool or hand-held tester, and read value of mass air flow rate.

PREPARATION:

- (a) Connect the OBD II scan tool or hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the OBD II scan tool or the hand-held tester main switch ON.
- (c) Start the engine.
- (d) When using hand-held tester, enter the following menus: DIAGNOSIS / ENHANCED OBD II / DATA LIST / ALL / MAF.

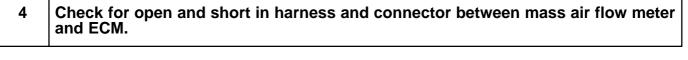

CHECK:

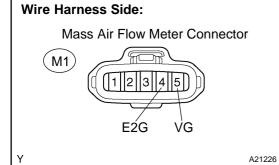
Read the mass air flow rate on the OBD II scan tool or the hand-held tester.


RESULT:

Air Flow Rate (gm/s)	Proceed to
0.0	A
271.0 or more	В
Between 1 and 270.0 (*1)	С

*1: The value must be changed when the throttle valve is opened or closed.



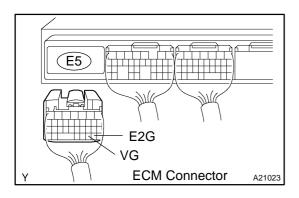

A

254

DI-61

PREPARATION:

(a) Disconnect the M1 mass air flow meter connector.


(b) Disconnect the E5 ECM connector.

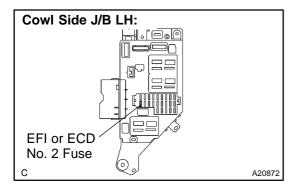
CHECK:

Check the resistance between the wire harness side connectors.

<u>OK:</u>

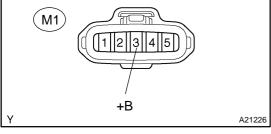
Tester Connection	Specified Condition
VG (M1-5) - VG (E5-30)	Below 1 Ω
E2G (M1-4) - E2G (E5-29)	Below 1 Ω
VG (M1-5) or VG (E5-30) - Body ground	10 k Ω or higher

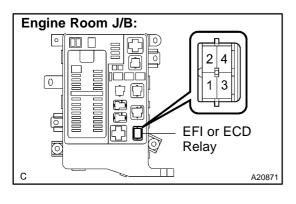
NG


Repair or replace harness or connector.

οκ

Replace mass air flow meter.


5


Check for open and short in harness and connector between mass air flow meter and EFI or ECD relay.

Mass Air Flow Meter Connector

Check EFI or ECD No. 2 fuse:

PREPARATION:

Remove the EFI or ECD No. 2 fuse from the cowl side J/B LH. CHECK:

Check for continuity in the EFI or ECD No. 2 fuse.

<u>OK:</u>

Continuity

Check harness and connector:

PREPARATION:

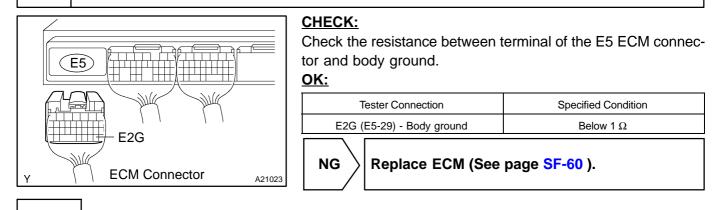
- (a) Install the EFI or ECD No. 2 fuse.
- (b) Disconnect the M1 mass air flow meter connector.
- (c) Remove the EFI or ECD relay from the engine room R/B. **CHECK:**

Check the resistance between the wire harness side connectors.

<u>OK:</u>

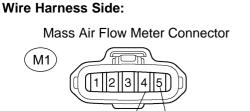
NG

Tester Connection	Specified Condition
+B (M1-3) - Engine Room J/B (EFI or ECD relay terminal 1)	Below 1 Ω
+B (M1-3) or Engine room J/B (EFI or ECD relay terminal 1) - Body ground	10 k Ω or higher


Repair or replace harness or connector.

ок

Check ECM power source circuit (See page DI-345).



Check continuity between terminal E2G of ECM connector and body ground.

OK

7 Check for open in harness and connector between mass air flow meter and ECM.

E2G

VG

PREPARATION:

- (a) Disconnect the M1 mass air flow meter connector.
- (b) Disconnect the E5 ECM connector.

CHECK:

Check the resistance between the wire harness side connectors.

OK:

A21226

Tester Connection	Specified Condition
VG (M1-5) - VG (E5-30)	Below 1 Ω
E2G (M1-4) - E2G (E5-29)	Below 1 Ω
VG (M1-5) or VG (E5-30) - Body ground	10 k Ω or higher
E2G (M1-4) or E2G (E5-29) - Body ground	10 k Ω or higher

E5 E2G VG Y ECM Connector A21023

Repair or replace harness or connector.

OK

Replace mass air flow meter.

DI1LC-17

DTC P0101 Mass or Volume Air Flow Circuit Range/ Performance Problem

CIRCUIT DESCRIPTION

Refer to DTC P0100, P0102 and P0103 on page DI-57.

DTC No.	DTC Detecting Condition	Trouble Area	
P0101	 After engine is warmed up, conditions (a), (b), (c) and (d) continue for more than 10 seconds: (2 trip detection logic) (a) Throttle valve fully closed (b) Voltage output of the mass air flow meter is more than 2.2 V. (c) Engine coolant temperature is more than 70 °C (158 °F). (d) Engine speed is less than 900 rpm. 	★Mass air flow meter	
	 Conditions (a), (b) and (c) continue for more than 6 seconds with engine speed: (2 trip detection logic) (a) Engine speed is more than 0 rpm. (b) VTA is more than 0.1 V. (c) Voltage output of the mass air flow meter is less than 0.25 V. 		

MONITOR DESCRIPTION

The MAF (Mass Air Flow) meter helps the ECM calculate the amount of air flowing through the throttle valve. The ECM uses this information to determine the fuel injection time and provide a proper air fuel ratio. Inside the MAF meter, there is a heated platinum wire exposed to the flow of intake air. By applying a specific current to the wire, the ECM heats this wire to a given temperature. The flow of incoming air cools the wire and an internal thermistor, affecting their resistance. To maintain a constant current value, the ECM varies the voltage applied to these components in the MAF meter. The voltage level is proportional to the air flow through the MAF meter. The ECM interprets this voltage as the intake air amount. If there is a defect in the MAF meter or an open or short circuit, the voltage level will deviate outside the normal operating range. The ECM interprets this deviation as a defect in the MAF meter and sets a DTC. Example:

If the voltage is more than 2.2 V at idle or less than 0.25 V at idle OFF, the ECM interprets this as a defect in the MAF meter and sets a DTC.

MONITOR STRATEGY

Related DTCs	Related DTCs P0101 Mass air flow meter rationality	
	Main sensors/components	Mass air flow meter
Required sensors/components	Related sensors/components	Engine speed sensor, Engine coolant tempera- ture sensor, Throttle position sensor
Frequency of operation	Continuous	
Duration	10 sec. (High voltage) 6 sec. (Low voltage)	
MIL operation	2 driving cycles	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS

	Specification		
Item	Minimum	Maximum	
The monitor will run whenever the follow- ing DTCs are not present	See "List of disable a monitor" (on page DI-3)		
High voltage:			
Engine speed	-	900 rpm	
Idle	0	N	
Engine coolant temperature	70⊡ᢗ (158⊒)	-	
Low voltage:			
Engine speed 0 rpm		-	
Throttle position	hrottle position 0.1 V		

TYPICAL MALFUNCTION THRESHOLDS

Detection Criteria	Threshold
Mass air flow meter voltage (High voltage)	More than 2.2 V
Mass air flow meter voltage (Low voltage)	Less than 0.25 V

INSPECTION PROCEDURE

HINT:

1

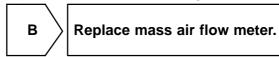
Read freeze frame data using the hand-held tester or the OBD II scan tool. Freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.

Are there any other codes (besides DTC P0101) being output?

PREPARATION:

- (a) Connect the hand-held tester or the OBD II scan tool to DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester or OBD II scan tool main switch ON.
- (c) When using hand-held tester, enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.

CHECK:

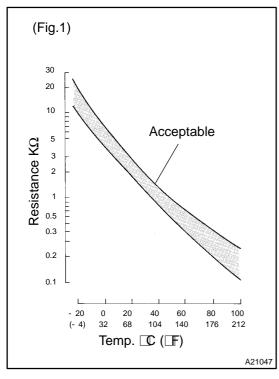

Read the DTC using the hand-held tester or the OBD II scan tool.

RESULT:

Display (DTC output)	Proceed to
"P0101" and other DTCs	А
Only P0101	В

HINT:

If any other codes besides P0101 are output, perform the troubleshooting for those codes first.



Α

Go to relevant DTC chart (See page DI-36).

	-	DilLE-13
DTC	P0110	Intake Air Temperature Circuit
	_	
DTC	P0112	Intake Air Temperature Circuit Low Input
DTC	P0113	Intake Air Temperature Circuit High Input

CIRCUIT DESCRIPTION

The intake air temperature (IAT) sensor, mounted on the mass air flow (MAF) meter, monitors the intake air temperature. The IAT sensor has a thermistor that varies its resistance depending on the temperature of the intake air. When the air temperature is low, the resistance in the thermistor increases. When the temperature is high, the resistance drops. The variations in resistance are reflected as voltage changes to the ECM terminal. (See Fig. 1).

The intake air temperature sensor is connected to the ECM (See below). The 5 V power source voltage in the ECM is applied to the intake air temperature sensor from terminal THA (THAR) via resistor R.

That is, the resistor R and the intake air temperature sensor are connected in series. When the resistance value of the intake air temperature sensor changes in accordance with changes in the intake air temperature, the voltage at terminal THA (THAR) also changes. Based on this signal, the ECM increases the fuel injection volume to improve the driveability during cold engine operation.

DTC No.	Proceed to	DTC Detection Condition	Trouble Area
P0110	Step 1	Open or short in intake air temperature sensor circuit for 0.5 sec.	★Open or short in intake air temperature sensor circuit
P0112	Step 4	Short in intake air tempera- ture sensor circuit for 0.5 sec.	Hintake air temperature sensor (built in mass air flow meter) ÆCM
P0113	Step 2	Open in intake air tempera- ture sensor circuit for 0.5 sec.	

HINT:

After confirming DTC "P0110, P0112 or P0113", use the hand-held tester or the OBD II scan tool to confirm the intake air temperature in the "DIAGNOSIS / ENHANCED OBD II / DATA LIST / ALL".

Temperature Displayed	Malfunction
-40 °C (-40°F)	Open circuit
140°C (284°F) or more	Short circuit

MONITOR DESCRIPTION

The ECM monitors the sensor voltage and uses this value to calculate the intake air temperature. When the sensor output voltage deviates from the normal operating range, the ECM interprets this as a fault in the IAT (Intake Air Temperature) sensor and sets a DTC.

Example:

When the sensor voltage output equal to $-40 \square C$ ($-40 \square F$), or more than $140 \square C$ ($284 \square F$).

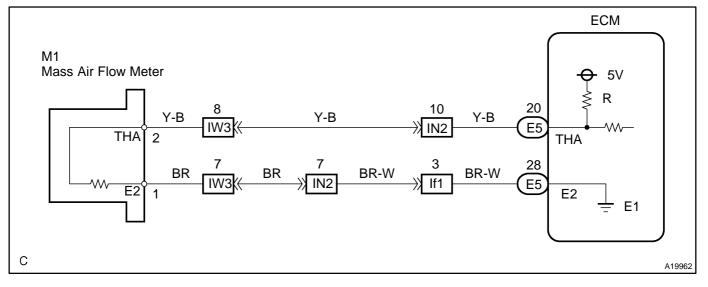
MONITOR STRATEGY

	P0110	Intake air temperature sensor range check (Fluttering)
Related DTCs	P0112	Intake air temperature sensor range check (Low resistance)
	P0113	Intake air temperature sensor range check (High resistance)
Required sensors/components	Intake air temperature sensor	
Frequency of operation	Continuous	
Duration	0.5 sec.	
MIL operation	Immediate	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS

The monitor will run whenever the follow- ing DTCs are not present	See "List of disable a monitor" (on page DI-3)
The typical enabling condition is not avail- able	-

TYPICAL MALFUNCTION THRESHOLDS


Detection Criteria	Threshold
P0110:	
Intake air temperature sensor resistance (Intake air temperature)	Less than 98.5 Ω , or more than 156 k Ω (More than 140 C (284 F), or less than -40 C (-40 F)
P0112:	
Intake air temperature sensor resistance (Intake air temperature)	Less than 98.5 Ω (More than 140⊡℃ (284⊡F))
P0113:	
Intake air temperature sensor resistance (Intake air temperature)	More than 156 kΩ (Less than -40⊡℃ (-40⊡F))

COMPONENT OPERATING RANGE

Parameter	Standard Value
Intake air temperature sensor resistance	98.5 Ω (140⊡C (284⊡F)) to 156 kΩ (-40 ⊡C (-40□F))

DI-69

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

- ★ If DTCs related to different systems that have terminal E2 as the ground terminal are output simultaneously, terminal E2 may have an open circuit.
- ★ Read freeze frame data using the hand-held tester or the OBD II scan tool. Freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.

1	Connect OBD II scan tool or hand-held tester, and read value of intake air tem-
	perature.

PREPARATION:

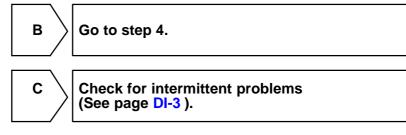
- (a) Connect the OBD II scan tool or the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the OBD II scan tool or the hand-held tester main switch ON.
- (c) When using hand-held tester, enter the following menus: DIAGNOSIS / ENHANCED OBD II / DATA LIST / ALL / INTAKE AIR.

CHECK:

Read the temperature value on the OBD II scan tool or the hand-held tester.

<u>OK:</u>

Same as actual intake air temperature.


RESULT:

Temperature Displayed	Proceed to
-40 °C (-40°F)	А
140°C (284°F) or more	В
OK (Same as present temperature)	С

HINT:

★ If there is an open circuit, the OBD II scan tool or the hand-held tester indicates -40°C (-40 °F).

★ If there is a short circuit, the OBD II scan tool or the hand-held tester indicates 140°C (284°F) or more.

Α

DI-72

2 Check for open in harness or ECM. **PREPARATION:** Mass Air Disconnect the M1 mass air flow meter connector. (a) Flow Meter ECM Connect terminals 1 and 2 of the mass air flow meter wire (b) (M1)harness side connector. 2 THA \mathbf{c} Turn the ignition switch ON. (c) When using hand-held tester, enter the following menus: (d) 1 www E2 DIAGNOSIS / ENHANCED OBD II / DATA LIST / ALL / IN-TAKE AIR. CHECK: Read the temperature value on the OBD II scan tool or the M1)

hand-held tester.

OK:

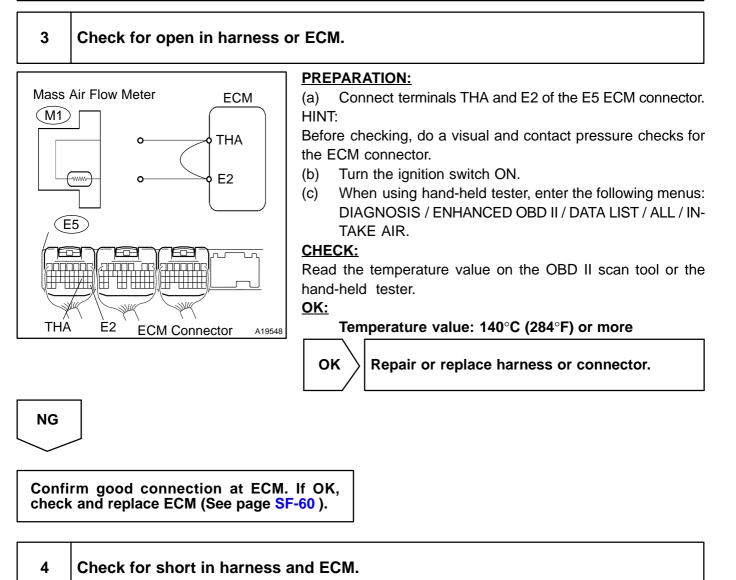
Mass Air

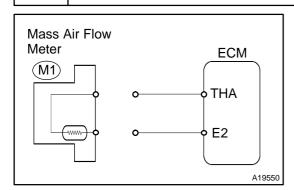
Flow Meter

A19549

Т

THA

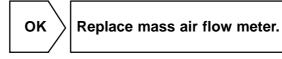

E2


Temperature value: 140°C (284°F) or more

Confirm good connection at sensor. If OK, replace mass air flow meter.

NG

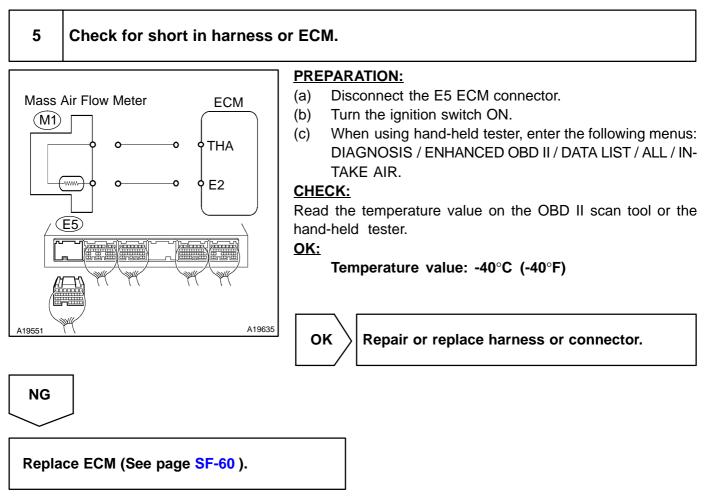
PREPARATION:


- (a) Disconnect the M1 mass air flow meter connector.
- (b) Turn the ignition switch ON.
- (c) When using hand-held tester, enter the following menus: DIAGNOSIS / ENHANCED OBD II / DATA LIST / ALL / IN-TAKE AIR.

CHECK:

Read the temperature value on the OBD II scan tool or the hand-held tester.

<u>OK:</u>


Temperature value: -40°C (-40°F)

NG

2004 LAND CRUISER (RM1071U)

DIAGNOSTICS - ENGINE

DTC	P0115	Engine Coolant Temperature Circuit	
-----	-------	------------------------------------	--

DTC	Engine Coolant Temperature Circuit Low Input

DTC	P0118	Engine Coolant Temperature Circuit High Input
-----	-------	--

CIRCUIT DESCRIPTION

A thermistor is built in the Engine Coolant Temperature (ECT) sensor and changes the resistance value according to the engine coolant temperature.

The structure of the sensor and connection to the ECM is the same the Intake Air Temperature (IAT) sensor. HINT:

If the ECM detects the DTC "P0115, P0117 or P0118", it operates the fail-safe function in which the ECT is assumed to be 80 \square (176 \square).

DTC No.	Proceed to	DTC Detection Condition	Trouble Area
P0115	Step 1	Open or short in engine cool- ant temperature sensor circuit for 0.5 sec.	
P0117	Step 4	Short in engine coolant tem- perature sensor circuit for 0.5 sec.	 ★Open or short in engine coolant temperature sensor circuit ★Engine coolant temperature sensor ★ECM
P0118	Step 2	Open in engine coolant tem- perature sensor circuit for 0.5 sec.	

HINT:

After confirming DTC "P0115, P0117 or P0118," use the OBD II scan tool or the hand-held tester to confirm the engine coolant temperature from the DIAGNOSIS / ENHANCED OBD II / DATA LIST / ALL.

Temperature Displayed	Malfunction
-40 °C (-40°F)	Open circuit
140°C (284°F) or more	Short circuit

MONITOR DESCRIPTION

The ECT (Engine Coolant Temperature) sensor is used to monitor the engine coolant temperature. The ECT sensor has a thermistor that varies its resistance depending on the temperature of the engine coolant. When the coolant temperature is low, the resistance in the thermistor increases. When the temperature is high, the resistance drops. The variations in resistance are reflected in the voltage output from the sensor.

The ECM monitors the sensor voltage and uses this value to calculate the engine coolant temperature. When the sensor output voltage deviates from the normal operating range, the ECM interprets this as a fault in the ECT sensor and sets a DTC.

Example:

When the ECM calculates that the ECT is less than -40 \square (-40 \square), or more than 140 \square (284 \square), and if either the condition continues for 0.5 sec. or more, the ECM will set a DTC.

2004 LAND CRUISER (RM1071U)

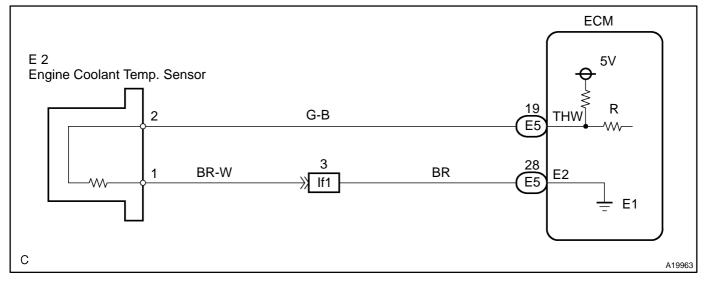
DI1I E-13

MONITOR STRATEGY

	P0115	Engine coolant temperature sensor range check (Fluttering)
Related DTCs	P0117	Engine coolant temperature sensor range check (Low resistance)
	P0118	Engine coolant temperature sensor range check (High resistance)
Required sensors/components	Engine coolant temperature sensor	
Frequency of operation	Continuous	
Duration	0.5 sec.	
MIL operation	Immediate	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS

The monitor will run whenever the follow- ing DTCs are not present	See "List of disable a monitor" (on page DI-3)
The typical enabling condition is not available	-


TYPICAL MALFUNCTION THRESHOLDS

Detection Criteria	Threshold
P0115:	
Engine coolant temperature sensor resistance (Coolant temperature)	Less than 79 Ω or more than 156 k Ω (More than 140 \square (284 \square) or less than -40 \square (-40 \square))
P0117:	
Engine coolant temperature sensor resistance (Coolant temperature)	Less than 79 Ω (More than 140⊡⊄ (284⊡F))
P0118:	
Engine coolant temperature sensor resistance (Coolant temperature)	More than 156 kΩ (Less than -40⊡⊄ (-40⊡⊮))

COMPONENT OPERATING RANGE

Parameter	Standard Value
Engine coolant temperature sensor resistance	79 Ω (140 C (284 F)) to 156 kΩ (-40 C (-40 F))

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

- ★ If DTCs related to different system that have terminal E2 as the ground terminal are output simultaneously, terminal E2 may have an open circuit.
- ★ Read freeze frame data using the hand-held tester or the OBD II scan tool. Freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.

1	Connect OBD II scan tool or hand-held tester, and read value of engine coolant
	temperature.

PREPARATION:

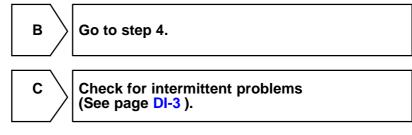
- (a) Connect the OBD II scan tool or the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the OBD II scan tool or hand-held tester main switch ON.
- (c) When using hand-held tester, enter the following menus: DIAGNOSIS / ENHANCED OBD II / DATA LIST / ALL / COOLANT TEMP.

CHECK:

Read the temperature value on the OBD II scan tool or the hand-held tester.

<u>OK:</u>

Same value as actual engine coolant temperature.

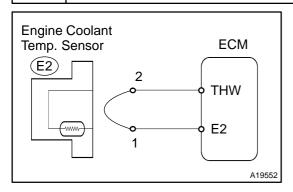

RESULT:

Temperature Displayed	Proceed to
-40 °C (-40 °F)	А
140°C (284°F) or more	В
OK (Same as present temperature)	С

HINT:

★ If there is an open circuit, OBD II scan tool or hand-held tester indicates -40° C (-40° F).

★ If there is a short circuit, OBD II scan tool or hand-held tester indicates 140°C (284°F) or more.



Α

DI-79

Check for open in harness or ECM.

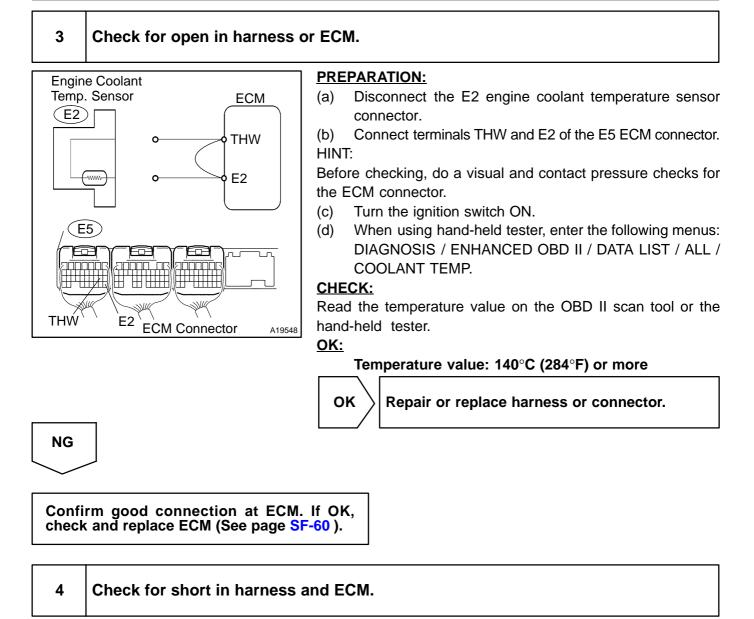
2

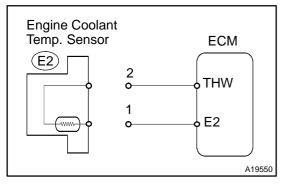
PREPARATION:

- (a) Disconnect the E2 engine coolant temperature (ECT) sensor connector.
- (b) Connect terminals 1 and 2 of the engine coolant temperature sensor wire harness side connector.
- (c) Turn the ignition switch ON.
- (d) When using hand-held tester, enter the following menus: DIAGNOSIS / ENHANCED OBD II / DATA LIST / ALL / COOLANT TEMP.

CHECK:

Read the temperature value on the OBD II scan tool or the hand-held tester.


<u> 0K:</u>


Temperature value: 140°C (284°F) or more

ОК

Confirm good connection at sensor. If OK, replace engine coolant temperature sensor.

NG

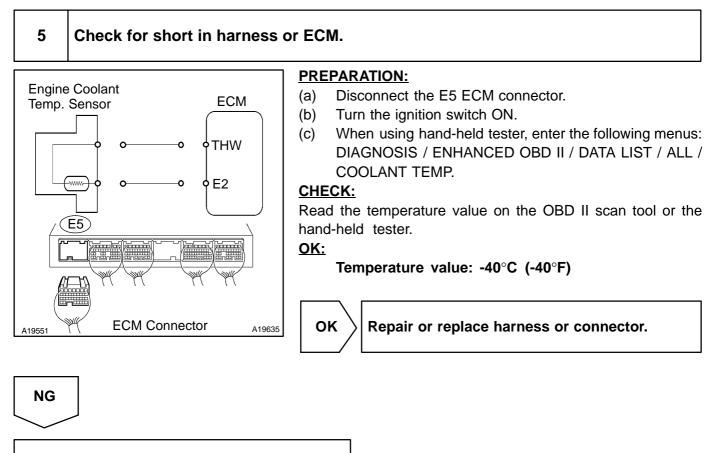
PREPARATION:

- (a) Disconnect the E2 engine coolant temperature sensor connector.
- Turn the ignition switch ON. (b)
- When using hand-held tester, enter the following menus: (c) DIAGNOSIS / ENHANCED OBD II / DATA LIST / ALL / COOLANT TEMP.

CHECK:

Read the temperature value on the OBD II scan tool or the hand-held tester.

OK:


Temperature value: -40°C (-40°F)

OK

Replace engine coolant temperature sensor.

2004 LAND CRUISER (RM1071U)

NG

Replace ECM (See page SF-60).

DTC	P0116	Engine Coolant Temperature Circuit Range/ Performance Problem
-----	-------	--

CIRCUIT DESCRIPTION

Refer to DTC P0115 on page DI-75.

DTC No.	DTC Detecting Condition	Trouble Area	
P0116	 If the engine coolant temperature was 35°C (95°F) or more but less than 60°C (140°F) when the engine is started, and if conditions (a) and (b) are met: (a) Vehicle has accelerated and decelerated. (b) Engine coolant temperature remains within 3°C (5.4°F) of the initial engine coolant temperature (2 trip detection logic) 	₩Engine coolant temperature sensor	
	 ★If the engine coolant temperature is more than 60°C (140°F) when the engine is started and the vehicle has accelerated and decelerated ★If the engine coolant temperature sensor records a temperature variation below 1°C (1.8°F) successively 6 times (6 trip detection logic) 	★Engine coolant temperature sensor	

MONITOR DESCRIPTION

The ECT (Engine Coolant Temperature) sensor is used to monitor the engine coolant temperature. The ECT sensor has a thermistor that varies its resistance depending on the temperature of the engine coolant. When the coolant temperature is low, the resistance in the thermistor increases. When the temperature is high, the resistance drops. The variations in resistance are reflected in the voltage output from the sensor. The ECM monitors the sensor voltage and uses this value to calculate the engine coolant temperature. When the sensor output voltage deviates from the normal operating range, the ECM interprets this as a fault in the ECT sensor and sets a DTC.

Examples:

(1) Upon starting the engine, the ECT is between $35^{\circ}C$ ($95^{\circ}F$) and $60^{\circ}C$ ($140^{\circ}F$). If after driving for 250 sec., the ECT still remains within $3^{\circ}C$ ($5.4^{\circ}F$) of the starting temperature, a DTC will be set (2 trip detection logic). (2) Upon starting the engine, the ECT is over $60^{\circ}C$ ($140^{\circ}F$). If after driving for 250 sec., the ECT still remains within $1^{\circ}C$ ($1.8^{\circ}F$) of the starting temperature, a DTC will be set (6 trip detection logic).

MONITOR STRATEGY

Related DTCs	P0116	Engine coolant temperature sensor range check (Stuck)
	Main sensors/components	Engine coolant temperature sensor
Required sensors/components	Related sensors/components	Intake air temperature sensor, Crankshaft position sensor, Mass air flow meter
Frequency of operation	Continuous	
Duration	250 sec.	
MIL operation	2 driving cycles (When temperature is fixed between 35 C (95 F) and 60 C (140 F)) 6 driving cycles (When temperature is fixed at 60 C (140 F) or more)	
Sequence of operation	None	

DI1LG-15

TYPICAL ENABLING CONDITIONS

	Specification	
Item	Minimum	Maximum
The monitor will run whenever the follow- ing DTCs are not present	See "List of disable a monitor" (on page DI-3)	
Case 1 (When temperature is fixed betwee	en 35⊡C (95⊒F) and 60⊡C (140⊡F)):	
Cumulative idle off period	250 sec.	-
Speed increase 30 km/h (19 mph) or more	10 times	-
Engine coolant temperature	35⊑C (95⊑₩)	60⊑C (140⊑F)
Intake air temperature	-6.7 ⊡C (20⊡F)	-
Case 2 (When temperature is fixed at 60	C (140⊡F) or more):	
Engine coolant temperature at engine start	60⊑C (140⊑F)	-
Intake air temperature	-6.7 ⊡C (20⊡F)	-
Stop and go	Once or more (Stop for 20 sec. or more and with in 4	d accelerate to more than 70 km/h (43 mph) 40 sec.)
Steady driving and stop *	Once o	or more

*: Vehicle is driven by 65 km/h (40 mph) or more for 30 sec. or more and the vehicle speed reaches 70 km/h (44 mph). The vehicle is decelerated from 65 km/h (40 mph) to 3 km/h (2 mph) or less within 35 sec. and stopped for 10 sec.

TYPICAL MALFUNCTION THRESHOLDS

Detection Criteria	Threshold
Case1 (When temperature is fixed between 35 C (95 F) and 60 C (140 F)):	
Change of engine coolant temperature value	Less than 3⊡℃ (5.4⊡F)
Case2 (When temperature is fixed at 60 🗊 (140 🕞 or more):	
Change of engine coolant temperature value	1⊡C (1.8⊡F) or less

COMPONENT OPERATING RANGE

Standard Value	
Engine coolant temperature changes with the actual engine coolant temperature.	

INSPECTION PROCEDURE

HINT:

- ★ If DTC P0115, P0116, P0117, P0118 and P0125 are output simultaneously, ECT sensor circuit may be open or shorted. Perform the troubleshooting of DTC P0115, P0117 or P0118 first.
- ★ Read freeze frame data using the hand—held tester or the OBD II scan tool. Freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, as well as other data from the time when a malfunction occurred.

Replace engine coolant temperature sensor.

DIC24-01

DTC	P0120	Throttle/Pedal Position Sensor/Switch "A" Circuit
-----	-------	--

DTC		Throttle/Pedal Position Sensor/Switch "A" Circuit Low Input
-----	--	--

DTC	Throttle/Pedal Position Sensor/Switch "A" Circuit High Input
	Circuit righ input

DTC	P0220	Throttle/Pedal Position Sensor/Switch "B" Circuit

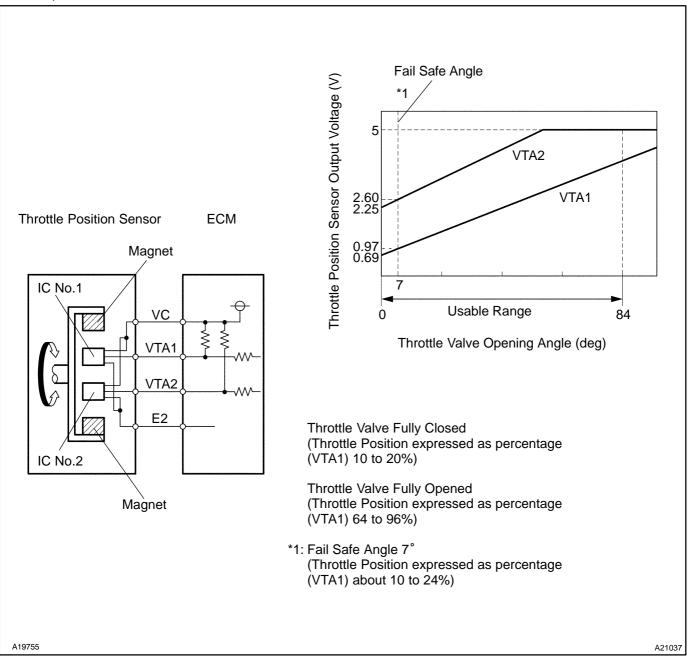
DTC	Throttle/Pedal Position Sensor/Switch "B" Circuit Low Input

DTC	P0223	Throttle/Pedal Position Sensor/Switch "B" Circuit High Input
-----	-------	---

DTC	P2135	Throttle/Pedal Position Sensor/Switch "A"/"B" Voltage Correction

HINT:

This is the purpose for the "throttle position sensor".


CIRCUIT DESCRIPTION

HINT:

- ★ This Electrical Throttle Control System (ETCS) does not use a throttle cable.
- \star This throttle position sensor is a non-contact type.

The throttle position sensor is mounted on the throttle body and it detects the opening angle of the throttle valve. This sensor is electronically controlled and uses Hall-effect elements, so that accurate control and reliability can be obtained. The throttle position sensor has 2 sensor elements / signal outputs: VTA1 and VTA2. VTA1 used to detect the throttle opening angle and VTA2 is used to detect malfunctions in VTA1. Voltage applied to VTA1 and VTA2 change between 0V and 5V in proportion to the opening angle of the throttle valve. There are several checks that the ECM performs to confirm proper operation of the throttle position sensor and VTA1.

The ECM judges the current opening angle of the throttle valve from these signals input from terminals VTA1 and VTA2, and the ECM controls the throttle motor to make the throttle valve angle properly in response to driver inputs.

DTC No.	DTC Detection Condition	
for 2 sec.	f DTC P0120, P0122, P0123, P0220, P0222 or P0223 continues in the throttle control motor and sensor circuit)	Trouble Area
P0120	Detection conditions for DTCs P0122 and P0123 are not satis- fied but condition (a) is satisfied (a) VTA1 is "0.2 V or less" or VTA1 is "4.8 V or more"	★Throttle control motor and sensor ★ECM
P0122	(a) VTA1 is 0.2 V or less	 ★Throttle control motor and sensor ★Short in VTA1 circuit ★Open in VC circuit ★ECM
P0123	(a) VTA1 is 4.8 V or more	 ★Throttle control motor and sensor ★Open in VTA1 circuit ★Open in E2 circuit ★VC and VTA1 circuit are short-circuited ★ECM
P0220	Detection conditions for DTCs P0222 and P0223 are not satis- fied but condition (a) is satisfied (a) VTA2 is "0.5 V or less" or VTA2 is "4.8 V or more" and VTA1 is "0.2 V or more" and VTA1 is "1.8 V or less"	★Throttle control motor and sensor ★ECM
P0222	(a) VTA2 is 0.5 V or less	 ★Throttle control motor and sensor ★Short in VTA2 circuit ★Open in VC circuit ★ECM
P0223	(a) VTA2 is "4.8 V or more" and VTA1 is "0.2 V or more" and VTA1 is "1.8 V or less"	 ★Throttle control motor and sensor ★Open in VTA2 circuit ★Open in E2 circuit ★VC and VTA2 circuit are short-circuited ★ECM
P2135	 Condition (a) continues for 0.5 sec. or more, or condition (b) continues for 0.4 sec. or more: (a) Difference between VTA1 and VTA2 is 0.02 V or less (b) VTA1 is "0.2 V or less" and VTA2 is "0.5 V or less" 	★/TA1 and VTA2 circuit are short-circuited ★Throttle control motor and sensor ★ECM

HINT:

- ★ After confirming DTCs, use the hand-held tester or the OBD II scan tool to confirm the throttle valve opening percentage and closed throttle position switch condition.
- ★ THROTTLE POS means VTA1 signal as well as the THROTTLE POS #2 for the VTA2 signal. Reference (Normal condition):

Tester display	Accelerator pedal fully released	Accelerator pedal fully depressed
THROTTLE POS	10 to 24 %	66 to 98%
THROTTLE POS #2	2.1 to 3.1 V	4.5 to 5.5 V

MONITOR DESCRIPTION

The ECM uses throttle position sensor to monitor the throttle valve opening angle.

- (a) There is a specific voltage difference expected between VTA1 and VTA2 for each throttle opening angle.
- ★ If the difference between VTA1 and VTA2 is incorrect the ECM interprets this as a fault and will set a DTC.
- (b) VTA1 and VTA2 each have a specific voltage operating range.
- ★ If VTA1 or VTA2 is out of the normal operating range the ECM interprets this as a fault and will set a DTC.
- (c) VTA1 and VTA2 should never be close to the same voltage levels.
- ★ If VTA1 is within 0.02 V of VTA2 the ECM interprets this as a short circuit in the throttle position sensor system and will set a DTC.

FAIL SAFE

If the ETCS (Electronic Throttle Control System) has a malfunction, the ECM cuts off current to the throttle control motor. The throttle control valve returns to a predetermined opening angle (approximately 16°) by the force of the return spring. The ECM then adjusts the engine output by controlling the fuel infection (intermittent fuel-cut) and ignition timing in accordance with the accelerator pedal opening angle to enable the vehicle to continue at a minimum speed.

If the accelerator pedal is depressed firmly and slowly, the vehicle can be driven slowly.

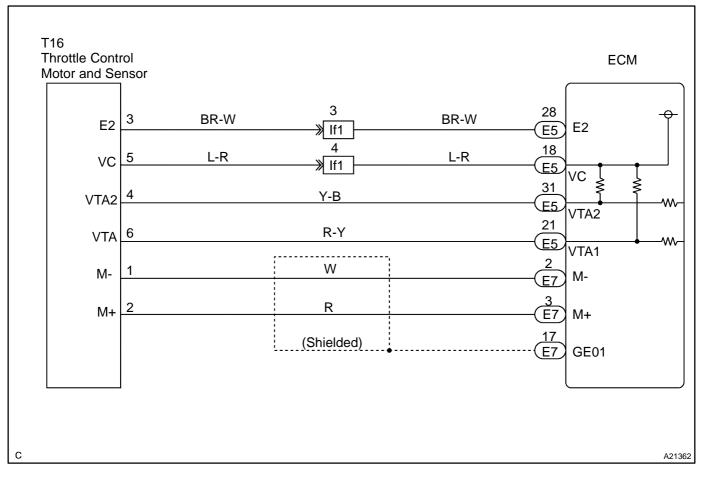
If a "pass" condition is detected and then the ignition switch is turned OFF, the fail-safe operation will stop and the system will return to normal condition.

	P0120	Throttle position sensor (sensor 1) range check (Fluttering)	
	P0122	Throttle position sensor (sensor 1) range check (Low voltage)	
	P0123	Throttle position sensor (sensor 1) range check (High voltage)	
Related DTCs	P0220	Throttle position sensor (sensor 2) range check (Fluttering)	
	P0222	Throttle position sensor (sensor 2) range check (Low voltage)	
	P0223	Throttle position sensor (sensor 2) range check (High voltage)	
	P2135	Throttle position sensor range check (Correla- tion)	
Required sensors/components	Throttle position sensor		
Frequency of operation	Continuous		
Duration	2 sec.		
MIL operation	Immediate		
Sequence of operation	None		

MONITOR STRATEGY

TYPICAL ENABLING CONDITIONS

The monitor will run whenever the follow- ing DTCs are not present	See "List of disable a monitor" (on page DI-3).	
Throttle control motor power	ON	


TYPICAL MALFUNCTION THRESHOLDS

Detection Criteria	Threshold	
P0120:		
VTA1 voltage	0.2 V or less or 4.8 V or more (2 sec. or more)	
P0122:		
VTA1 voltage	0.2 V or less (2 sec. or more)	
P0123:		
VTA1 voltage	4.8 V or more (2 sec. or more)	
P0220:		
VTA2 voltage	0.5 V or less or 4.8 V or more (2 sec. or more)	
P0222:		
VTA2 voltage	0.5 V or less (2 sec. or more)	
P0223:		
Both of the following conditions are met for 2 sec. or more:	A and B	
A. VTA1 voltage	0.2 V or more and 1.8 V or less	
B. VTA2 voltage	4.8 V or more	
P2135:		
Different between VTA1 and VTA2 voltage	0.02 V or less	
Both of the following conditions are met:	A and B	
A. VTA1 voltage	0.2 V or less	
B. VTA2 voltage	0.5 V or less	

COMPONENT OPERATING RANGE

Parameter	Standard Value
Throttle position sensor VTA1 voltage	0.6 to 3.96 V
Throttle position sensor VTA2 voltage	2.25 to 5.0 V

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

- ★ If DTCs related to different system that have terminal E2 as the ground terminal are output simultaneously, terminal E2 may have an open circuit.
- ★ Read freeze frame data using the hand—held tester or the OBD II scan tool. Freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, as well as other data from the time when a malfunction occurred.

Hand-held tester:

Connect hand-held tester, and read the voltage for throttle position sensor data.

PREPARATION:

- (a) Connect the hand-held tester or the OBD II scan tool to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester or OBD II scan tool main switch ON.
- (c) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DATA LIST / ALL / THROTTLE POS and THROTTLE POS #2.

CHECK:

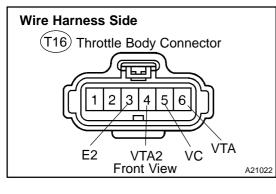
Read voltage value displayed on the hand-held tester.

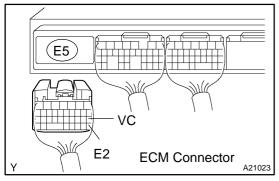
OK:

RESULT:

Throttle position expressed as percentage and voltage					
Accelerator pedal released Accelerator pedal depressed		Trouble area Procee	Dressed to		
THROTTLE POS (VTA1)	THROTTLE POS #2 (VTA2)	THROTTLE POS (VTA1)	THROTTLE POS #2 (VTA2)	Trouble area	Proceed to
0 %	0 to 0.2 V	0 %	0 to 0.2 V	VC circuit open	
100 %	4.5 to 5.5 V	100 %	4.5 to 5.5 V	E2 circuit open	
0 % or 100 %	2.1 to 3.1 V (Fail safe)	0 % or 100 %	2.1 to 3.1 V (Fail safe)	VTA1 circuit open or ground short	А
about 16 % (Fail safe)	0 to 0.2 or 4.5 to 5.5 V	about 16 % (Fail safe)	0 to 0.2 or 4.5 to 5.5 V	VTA2 circuit open or ground short	
10 to 24 %	2.15 to 3.05 V	64 to 96 % (Does not fail safe)	4.5 to 5.5 V (Does not fail safe)	Throttle position sen- sor circuit is normal	В

в


Go to step 5.


Α

¹

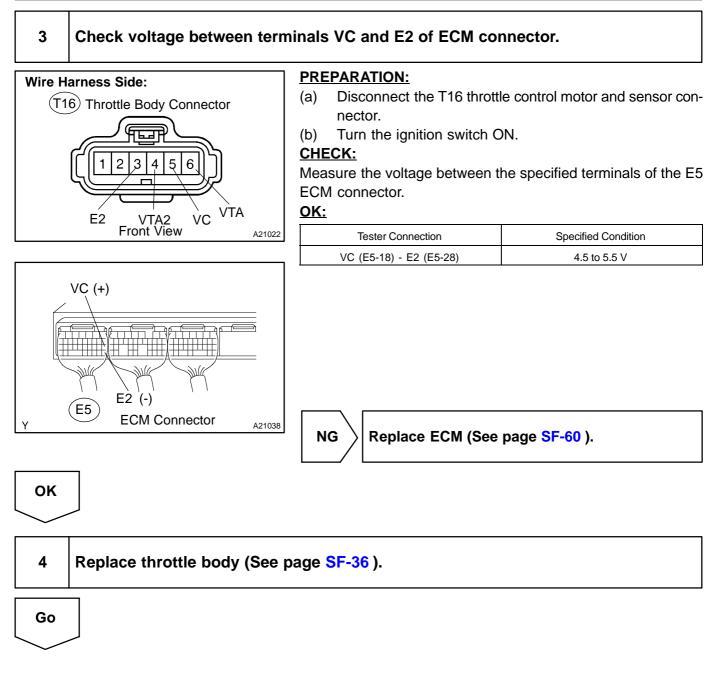
2

Check for open and short in harness and connector between ECM and throttle position sensor.

PREPARATION:

- (a) Disconnect the T16 throttle control motor and sensor connector.
- (b) Disconnect the E5 ECM connector.

CHECK:


Check the resistance between the wire harness side connectors.

<u> 0K:</u>

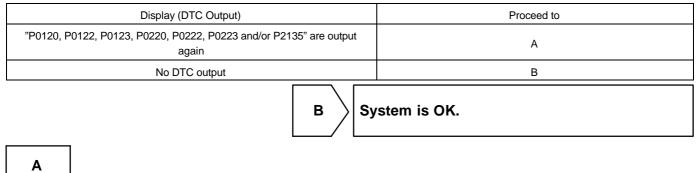
Tester Connection	Specified Condition		
VC (T16-5) - VC (E5-18)			
VTA (T16-6) - VTA1 (E5-21)			
VTA2 (T16-4) - VTA2 (E5-31)	Below 1 Ω		
E2 (T16-3) - E2 (E5-28)			
VC (T16-5) or VC (E5-18) - Body ground	- 10 kΩ or higher		
VTA (T16-6) or VTA1 (E5-21) - Body ground			
VTA2 (T16-4) or VTA2 (E5-31) - Body ground			
NG Repair or replace harness or connector.			

OK

DI-92

5 Check if DTC output recur.

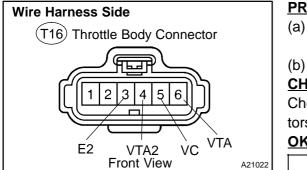
PREPARATION:


(a) Clear the DTC (See page DI-3).

- (b) Start the engine.
- (c) Run the engine at idle for 15 seconds or more.

CHECK:

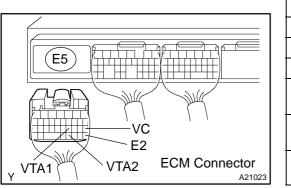
Read the DTC (See page DI-3).


RESULT:

Replace ECM (See page SF-60).

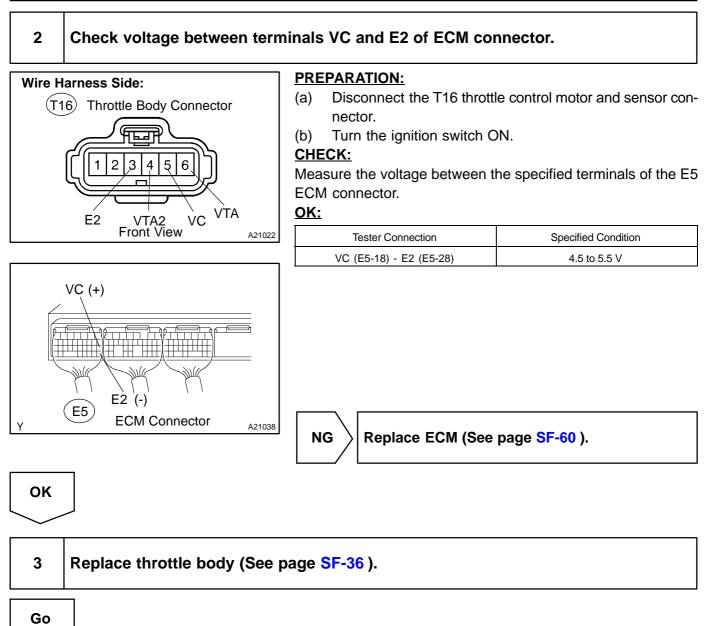
OBD II scan tool (excluding hand-held tester):

1 Check for open and short in harness and connector between ECM and throttle position sensor.


PREPARATION:

- Disconnect the T16 throttle control motor and sensor connector.
- Disconnect the E5 ECM connector. (b)

CHECK:


Check the resistance between the wire harness side connectors.

OK:

Tester Connection	Specified Condition		
VC (T16-5) - VC (E5-18)			
VTA (T16-6) - VTA1 (E5-21)]		
VTA2 (T16-4) - VTA2 (E5-31)	Below 1 Ω		
E2 (T16-3) - E2 (E5-28)			
VC (T16-5) or VC (E5-18) - Body ground			
VTA (T16-6) or VTA1 (E5-21) - Body ground	10 k Ω or higher		
VTA2 (T16-4) or VTA2 (E5-31) - Body ground			
NG Repair or replace harness or connector.			

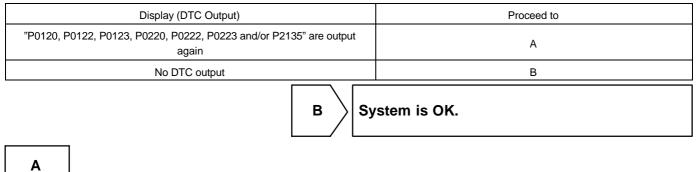
OK

Author :

288

4 Check if DTC output recur.

PREPARATION:


(a) Clear the DTC (See page DI-3).

- (b) Start the engine.
- (c) Run the engine at idle for 15 seconds or more.

CHECK:

Read the DTC (See page DI-3).

RESULT:

Replace ECM (See page SF-60).

DTC	P0121	Throttle/Pedal Position Sensor/Switch "A" Circuit Range/Performance Problem
-----	-------	--

HINT:

This is the purpose of the "throttle position sensor".

CIRCUIT DESCRIPTION

Refer to DTC P0120 on page DI-84.

DTC No.	DTC Detecting Condition	Trouble Area
P0121	Condition (a) continues for 2.0 sec.: (a) Difference between VTA1 and VTA2 deviates from the threshold	Throttle control motor and sensor

MONITOR DESCRIPTION

The ECM uses throttle position sensor to monitor the throttle valve opening angle.

This sensor including two signals, VTA1 and VTA2. VTA1 is used to detect the throttle opening angle and VTA2 is used to detect malfunctions in VTA1. There are several checks that the ECM performs confirm proper operation of the throttle position sensor and VTA1.

There is a specific voltage difference expected between VTA1 and VTA2 for each throttle opening angle. If the voltage output difference of the VTA1 and VTA2 deviates from the normal operating range, the ECM interprets this as a malfunction of the throttle position sensor. The ECM will turn on the MIL and a DTC is set.

FAIL SAFE

If the ETCS (Electronic Throttle Control System) has a malfunction, the ECM cuts off current to the throttle control motor. The throttle control valve returns to a predetermined opening angle (approximately 16°) by the force of the return spring. The ECM then adjusts the engine output by controlling the fuel infection (intermittent fuel-cut) and ignition timing in accordance with the accelerator pedal opening angle to enable the vehicle to continue at a minimum speed.

If the accelerator pedal is depressed firmly and slowly, the vehicle can be driven slowly.

If a "pass" condition is detected and then the ignition switch is turned OFF, the fail-safe operation will stop and the system will return to normal condition.

MONITOR STRATEGY

Related DTCs	P0121	Throttle position sensor rationality
Required sensors/components	Throttle position sensor	
Frequency of operation	Continuous	
Duration	2 sec.	
MIL operation	Immediate	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS

	Specification	
Item	Minimum	Maximum
The monitor will run whenever the follow- ing DTCs are not present	See "List of disable a monitor" (on page DI-3).	
VTA2 voltage	-	4.6 V

Author :

2004 LAND CRUISER (RM1071U)

Date :

DI1LI-19

TYPICAL MALFUNCTION THRESHOLDS

Detection Criteria	Threshold
Different between VTA1 and VTA2 $ VTA1 - (VTA2 \times 0.8 \text{ to } 1.2) ^*$	Less than 0.1 V and more than 0.4 V
* Corrected by learning value	

INSPECTION PROCEDURE

HINT:

Read freeze frame data using the hand-held tester or the OBD II scan tool. Freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, as well as other data from the time when a malfunction occurred.

Replace throttle control motor and sensor (See page SF-36).

DIBSS-02

DTC P0125 Insufficient Coolant Temperature for Closed Loop Fuel Control

CIRCUIT DESCRIPTION

Refer to DTC P0115 on page DI-75.

DTC No.	DTC Detection Condition	Trouble Area
	If THW or THA is less than -6.6°C (20°F) at engine start and 20 min. or more after starting engine, engine coolant temp. sensor value is 20°C (68°F) or less (2 trip detection logic)	
P0125	If THW and THA is between -6.6 °C (20°F) and 10°C (50°F) at engine start, 5 min. or more after starting engine and engine coolant temp. sensor value is 20°C (68°F) or less (2 trip detection logic)	★Cooling system ★Engine coolant temperature sensor ★Thermostat
	If THW and THA greater than 10°C (50°F) at engine start and 2 min. or more after starting engine, engine coolant temp. sensor value is 20°C (68°F) or less (2 trip detection logic)	

MONITOR DESCRIPTION

The ECT (Engine Coolant Temperature) sensor is used to monitor the temperature of the engine coolant. The resistance of the sensor varies with the actual coolant temperature. The ECM applies a voltage to the sensor and the varying resistance of the sensor causes the signal voltage to vary. The ECM monitors the ECT signal voltage after engine start-up. If, after sufficient time has passed, the sensor still reports that the engine is not warmed up enough for closed-loop fuel control after sufficient time has passed, the ECM interprets this as a fault in the sensor or cooling system and sets a DTC. Example:

The engine coolant temperature was $0 \square C$ (32 $\square F$) at engine start. After 5 min. running time, the ECT sensor still indicates that the engine is not warmed up enough to begin air fuel ratio feedback control of the air-fuel ratio. The ECM interprets this as a fault in the sensor or cooling system and will set a DTC.

Insufficient coolant temperature for closed loop Related DTCs P0125 fuel control Engine coolant temperature sensor, Cooling sys-Main sensors/components tem, Thermostat Required sensors/components Mass air flow meter Related sensors/components Frequency of operation Continuous 2 min. (at engine start, engine coolant or intake air temperature of 10°C (50°F) or more) Duration 5 min. (at engine start, engine coolant or intake air temperature of -6.6°C (20°F) to 10°C (50°F)) 20 min. (at engine start, engine coolant or intake air temperature of less than -6.6°C (20°F)) 2 driving cycles MIL operation Sequence of operation None

MONITOR STRATEGY

TYPICAL ENABLING CONDITIONS

	Specification	
Item	Minimum	Maximum
The monitor will run whenever the follow- ing DTCs are not present	See "List of Disable a Monitor" table (on page DI-3)	
Fuel cut	OFF	
Engine	Running	

TYPICAL MALFUNCTION THRESHOLDS

Detection Criteria	Threshold	
Time until "engine coolant temperature" detection temperature reaches feedback start temperature		
When the temperature at the time of engine starting is 10° C (50° F) or more	Engine coolant temperature is less than "closed-loop enable temperature" when 2 min. or more after engine start	
When the temperature at the time of engine starting is "-6.6 $^{\circ}$ C (20 $^{\circ}$ F)" to "10 $^{\circ}$ C (50 $^{\circ}$ F)"	Engine coolant temperature is less than "closed-loop enable temperature" when 5 min. or more after engine start	
When the temperature at the time of engine starting is -6.6 °C (20°F) or less	Engine coolant temperature is less than "closed-loop enable temperature" when 20 min. or more after engine start	

INSPECTION PROCEDURE

HINT:

- ★ If DTC P0115, P0116, P0117, P0118 and P0125 are output simultaneously, engine coolant temperature sensor circuit may be open or short. Perform the troubleshooting of DTC P0115, P0117 or P0118 first.
- ★ Read freeze frame data using the hand-held tester or the OBD II scan tool. Freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, as well as other data from the time when a malfunction occurred.

1

Are there any other codes (besides DTC P0125) being output?

PREPARATION:

- (a) Connect the hand-held tester or the OBD II scan tool to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester or OBD II scan tool main switch ON.
- (c) When using hand-held tester, enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.

CHECK:

Read the DTCs using the hand-held tester or the OBD II scan tool.

<u>RESULT:</u>

Display (DTC output)	Proceed to
P0125	А
"P0125" and other DTCs	В

HINT:

If any other codes besides "P0125" are output, perform the troubleshooting for those DTCs first.

В

Go to relevant DTC chart (See page DI-36).

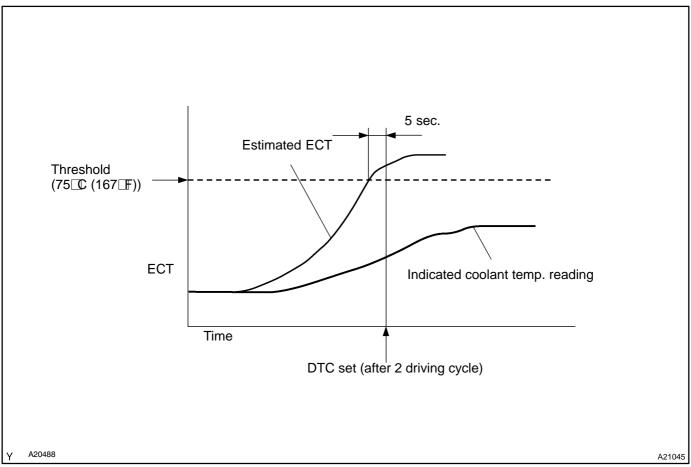
2	Inspect thermostat (See page CO-12).
	NG Replace thermostat (See page CO-1 1).
ОК	
3	Check cooling system.
	hat there is detect cooling system which causes overcool, such as abnormal radiator fan operation, d cooling system and so on. NG Repair or replace cooling system.

ОК	
Replace	e engine coolant temperature sensor.

DI-101

DTC	Coolant Thermostat (Coolant Temperature Below Thermostat Regulating Temperature)
	Delow Thermostat Keyulating Temperature

HINT:


This is the purpose of "thermostat" malfunction detection.

CIRCUIT DESCRIPTION

If the engine coolant temperature does not reach 75°C (167°F) despite sufficient warm-up time has elapsed.

DTC No.	DTC Detection condition	Trouble Area
P0128	Condition (a), (b) and (c) are met: (a) Cold start (b) After sufficient warm-up time has elapsed (c) Engine coolant temperature greater than 75°C (167°F)	<pre>★Thermostat ★Cooling system ★Engine coolant temperature sensor ★ECM</pre>

MONITOR DESCRIPTION

The ECM estimates the coolant temperature based on starting temperature, engine loads, and engine speeds. The ECM then compares the estimated temperature with the actual ECT (Engine Coolant Temperature). When the estimated coolant temperature reaches $75 \square (167 \square F)$, the ECM checks the actual ECT. If the actual ECT is less than $75 \square (167 \square F)$, the ECM will interpret this as a fault in the thermostat or engine cooling system and set a DTC.

295

DIC25-01

MONITOR STRATEGY

Related DTCs	P0128	Thermostat
	Main sensors/components	Engine coolant temperature sensor, Engine cooling system, Thermostat
Required sensors/components	Related sensors/components	Intake air temperature sensor, Vehicle speed sensor
Frequency of operation	Once per drive cycle	
Duration	15 min.	
MIL operation	2 driving cycles	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS

	Specification	
Item	Minimum	Maximum
The monitor will run whenever the follow- ing DTCs are not present	See "List of disable a monitor" (on page DI-3)	
Battery voltage	11.0 V	-
Intake air temperature (at engine start)	-10 ⊡C (14⊡F)	35⊡℃ (95⊡)
Engine coolant temperature (at engine start)	-10 ⊑C (14⊑F)	35⊑© (95⊑₩)
Difference between intake air temperature and engine coolant temperature (at engine start)	-15 ⊡C (-27⊡F)	7⊡ᢗ (12.6⊡೯)

TYPICAL MALFUNCTION THRESHOLDS

Detection Criteria	Threshold
Duration period of both A and B	5 sec. or more
A Estimated engine coolant temperature	75 ⊡ C (167⊡) or more
B Engine coolant temperature sensor output value	Less than 75⊡℃ (167⊡)

MONITOR RESULT

The detailed information is described in "CHECKING MONITOR STATUS" (see page DI-3).

- \star TID (Test Identification) is assigned to each emission-related component.
- ★ TLT (Test Limit Type):
 If TLT is 0, the component is malfunctioning when the test value is higher than the test limit.
 If TLT is 1, the component is malfunctioning when the test value is lower than the test limit.
- \star CID (Component Identification) is assigned to each test value.
- ★ Unit Conversion is used to calculate the test value indicated on generic OBD scan tools.

TID \$08: Thermostat

TĽ	r CID	Unit Conversion	Description of Test Value	Description of Test Limit
1	\$01	Multiply by 0.625 and sub- tract 40 (IC)	ECT sensor output when estimated ECT reaches malfunction criteri- on	Malfunction criterion

INSPECTION PROCEDURE

HINT:

1

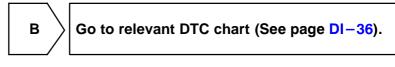
Read freeze frame data using the hand-held tester or the OBD II scan tool. Freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, as well as other data from the time when a malfunction occurred.

Are there any other codes (besides DTC P0128) being output?

PREPARATION:

- (a) Connect the hand-held tester or the OBD II scan tool to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester or OBD II scan tool main switch ON.
- (c) When using hand-held tester, enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.

CHECK:


Read the DTC using the hand-held tester or the OBD II scan tool.

RESULT:

Display (DTC Output)	Proceed to
P0128	А
P0128 and other DTCs	В

HINT:

If any other codes besides P0128 are output, perform the troubleshooting for those DTCs first.

A 2 Check cooling system.

CHECK:

Check that there is a defect in the cooling system which causes over-cool, such as abnormal radiator fan operation, modified cooling system and so on.

NG

Repair or replace cooling system.

ОК

3	Check thermostat (See page CO-12).
	NG Replace thermostat.
ОК	
Repla	ace ECM (See page SF-60).

DIC26-01

DTC	P0130	Oxygen Sensor Circuit (Bank 1 Sensor 1)
DTC	P0150	Oxygen Sensor Circuit (Bank 2 Sensor 1)

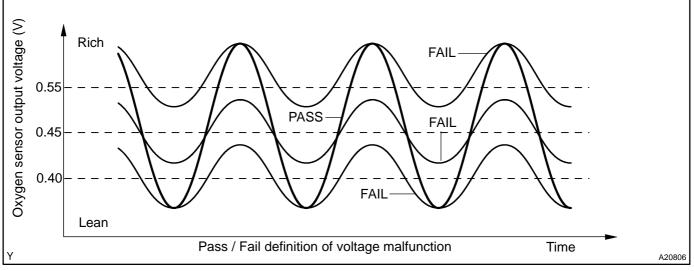
DTC	P2195	Oxygen Sensor Signal Stack Lean (Bank 1 Sensor 1)
-----	-------	--

DTC	P2196	Oxygen Sensor Signal Stack Rich (Bank 1 Sensor 1)
-----	-------	--

DTC	P2197	Oxygen Sensor Signal Stack Lean (Bank 2 Sensor 1)
-----	-------	--

DTC	P2198	Oxygen Sensor Signal Stack Rich (Bank 2 Sensor 1)
-----	-------	--

CIRCUIT DESCRIPTION


Refer to DTC P0031 on page DI-49.

DTC No.	Detection Item	Trouble Area
P0130 P0150	Output voltage of heated oxygen sensor remains at 0.4 V or more, or 0.55 V or less, during idling after engine is warmed up (2 trip detection logic)	★Open or short in heated oxygen sensor circuit ★Heated oxygen sensor ★Heated oxygen sensor heater
P2195 P2197	Output voltage of heated oxygen sensor remains at 0.55 V or less, during idling after engine is warmed up (2 trip detection logic)	HEFI or ECD relay HAir induction system HFuel pressure
P2196 P2198	Output voltage of heated oxygen sensor remains at 0.4 V or more, during idling after engine is warmed up (2 trip detection logic)	∕I njector ∕E CM

HINT:

- ★ Bank 1 refers to bank that includes cylinder No. 1.
- \star Bank 2 refers to bank that does not includes cylinder No. 2.
- \star Sensor 1 refers to the sensor closer to the engine assembly.
- ★ The heated oxygen sensor's output voltage and the short-term fuel trim value can be read using the OBD II scan tool or hand-held tester.

MONITOR DESCRIPTION

The ECM uses the heated oxygen sensor information to regulate the air-fuel ratio close to a stoichiometric ratio. This maximizes the catalytic converter's ability to purify the exhaust gas. The sensor detects oxygen levels in the exhaust gas and sends this signal to the ECM.

The inner surface of the sensor element is exposed to outside air. The outer surface of the sensor element is exposed to exhaust gas. The sensor element is made of platinum coated zirconia and includes an integrated heating element. The heated oxygen sensor has the characteristic whereby its output voltage changes suddenly in the vicinity of the stoichiometric air-fuel ratio. The heated oxygen sensor generates output voltage between 0 V and 1.0 V in response to the oxygen concentration in exhaust gas. When the output voltage of the heated oxygen sensor is 0.55 V or more, the ECM judges that the air-fuel ratio is RICH. When it is 0.4 V or less, the ECM judges that the air-fuel ratio is LEAN.

Under normal condition, the output voltage from the heated oxygen sensor alternates RICH and LEAN sides periodically. If the heated oxygen sensor outputs RICH signal (or LEAN signal) constantly, or if the heated oxygen sensor cannot output enough voltage to reach the minimum specification, the ECM interprets this as a malfunction in the heated oxygen sensor and sets a DTC.

Front heated oxygen sensor voltage is constant P0130 at lean side or rich side (Bank 1) Front heated oxygen sensor voltage is constant P0150 at lean side or rich side (Bank 2) Front heated oxygen sensor voltage is constant P2195 at lean side (Bank 1) Related DTCs Front heated oxygen sensor voltage is constant P2196 at rich side (Bank 1) Front heated oxygen sensor voltage is constant P2197 at lean side (Bank 2) Front heated oxygen sensor voltage is constant P2198 at rich side (Bank 2) Main sensors/components Front heated oxygen senor Required sensors/components Related sensors/components Crank position sensor, Vehicle speed sensor Frequency of operation Once per drive cycle Duration 20 to 36 sec. x (3 times) MIL operation 2 driving cycles Sequence of operation None

MONITOR STRATEGY

2004 LAND CRUISER (RM1071U)

TYPICAL ENABLING CONDITIONS

	Specification	
Item	Minimum	Maximum
The monitor will run whenever the follow- ing DTCs are not present	See "List of disable a monitor" (on page DI-3)	
There is history that the following condi- tions A and B were met:	20 sec. (Continuously)	-
A. Vehicle speed	40 km/h (25 mph)	-
B. Engine speed	900 rpm	-
Time after engine start	120 sec.	-
Idle	ON	
Fuel system status	Closed loop	

TYPICAL MALFUNCTION THRESHOLDS

Detection Criteria	Threshold	
P0130, P0150:		
Either of the following conditions A or B is met:	3 times or more	
A. Front oxygen sensor voltage is 0.55 V or less	For 18 sec. or more	
B. Front oxygen sensor voltage is 0.4 V or more	For 18 sec. or more	
P2195, P2197:		
Front heated oxygen sensor voltage Constant 0.55 V or less		
P2196, P2198:		
Front heated oxygen sensor voltage	Constant 0.4 V or more	

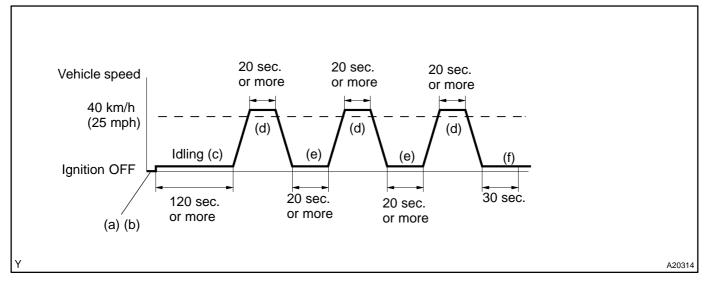
COMPONENT OPERATING RANGE

Parameter	Standard value
In the normal condition, the heated oxygen sensor voltage	0 to 1 V

O2S TEST RESULT

Refer to page DI-3 for detailed information.

Front HO2S voltage monitor


If the HO2S voltage is out of the standard value, the ECM interprets this as a malfunction.

TEST ID Description of TEST DATA		Conversion Factor Unit	
\$07	Minimum front HO2S voltage	N/A	V
\$08	Maximum front HO2S voltage	N/A	V

WIRING DIAGRAM

Refer to DTC P0031 on page DI-49.

CONFIRMATION DRIVING PATTERN

- (a) Connect the hand-held tester to the DLC3.
- (b) Switch the hand-held tester from the "normal mode" to the "check mode" (See page DI-3).
- (c) Start the engine and let the engine idle for 120 seconds or more.
- (d) Drive the vehicle at 25 mph (40 km/h) or more for 20 seconds or more.
- (e) Let the engine idle for 20 seconds or more. Perform steps (d) and (e) at 3 times.
- (f) Let the engine idle for 30 seconds.

HINT:

If a malfunction exists, the MIL will light up during step (f).

NOTICE:

If the conditions in this test are not strictly followed, detection of the malfunction will not be possible. If you do not have a hand-held tester, turn the ignition switch OFF after performing steps (c) to (f), then perform steps (c) to (f) again.

INSPECTION PROCEDURE

HINT:

Hand-held tester only:

The narrowing down the trouble area is possible by performing ACTIVE TEST of the following "A/F CON-TROL" (Heated oxygen sensor or another can be distinguished).

(a) Perform ACTIVE TEST by hand-held tester (A/F CONTROL).

HINT:

"A/F CONTROL" is an ACTIVE TEST which changes the injection volume to -12.5 % or +25 %.

- (1) Connect the hand-held tester to the DLC3 on the vehicle.
- (2) Turn the ignition switch ON.
- (3) Warm up the engine with the engine speed at 2,500 rpm for approximately 90 seconds.
- (4) Select the item "DIAGNOSIS / ENHANCED OBD II / ACTIVE TEST / A/F CONTROL".

(5) Perform "A/F CONTROL" with the engine in an idle condition (press the right or left button).

RESULT:

Heated oxygen sensor reacts in accordance with increase and decrease of injection volume +25% \rightarrow rich output: More than 0.5 V

-12.5% \rightarrow lean output: Less than 0.4 V

NOTICE:

However, there is a few seconds delay in the sensor 1 (front sensor) output. And there is about 20 seconds delay in the sensor 2 (rear sensor).

	Output voltage of heated oxygen sensor (sensor 1: front sensor)	Output voltage of heated oxygen sensor (sensor 2: rear sensor)	Mainly suspect trouble area
Case 1	Injection volume +25 % -12.5 % Output voltage More than 0.5 V Less than 0.4 V	Injection volume +25 % -12.5 % Output voltage More than 0.5 V Less than 0.4 V	
Case 2	Injection volume +25 % -12.5 % Output voltage Almost no reaction — NG	Injection volume +25 % -12.5 % Output voltage More than 0.5 V Less than 0.4 V	Sensor 1: front sensor (sensor 1, heater, sensor 1 circuit)
Case 3	Injection volume +25 % -12.5 % Output voltage More than 0.5 V Less than 0.4 V	Injection volume +25 % -12.5 % Output voltage Almost no reaction NG	Sensor 2: rear sensor (sensor 2, heater, sensor 2 circuit)
Case 4	Injection volume +25 % -12.5 % Output voltage Almost no reaction NG	Injection volume +25 % -12.5 % Output voltage Almost no reaction NG	Extremely rich or lean of the actual air-fuel ratio (Injector, fuel pressure, gas leakage in exhaust system, etc.)

The following A/F CONTROL procedure enables the technician to check and graph the voltage output of the heated oxygen sensors (sensor 1 and 2).

For displaying the graph indication, enter "ACTIVE TEST / A/F CONTROL / USER DATA" then select "O2S B1S1 and O2S B1S2" by pressing "YES" button and push "ENTER" button before pressing "F4" button. **NOTICE:**

If the vehicle is short of fuel, the air-fuel ratio becomes LEAN and heated oxygen sensor DTCs will be recorded, and the MIL then comes on.

HINT:

- ★ If different DTCs related to different systems that have terminal E2 as the ground terminal are output simultaneously, terminal E2 may be open.
- ★ Read freeze frame data using the hand-held tester or the OBD II scan tool. Freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, it is useful for determining whether the vehicle was running or stopped, the engine was warmed up or not, the air-fuel ratio was lean or rich, etc. at the time of the malfunction.
- ★ A high heated oxygen sensor (sensor 1) voltage (0.5 V or more) could be caused by a rich air fuel mixture. Check for conditions that would cause the engine to run rich.
- ★ A low heated oxygen sensor (sensor 1) voltage (0.4 V or less) could be caused by a lean air fuel mixture. Check for conditions that would cause the engine to run lean.

1 Are there any other codes (besides DTC P0130, P0150, P2195, P2197, P2196 or P2198) being output?

PREPARATION:

- (a) Connect the hand-held tester or the OBD II scan tool to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester or OBD II scan tool main switch ON.
- (c) When using hand-held tester, enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.

CHECK:

Read the DTC using the hand-held tester or the OBD II scan tool. **RESULT:**

Display (DTC Output)	Proceed to
"P0130, P0150, P2195, P2196, P2197 and/or P2198"	А
"P0130, P0150 P2195, P2196, P2197 or P2198" and other DTCs	В

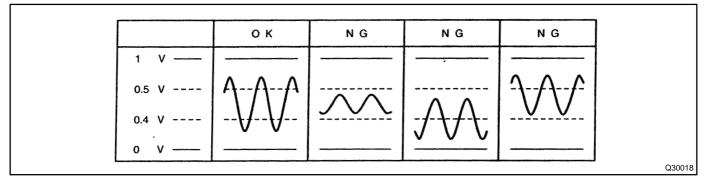
HINT:

If any other codes besides "P0130, P0150, P2195, P2196, P2197 and/or P2198" are output, perform the troubleshooting for those DTCs first.

Go to relevant DTC chart (See page DI-36).

2 Check output voltage of heated oxygen sensor during idling.

PREPARATION:

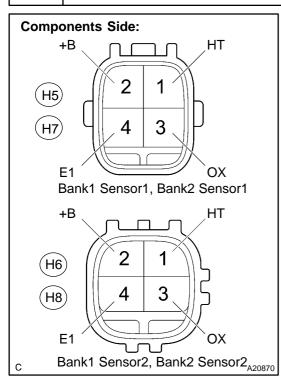

- (a) Warm up the heated oxygen sensor with the engine speed at 2,500 rpm for approximately 90 seconds.
- (b) Connect the hand-held tester or OBD II scan tool to the DLC3.
- (c) When using hand-held tester, enter the following menu: DIAGNOSIS / ENHANCED OBD II / DATA LIST / ALL / O2S B1 S1 or B2 S1.

CHECK:

Check the output voltage of the heated oxygen sensor during idling the OBD II scan tool or hand-held tester. **OK:**

Heated oxygen sensor output voltage:

Alternates repeatedly between less than 0.4 V and more than 0.5 V (See the following table).



NG

3

Check resistance of heated oxygen sensor heater.

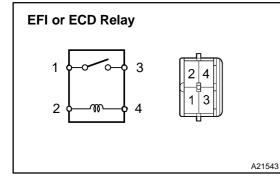
PREPARATION:

Disconnect the H5, H6, H7 or H8 heated oxygen sensor connector.

CHECK:

Measure resistance between terminals of the heated oxygen sensor.

OK:


Tester Connection	Specified Condition
HT (H5-1) - +B (H5-2)	11 to 16 Ω (20°C)
HT (H6-1) - +B (H6-2)	11 to 16 Ω (20°C)
HT (H7-1) - +B (H7-2)	11 to 16 Ω (20°C)
HT (H8-1) - +B (H8-2)	11 to 16 Ω (20°C)

NG

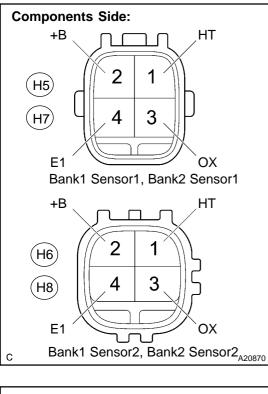
Replace heated oxygen sensor.

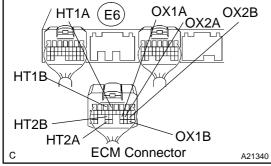
OK

4 Check EFI or ECD relay.

PREPARATION:

Remove the EFI or ECD relay from the engine room R/B. **CHECK:**

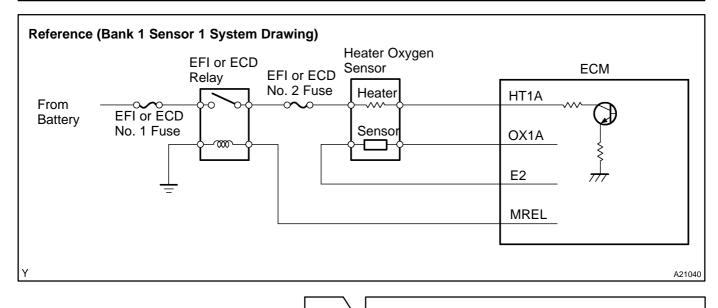

Inspect the EFI or ECD relay.


<u>OK:</u>

Terminal No.	Condition	Specified Condition
2 - 4	Constant	Continuity
	Usually	No Continuity
1 - 3	Apply B+ between terminals 2 and 4	Continuity
NG Replace	EFI or ECD relay.	

5 Check for open and short in harness and connector between ECM and heated oxygen sensor.

PREPARATION:


- (a) Disconnect the H5, H6, H7 or H8 heated oxygen sensor connector.
- (b) Disconnect the E6 ECM connector.

CHECK:

Measure the resistance between the wire harness side connectors.


<u>OK:</u>

 T	1 1 1 1
Tester Connection	Specified Condition
OX (H5-3) - OX1A (E6-23)	Below 1 Ω
HT (H5-1) - HT1A (E6-4)	Below 1 Ω
OX (H6-3) - OX1B (E6-29)	Below 1 Ω
HT (H6-1) - HT1B (E6-5)	Below 1 Ω
OX (H7-3) - OX2A (E6-22)	Below 1 Ω
HT (H7-1) - HT2A (E6-33)	Below 1 Ω
OX (H8-3) - OX2B (E6-21)	Below 1 Ω
HT (H8-1) - HT2B (E6-25)	Below 1 Ω
OX (H5-3) or OX1A (E6-23) - Body ground	10 k Ω or higher
HT (H5-1) or HT1A (E6-4) - Body ground	10 k Ω or higher
OX (H6-3) or OX1B (E6-29) - Body ground	10 k Ω or higher
HT (H6-1) or HT1B (E6-5) - Body ground	10 k Ω or higher
OX (H7-3) or OX2A (E6-22) - Body ground	10 k Ω or higher
HT (H7-1) or HT2A (E6-33) - Body ground	10 k Ω or higher
OX (H8-3) or OX2B (E6-21) - Body ground	10 k Ω or higher
HT (H8-1) or HT2B (E6-25) - Body ground	10 k Ω or higher

NG

Repair or replace harness or connector.

CHECK:

Check the fuel pressure (high or low pressure).

NG Check and repair fuel pump, pressure regulator, fuel pipe line and filter (See page SF-1).

ОК

DI-116

8	Check injector injection (See page SF-24).
	NG Replace injector.
ОК	
Repla	ce heated oxygen sensor.

9 F	Perform confirmation driving pattern.
-----	---------------------------------------

HINT:

Clear all DTCs prior to performing the confirmation driving pattern.

Go

10 Is there DTC P0130, P0150, P2195, P2196, P2197 or P2198 being output again?

YES

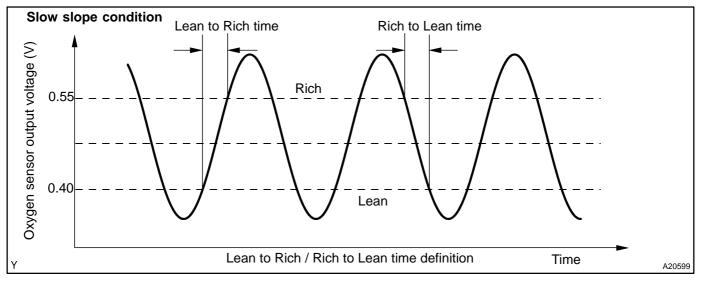
Replace ECM (See page SF-60).

DTC		Oxygen Sensor Circuit Slow Response (Bank 1 Sensor 1)
-----	--	--

DTC		Oxygen Sensor Circuit Slow Response (Bank 2 Sensor 1)	
-----	--	--	--

CIRCUIT DESCRIPTION

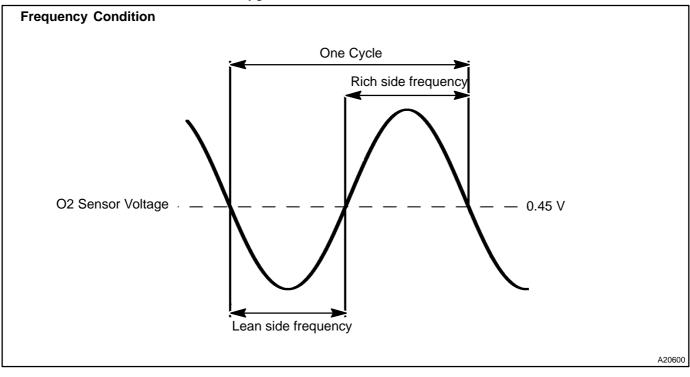
Refer to DTC P0031 on page DI-49.


DTC No.	DTC Detecting Condition	Trouble Area
P0133	After engine has been warmed up, if response time that heated oxygen sensor's output voltage reaches from RICH to LEAN, or from LEAN to RICH, is 0.6 seconds or more during idling. (2 trip detection logic)	 ★Open or short in heated oxygen sensor circuit ★Heated oxygen sensor ★Heated oxygen sensor heater ★EFI or ECD relay
P0153	If response time of heated oxygen sensor's output voltage in one RICH-LEAN cycle is 5.6 seconds or more during idling. (2 trip detection logic)	Hir induction system Huel pressure Hnjector HECM

HINT:

- \star Bank 1 refers to bank that includes cylinder No. 1.
- \star Bank 2 refers to bank that does not includes cylinder No. 1.
- \star Sensor 1 refers to the sensor closer to the engine assembly.

DIC27-01


MONITOR DESCRIPTION

The ECM uses the heated oxygen sensor information to regulate the air-fuel ratio close to a stoichiometric ratio. This maximizes the catalytic converter's ability to purify the exhaust gases. The sensor detects oxygen levels in the exhaust gas and sends this signal to the ECM.

The inner surface of the sensor element is exposed to outside air. The outer surface of the sensor element is exposed to exhaust gas. The sensor element is made of platinum coated zirconia and includes an integrated heating element. The heated oxygen sensor has the characteristic whereby its output voltage changes suddenly in the vicinity of the stoichiometric air-fuel ratio. The heated oxygen sensor generates waveforms of a voltage between 0 V and 1 V in response to the oxygen concentration in exhaust gas. When the output voltage of the heated oxygen sensor is 0.55 V or more, the ECM judges that the air-fuel ratio is RICH. When it is 0.40 V or less, the ECM judges that the air-fuel ratio is LEAN.

The ECM monitors the response feature of the heated oxygen sensor. If the response time of the heated oxygen sensor output status change from RICH to LEAN or vice versa becomes longer, the ECM interprets this as a malfunction in the heated oxygen sensor and sets a DTC.

Date :

MONITOR STRATEGY

	P0133	Front heated oxygen sensor response monitor (Bank 1)
Related DTCs	P0153	Front heated oxygen sensor response monitor (Bank 2)
	Main sensors/components	Front heated oxygen sensor
Required sensors/components	Related sensors/components	Crank position sensor, Vehicle speed sensor, Mass air flow meter
Frequency of operation	Once per drive cycle	
Duration	Within 60 sec.	
MIL operation	2 driving cycles	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS

	Sp	pecification
Item	Minimum	Maximum
The monitor will run whenever the follow- ing DTCs are not present	See "List of disable	e a monitor" (on page DI-3)
Frequency idle condition:		
There is history that the following condi- tions were met for 20 sec.		A and B
A. Vehicle speed	40 km/h (25 mph)	-
B. Engine speed	900 rpm	-
Idle		ON
Vehicle speed	-	5 km/h (3 mph)
Fuel system status	CI	losed loop
Time after engine start	120 sec.	-
Engine coolant temperature	40°C (104°F)	-
Frequency cruise condition:		
There is history that the following condi- tions were met for 20 sec.		A and B
A. Vehicle speed	40 km/h (25 mph)	-
B. Engine speed	900 rpm	-
Intake air amount	3 g/sec.	13 g/sec.
Time after engine start	120 sec.	-
Idle		OFF
Fuel system status	CI	losed loop
Engine speed	1,000 rpm	3,500 rpm
Engine coolant temperature	70°C (158°F)	-
Slow slope condition:		
Both of the following condition were met for 20 sec.		A and B
A. Vehicle speed	40 km/h (25 mph)	-
B. Engine speed	900 rpm	-
Time after engine start	120 sec.	-
Idle		ON
Vehicle speed	-	5 km/h (3 mph)

2004 LAND CRUISER (RM1071U)

DIAGNOSTICS - ENGINE

Fuel system status	Closed loop	
Engine coolant temperature	40°C (104°F)	_

TYPICAL MALFUNCTION THRESHOLDS

Detection Criteria Threshold		
Frequency idle condition		
Time required by the sensor's output voltage to change in one RICH-LEAN cycle	5.6 sec. or more	
Frequency cruise condition		
Time required by the sensor's output voltage to change in one RICH-LEAN cycle	a specific time or more	
Slow slope condition		
Both of the following conditions were met	A and B	
A. Number of judgment made	3 times	
B. Following conditions were met	(a) or (b)	
(a) Average lean to rich response time	0.9 sec. or more	
(b) Average rich to lean response time	0.9 sec. or more	

COMPONENT OPERATING RANGE

Parameter	Standard value
Voltage output from heated oxygen sensor	Quickly fluctuates between 0.4 and 0.55 V

O2S TEST RESULT

Refer to page DI-3 for detailed information.

Front HO2S slow slope monitor

If the HO2S sensor voltage is out of the standard value, the ECM interprets this as a malfunction.

TEST ID	Description of TEST DATA	Conversion Factor	Unit
\$03	(Test constant) Low sensor voltage for response time calculation	N/A	V
\$04	(Test constant) High sensor voltage for response time calculation	N/A	V

If the time required to change is out of the standard value, the ECM interprets this as a malfunction.

TEST ID	Description of TEST DATA	Conversion Factor	Unit
\$31	Time to change from Lean (± 0.4 V) to Rich (≥ 0.55 V)	N/A	sec.
\$32	Time to change from Rich (≥ 0.55 V) to Lean (± 0.4 V)	N/A	sec.

Front HO2S frequency monitor (idling)

If the \$38 is out of the standard value, the ECM interprets this as a malfunction.

TEST ID	Description of TEST DATA	Conversion Factor	Unit
\$38	Response time of heated oxygen sensor's output voltage in one RICH-LEAN cycle	N/A	sec.

Front HO2S frequency monitor (cruse)

If the \$90 is out of the standard value, the ECM interprets this as a malfunction.

TEST ID	Description of TEST DATA	Conversion Factor	Unit
\$90	Remained value of that average of switching frequency is subtracted from average of switching frequen- cy threshold	Multiply by 0.04096 plus 5.2	sec.

WIRING DIAGRAM

Refer to DTC P0031 on page DI-49.

INSPECTION PROCEDURE

HINT:

Hand-held tester only:

The narrowing down the trouble area is possible by performing ACTIVE TEST of the following "A/F CON-TROL" (Heated oxygen sensor or another can be distinguished).

(a) Perform ACTIVE TEST by hand-held tester (A/F CONTROL).

HINT:

"A/F CONTROL" is the ACTIVE TEST which changes the injection volume to -12.5 % or +25 %.

- (1) Connect the hand-held tester to the DLC3 on the vehicle.
- (2) Turn the ignition switch ON.
- (3) Warm up the engine with the engine speed at 2,500 rpm for approximately 90 seconds.
- (4) Select the item "DIAGNOSIS / ENHANCED OBD II / ACTIVE TEST / A/F CONTROL".
- (5) Perform "A/F CONTROL" with the engine in an idle condition (press the right or left button).

RESULT:

Heated oxygen sensor reacts in accordance with increase and decrease of injection volume +25 % \rightarrow rich output: More than 0.5 V

-12.5 % \rightarrow lean output: Less than 0.4 V

NOTICE:

However, there is a few second delay in the sensor 1 (front sensor) output. And there is about 20 seconds delay in the sensor 2 (rear sensor). DIAGNOSTICS - ENGINE

	· · · · · · · · · · · · · · · · · · ·		
	Output voltage of heated oxygen sensor (sensor 1: front sensor)	Output voltage of heated oxygen sensor (sensor 2: rear sensor)	Mainly suspect trouble area
Case 1	Injection volume +25 % -12.5 % Output voltage More than 0.5 V Less than 0.4 V	Injection volume +25 % -12.5 % Output voltage More than 0.5 V Less than 0.4 V	
Case 2	Injection volume +25 % -12.5 % Output voltage Almost no reaction NG	Injection volume +25 % -12.5 % Output voltage More than 0.5 V Less than 0.4 V	Sensor 1: front sensor (sensor 1, heater, sensor 1 circuit)
Case 3	Injection volume +25 % -12.5 % Output voltage More than 0.5 V Less than 0.4 V	Injection volume +25 % -12.5 % Output voltage Almost no reaction NG	Sensor 2: rear sensor (sensor 2, heater, sensor 2 circuit)
Case 4	Injection volume +25 % -12.5 % Output voltage Almost no reaction NG	Injection volume +25% -12.5% Output voltage Almost no reaction	Extremely rich or lean of the actual air-fuel ratio (Injector, fuel pressure, gas leakage in exhaust system, etc.)

The following A/F CONTROL procedure enables the technician to check and graph the voltage output of the heated oxygen sensors (sensor 1 and 2).

For displaying the graph indication, enter "ACTIVE TEST / A/F CONTROL / USER DATA" then select "O2S B1S1 and O2S B1S2" by pressing "YES" button and push "ENTER" button before pressing "F4" button. **NOTICE:**

If the vehicle is short of fuel, the air-fuel ratio becomes LEAN and DTCs P0133 and/or P0153 will be recorded, and the MIL then comes on.

- ★ If different DTCs related to different systems while terminal E2 as ground terminal are output simultaneously, terminal E2 may be open.
- ★ Read freeze frame data using the hand—held tester or the OBD II scan tool. Freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, it is useful for determining whether the vehicle was running or stopped, the engine was warmed up or not, the air-fuel ratio was lean or rich, etc. at the time of the malfunction.
- ★ A high heated oxygen sensor (sensor 1) voltage (0.5 V or more) could be caused by a rich air fuel mixture. Check for conditions that would cause the engine to run rich.
- ★ A low heated oxygen sensor (sensor 1) voltage (0.4 V or less) could be caused by a lean air fuel mixture. Check for conditions that would cause the engine to run lean.

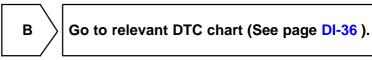
Are there any other codes (besides DTC P0133 or P0153) being output?

PREPARATION:

- (a) Connect the hand-held tester or the OBD II scan tool to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester or OBD II scan tool main switch ON.
- (c) When using hand-held tester, enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.

CHECK:

1


Read the DTC using the hand-held tester or the OBD II scan tool.

RESULT:

Display (DTC Output)	Proceed to
"P0133 and/or P0153"	A
"P0133 or P0153" and other DTCs	В

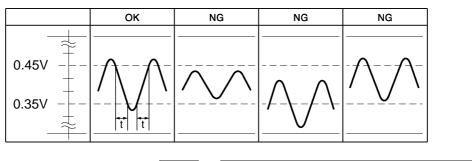
HINT:

If any other codes besides "P0133 and/or P0153" are output, perform the troubleshooting for those DTCs first.

A

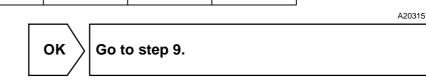
2 Check output voltage of heated oxygen sensor during idling.

PREPARATION:

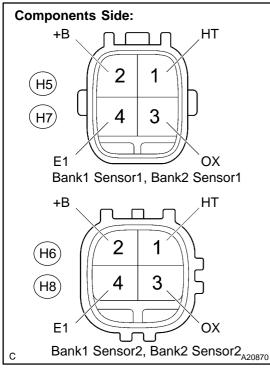

- (a) Warm up the heated oxygen sensor with the engine speed at 2,500 rpm for approximately 90 seconds.
- (b) Connect the hand-held tester or OBD II scan tool to the DLC3.
- (c) When using hand-held tester, enter the following menu: DIAGNOSIS / ENHANCED OBD II / DATA LIST / ALL / O2S B1 S1 or B2 S1.

CHECK:

Check the output voltage of the heated oxygen sensor while idling the OBD II scan tool or hand-held tester. **OK:**


Heated oxygen sensor output voltage:

Alternates between less than 0.35 V and more than 0.45 V, and period of "t" must exist less than 0.6 seconds (See the following table).


Ν

NG

3

Check resistance of heated oxygen sensor heater.

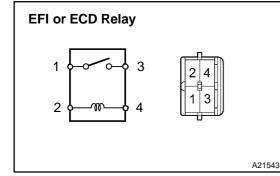
PREPARATION:

Disconnect the H5, H6, H7 or H8 heated oxygen sensor connector.

CHECK:

Measure resistance between terminals of the heated oxygen sensor.

OK:


Tester Connection	Specified Condition
HT (H5-1) - +B (H5-2)	11 to 16 Ω (20°C)
HT (H6-1) - +B (H6-2)	11 to 16 Ω (20°C)
HT (H7-1) - +B (H7-2)	11 to 16 Ω (20°C)
HT (H8-1) - +B (H8-2)	11 to 16 Ω (20°C)

NG

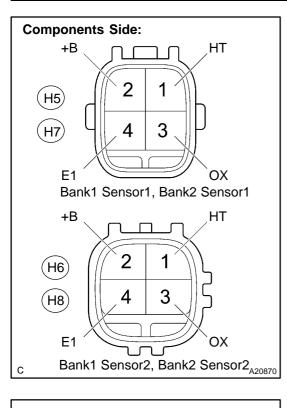
Replace heated oxygen sensor.

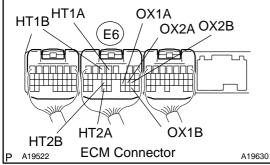
OK

4 Check EFI or ECD relay.

PREPARATION:

Remove the EFI or ECD relay from the engine room R/B. **CHECK:**

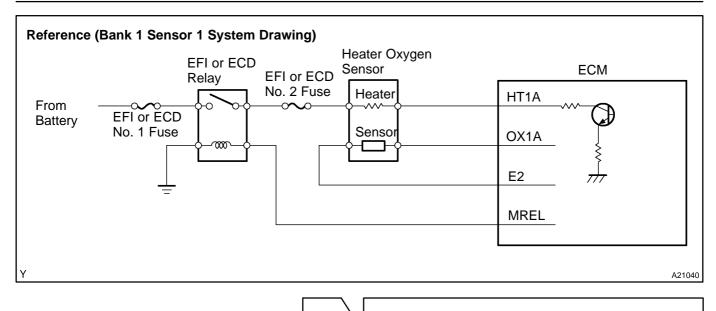

Inspect the EFI or ECD relay.


<u>OK:</u>

Terminal No.	Condition	Specified Condition	
2 - 4	Constant	Continuity	
	Usually	No Continuity	
1 - 3	Apply B+ between terminals 2 and 4	Continuity	
NG Replace EFI or ECD relay.			

5 Check for open and short in harness and connector between ECM and heated oxygen sensor.

PREPARATION:


- (a) Disconnect the H5, H6, H7 or H8 heated oxygen sensor connector.
- (b) Disconnect the E6 ECM connector.

CHECK:

Measure the resistance between the wire harness side connectors.

<u>OK:</u>

	1
Tester Connection	Specified Condition
OX (H5-3) - OX1A (E6-23)	Below 1 Ω
HT (H5-1) - HT1A (E6-4)	Below 1 Ω
OX (H6-3) - OX1B (E6-29)	Below 1 Ω
HT (H6-1) - HT1B (E6-5)	Below 1 Ω
OX (H7-3) - OX2A (E6-22)	Below 1 Ω
HT (H7-1) - HT2A (E6-33)	Below 1 Ω
OX (H8-3) - OX2B (E6-21)	Below 1 Ω
HT (H8-1) - HT2B (E6-25)	Below 1 Ω
OX (H5-3) or OX1A (E6-23) - Body ground	10 k Ω or higher
HT (H5-1) or HT1A (E6-4) - Body ground	10 k Ω or higher
OX (H6-3) or OX1B (E6-29) - Body ground	10 k Ω or higher
HT (H6-1) or HT1B (E6-5) - Body ground	10 k Ω or higher
OX (H7-3) or OX2A (E6-22) - Body ground	10 k Ω or higher
HT (H7-1) or HT2A (E6-33) - Body ground	10 k Ω or higher
OX (H8-3) or OX2B (E6-21) - Body ground	10 k Ω or higher
HT (H8-1) or HT2B (E6-25) - Body ground	10 k Ω or higher

NG

Repair or replace harness or connector.

6	Check air induction system (See page SF-1).

CHECK:

ок

Check the air induction system for vacuum leaks.

	NG Repair or replace air induction system.
ОК	
7	Check fuel pressure (See page SF-7).

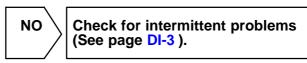
CHECK:

Check the fuel pressure (high or low pressure).

DI-127

DI-128

8	Check injector injection (See page SF-24).	
	NG Replace injector.	
ОК		
Repla	ice heated oxygen sensor.	


9	Perform confirmation driving pattern (See page DI-106).
---	---

HINT:

Go

Clear all DTCs prior to performing the confirmation driving pattern.

10	Is there DTC P0133 or P0153 being output again?

YES

Replace heated oxygen sensor.

DTC		Oxygen Sensor Circuit No Activity Detected (Bank 1 Sensor 1)
-----	--	---

DTC		Oxygen Sensor Circuit No Activity Detected (Bank 2 Sensor 1)
-----	--	--

CIRCUIT DESCRIPTION

Refer to DTC P0031 on page DI-49.

DTC No.	DTC Detecting Condition	Trouble Area
P0134 P0154	After the engine is warmed up, heated oxygen sensor (bank 1, sensor 1) output does not indicate RICH (more than 0.45 V) even once when the following conditions continue for 65 sec. or more: (a) Engine speed: 1,400 rpm or more (b) Vehicle speed: 25 to 81 mph (40 to 130 km/h) or more (c) Throttle valve does not fully closed (d) 180 sec. or more after starting engine (e) Engine coolant temperature more than 40°C (104°F)	 ★Open or short in heated oxygen sensor circuit ★Heated oxygen sensor heater ★EFI or ECD relay ★Air induction system ★Fuel pressure ★PCV hose connection ★PCV valve and hose ★Injector ★Gas leakage on exhaust system ★PCV piping ★ECM

HINT:

- ★ Bank 1 refers to bank that includes cylinder No. 1.
- ★ Bank 2 refers to bank that does not includes cylinder No. 1.
- ★ Sensor 1 refers to the sensor closer to the engine assembly.
- ★ After confirming DTC P0134 and P0154, check the output voltage of the heated oxygen sensor in the "DIAGNOSIS / ENHANCE OBD II / DATA LIST / ALL" using the OBD II scan tool or the hand – held tester. If output voltage of the heated oxygen sensor is always less than 0.1 V, heated oxygen sensor circuit may be open or short.

MONITOR DESCRIPTION

The ECM uses the heated oxygen sensor to optimize the air-fuel mixture in closed-loop fuel control. This control helps decrease exhaust emissions by providing the catalyst with a nearly stoichiometric mixture. The sensor detects the oxygen level in the exhaust gas and the ECM uses this data to control the air-fuel ratio. The sensor output voltage ranges from 0 V to 1 V. If the signal voltage is less than 0.4 V, the air-fuel ratio is LEAN. If the signal voltage is more than 0.55 V, the air-fuel ratio is RICH. If the conditions for the closed-loop fuel control are met and after a specified time-period, the sensor's output signal never indicates RICH, the ECM will conclude that the closed-loop fuel control is malfunctioning. The ECM will illuminate the MIL and a DTC is set.

MONITOR STRATEGY

	P0134	Excessive time to enter closed loop (Bank 1)
Related DTCs	P0154	Excessive time to enter closed loop (Bank 2)
	Main sensors/components	Front heated oxygen sensor
Required sensors/components	Related sensors/components	Crank position sensor, Engine coolant tempera- ture sensor, Vehicle speed sensor
Frequency of operation	Once per drive cycle	
Duration	65 sec.	
MIL operation	1 driving cycle	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS

	Specification	
Item	Minimum	Maximum
The monitor will run whenever the follow- ing DTCs are not present	See "List of disable a monitor" (on page DI-3)	
Both of the following conditions were met	A a	nd B
A. Time after following conditions met for 50 sec.	(a), (b), (c), (d), (e) and (f)	
(a) Engine coolant temperature	40⊡C (104°F)	-
(b) Engine speed	1,400 rpm	-
(c) Vehicle speed	40 km/h (25 mph)	-
(d) Idle	OFF	
(e) Time after engine start	180 sec.	-
(f) Fuel enrichment correction factor	1	63.998

TYPICAL MALFUNCTION THRESHOLDS

Detection Criteria	Threshold
Front heated oxygen sensor voltage	Less than 0.45 V

COMPONENT OPERATING RANGE

Parameter	Standard value
In the normal condition, the front heated oxygen sensor voltage	0 to 1 V

WIRING DIAGRAM

Refer to DTC P0031 on page DI-49.

INSPECTION PROCEDURE

HINT:

Hand-held tester only:

The narrowing down the trouble area is possible by performing ACTIVE TEST of the following "A/F CON-TROL" (Heated oxygen sensor or another can be distinguished).

(a) Perform ACTIVE TEST by hand-held tester (A/F CONTROL).

HINT:

"A/F CONTROL" is the ACTIVE TEST which changes the injection volume to -12.5 % or +25 %.

- (1) Connect the hand-held tester to the DLC3 on the vehicle.
- (2) Turn the ignition switch ON.
- (3) Warm up the engine with the engine speed at 2,500 rpm for approximately 90 seconds.
- (4) Select the item "DIAGNOSIS / ENHANCED OBD II / ACTIVE TEST / A/F CONTROL".
- (5) Perform "A/F CONTROL" with the engine in an idle condition (press the right or left button).

RESULT:

Heated oxygen sensor reacts in accordance with increase and decrease of injection volume +25 % \to rich output: More than 0.5 V

-12.5 % \rightarrow lean output: Less than 0.4 V

NOTICE:

However, there is a few seconds delay in the sensor 1 (front sensor) output. And there is about 20 seconds delay in the sensor 2 (rear sensor).

	Output voltage of heated oxygen sensor (sensor 1: front sensor)	Output voltage of heated oxygen sensor (sensor 2: rear sensor)	Mainly suspect trouble area
Case 1	Injection volume +25 % -12.5 % Output voltage More than 0.5 V Less than 0.4 V	Injection volume +25 % -12.5 % Output voltage More than 0.5 V Less than 0.4 V	
Case 2	Injection volume +25 % -12.5 % Output voltage Almost no reaction NG	Injection volume +25 % -12.5 % Output voltage More than 0.5 V Less than 0.4 V	Sensor 1: front sensor (sensor 1, heater, sensor 1 circuit)
Case 3	Injection volume +25 % -12.5 % Output voltage More than 0.5 V Less than 0.4 V	Injection volume +25 % -12.5 % Output voltage Almost no reaction NG	Sensor 2: rear sensor (sensor 2, heater, sensor 2 circuit)
Case 4	Injection volume +25 % -12.5 % Output voltage Almost no reaction NG	Injection volume +25 % -12.5 % Output voltage Almost no reaction	Extremely rich or lean of the actual air-fuel ratio (Injector, fuel pressure, gas leakage in exhaust system, etc.)

The following A/F CONTROL procedure enables the technician to check and graph the voltage output of the heated oxygen sensors (sensor 1 and 2).

For displaying the graph indication, enter "ACTIVE TEST / A/F CONTROL / USER DATA" then select "O2S B1S1 and O2S B1S2" by pressing "YES" button and push "ENTER" button before pressing "F4" button. HINT:

- ★ If different DTCs related to different systems terminal E2 as the ground terminal are output simultaneously, terminal E2 may be open.
- ★ Read freeze frame data using the hand-held tester or the OBD II scan tool. Freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, it is useful for determining whether the vehicle was running or stopped, the engine was warmed up or not, the air-fuel ratio was lean or rich, etc. at the time of the malfunction.
- ★ A high heated oxygen sensor (sensor 1) voltage (0.5 V or more) could be caused by a rich air fuel mixture. Check for conditions that would cause the engine to run rich.
- ★ A low heated oxygen sensor (sensor 1) voltage (0.4 V or less) could be caused by a lean air fuel mixture. Check for conditions that would cause the engine to run lean.

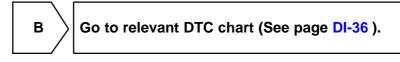
Are there any other codes (besides DTCs P0134 and P0154) being output?

PREPARATION:

- (a) Connect the hand-held tester or the OBD II scan tool to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester or OBD II scan tool main switch ON.
- (c) When using hand-held tester, enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.

CHECK:

1


Read the DTC using the hand-held tester or the OBD II scan tool.

RESULT:

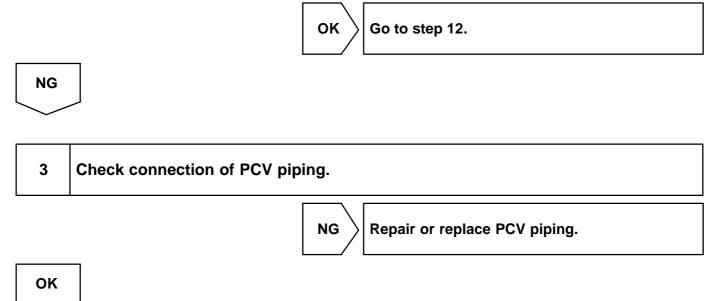
Display (DTC Output)	Proceed to
"P0134 and/or P0154"	A
"P0134 or P0154" and other DTCs	В

HINT:

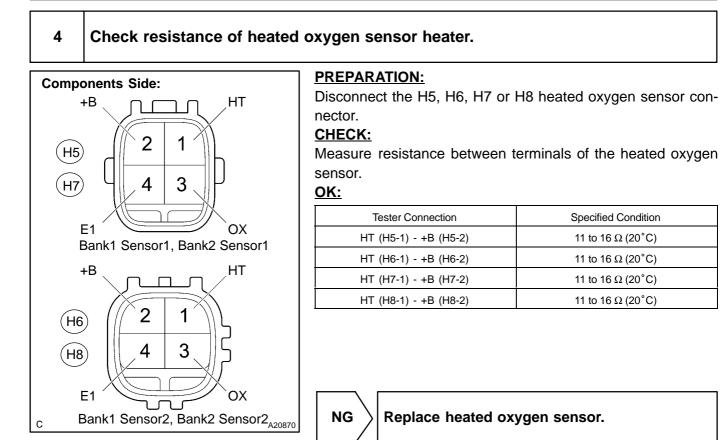
If any other codes besides P0134 and/or P0154 are output, perform the troubleshooting for those codes first.

2	Connect OBD II scan tool or hand-held tester, and read value for voltage output
	of heated oxygen sensor (bank 1, 2 sensor 1).

PREPARATION:

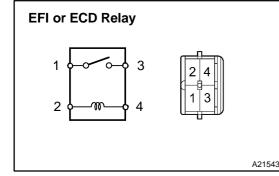

- (a) Connect the OBD II scan tool or the hand-held tester to the DLC3.
- (b) Warm up the engine to the normal operating temperature.
- (c) When using hand-held tester, enter the following menu: DIAGNOSIS / ENHANCED OBD II / DATA LIST / ALL / O2S B1 S1 or B2 S1.

CHECK:


Read the voltage output of the heated oxygen sensors when the engine speed is suddenly increased. HINT:

Quickly accelerate the engine to 4,000 rpm 3 times by using the accelerator pedal. **OK:**

Heated oxygen sensor output a RICH signal (0.45 V or more) at least once.



DI-134

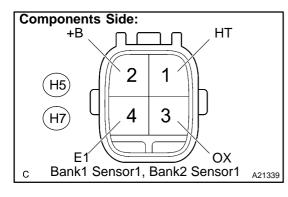
ОК

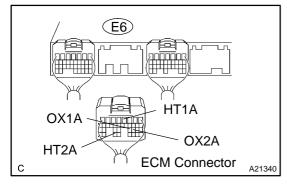
5 Check EFI or ECD relay.

PREPARATION:

Remove the EFI or ECD relay from the engine room R/B. CHECK:

Inspect the EFI or ECD relay.


<u>OK:</u>

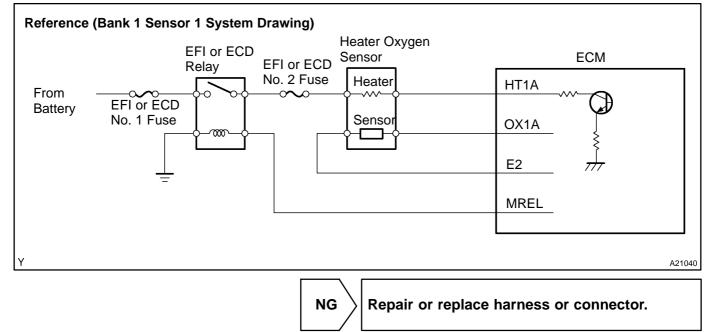

Terminal No.	Condition	Specified Condition	
2 - 4	Constant	Continuity	
	Usually	No Continuity	
1 - 3	Apply B+ between terminals 2 and 4	Continuity	
NG Replace EFI or ECD relay.			

ОК

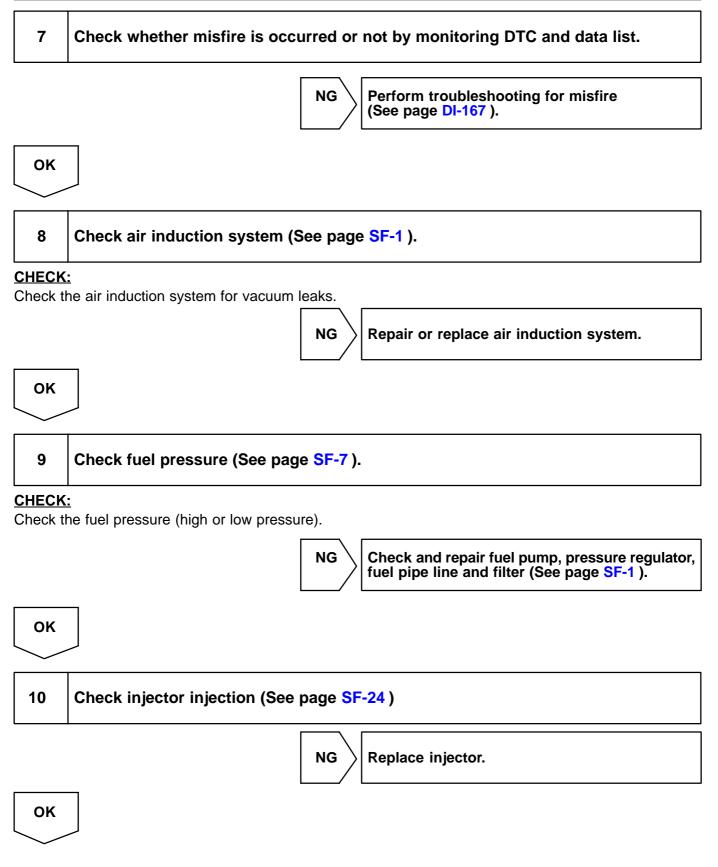
6

Check for open and short in harness and connector between ECM and heated oxygen sensor (bank 1, 2 sensor 1).

PREPARATION:


- (a) Disconnect the H5 or H7 heated oxygen sensor connector.
- (b) Disconnect the E6 ECM connector.

CHECK:


Measure the resistance between the wire harness side connectors.

<u>OK:</u>

Tester Connection	Specified Condition
OX (H5-3) - OX1A (E6-23)	Below 1 Ω
HT (H5-1) - HT1A (E6-4)	Below 1 Ω
OX (H7-3) - OX2A (E6-22)	Below 1 Ω
HT (H7-1) - HT2A (E6-33)	Below 1 Ω
OX (H5-3) or OX1A (E6-23) - Body ground	10 k Ω or higher
HT (H5-1) or HT1A (E6-4) - Body ground	10 k Ω or higher
OX (H7-3) or OX2A (E6-22) - Body ground	10 k Ω or higher
HT (H7-1) or HT2A (E6-33) - Body ground	10 k Ω or higher

OK

11 Check exhaust system for gas leakage. NG Repair or replace exhaust gas leakage point. ΟΚ Replace heated oxygen sensor (bank 1, 2 sensor 1). 12 Perform confirmation driving pattern (See page DI-106). HINT: Clear all DTCs prior to performing the confirmation driving pattern. Go 13 Are there DTCs P0134 and P0154 being output again? YES Replace ECM (See page SF-60). NO 14 Confirm if vehicle has run out of fuel in past. NO Check for intermittent problems (See page DI-3).

YES
DTCs P0134 and P0154 are caused by running out of fuel.

DIC29-01

DTC	P0136	Oxygen Sensor Circuit Malfunction (Bank 1 Sensor 2)
-----	-------	--

DTC	Oxygen Sensor Circuit Malfunction (Bank 2 Sensor 2)
	Sensor Z)

CIRCUIT DESCRIPTION

Refer to DTC P0031 on page DI-49.

DTC No.	DTC Detecting Condition	Trouble Area
P0136 P0156	The following condition (a) or (b) continues 300 sec. or more.(a) During driving with the engine warmed up, heated oxygen sensor output does not change.(b) Heated oxygen sensor output is very low most of the time.	☑Open or short in heated oxygen sensor circuit □Heated oxygen sensor □Heated oxygen sensor heater □EFI or ECD relay

HINT:

- Bank 1 refers to bank that includes cylinder No. 1.
- Bank 2 refers to bank that does not includes cylinder No. 1.
- □ Sensor 2 refers to the sensor farther away from the engine assembly.

MONITOR DESCRIPTION

The ECM monitors the rear heated oxygen sensor in the following 3 items:

- (1) If the rear heated oxygen sensor voltage changes between Rich and Lean while the vehicle is running (repeating acceleration and deceleration). If not, the ECM interprets this as a malfunction, illuminates the MIL, and then sets DTC.
- (2) If the rear heated oxygen sensor voltage does not remain at less than 0.05 V for a long time while the vehicle is running. If not, the ECM interprets this as a malfunction, illuminates the MIL, and then sets DTC.
- (3) If the sensor's voltage drops to below 0.2 V (extremely Lean status) immediately when the vehicle decelerates and the fuel cut is working. if not, the ECM interprets this to mean the sensor's response feature has deteriorated, illuminates the MIL, and then sets DTC.

MONITOR STRATEGY

	P0136	Heated rear oxygen sensor output voltage (Crack) (Bank 1)	
		Heated rear oxygen sensor output voltage (Bank 1)	
		Heated rear oxygen sensor slow response (Bank 1)	
Related DTCs	P0156	Heated rear oxygen sensor output voltage (Crack) (Bank 2)	
		Heated rear oxygen sensor output voltage (Bank 2)	
		Heated rear oxygen sensor slow response (Bank 2)	
	Main sensors/components	Heated rear oxygen sensor	
Required sensors/components	Related sensors/components	Mass air flow meter, Vehicle speed sensor	
Frequency of operation	Once per drive cycle	Once per drive cycle	
Duration	300 sec.		
MIL operation	2 driving cycles		
Sequence of operation	None		

TYPICAL ENABLING CONDITIONS

_	Specification	
Item	Minimum	Maximum
The monitor will run whenever the follow- ing DTCs are not present	See "List of disable a monitor" (on page DI-3)	
Case 1 (Output voltage (crack)):		
Vehicle speed	3 km/h (2 mph)	-
Idle		OFF
Fuel cut		OFF
Time after fuel cut ON to OFF	40 sec.	<u> </u>
Intake air amount per revolution	0.7 g/rev	-
Case 2 (Output voltage):		
All of the following conditions are met:	A, B, C and D	
A. Pass/fail detection in this driving cycle	Not detected	
B. Engine	Running	
C. Time after engine start	0 sec.	-
D. Either of the following conditions is met:	(a) or (b)	
(a) Cumulative time while heated oxygen sensor heater is ON	22 sec.	-
(b) At once more heated oxygen sensor voltage	0.2 V	-
Case 3 (Slow response):		
Rear oxygen sensor voltage before the fuel cut	0.2 V or more	-
Catalyst condition	Warmed up	
Engine coolant temperature	75°C (167°F)	-

DIAGNOSTICS - E	ENGINE
-----------------	--------

Fuel cut	Operating	
Time after engine start	200 sec.	-

TYPICAL MALFUNCTION THRESHOLDS

Detection Criteria	Threshold	
Case 1 (Output voltage (crack)):		
Following conditions are met:	A, B and C	
A. Cumulative rear heated oxygen sensor monitor time	300 sec. or more	
B. Time while rear heated oxygen sensor voltage is less than 0.05 V	180 sec. or more	
C. Maximum rear heated oxygen sensor rich time (0.45 V or more)	Less than 20 sec.	
Case 2 (Output voltage):		
Number of heated oxygen sensor voltage "switching"	0 time or less	
"Switching" is counted when the sensor signal crosses the minimum or maximum voltage		
Minimum voltage	Less than 0.4 V	
Maximum voltage 0.5 V or more		
Case 3 (Slow response):		
Time until the rear oxygen sensor voltage drops to 0.2 V after fuel cut starts operating	6 sec. or more	

COMPONENT OPERATING RANGE

Parameter	Standard Value
Heated oxygen sensor voltage	0 to 1 V

O2S TEST RESULT

Refer to page DI-3 for detailed information.

Rear HO2S voltage monitor

If the HO2S sensor voltage is out of the standard value, the ECM interprets this as a malfunction.

TEST ID	Description of TEST DATA	Conversion Factor	Unit
\$07	Minimum rear HO2S voltage	N/A	V
\$08	Maximum rear HO2S voltage	N/A	V

If the time required to change is out of the standard value, the ECM interprets this as a malfunction.

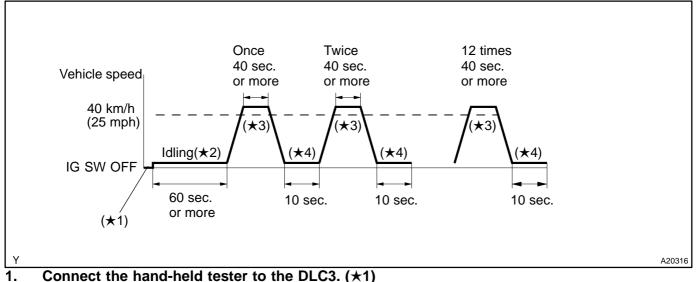
TEST ID	Description of TEST DATA	Conversion Factor	Unit
\$31	Time to change from Lean (<0.4 V) to Rich (\pm 0.5 V)	N/A	sec.
\$32	Time to change from Rich (± 0.5 V) to Lean (<0.4 V)	N/A	sec.

Rear HO2S slow response monitor

If the elapsed time is out of the standard value, the ECM interprets this as a malfunction.

TEST ID	Description of TEST DATA	Conversion Factor	Unit
\$37	Until rear HO2S voltage drops to 0.2 V after fuel-cut starting	N/A	sec.

Rear HO2S element monitor


If all the values (\$81, \$84, \$85 and \$87) are out of the standard values, the ECM interprets this as a malfunction.

TEST ID	Description of TEST DATA	Conversion Factor	Unit
\$81	Percentage of monitoring time when the HO2S voltage is less than 0.05 V	Multiply 0.3906	%
\$84	Percentage of monitoring time when the HO2S voltage is more than 0.7 V	Multiply 0.3906	%
\$85	Time when the HO2S voltage is 0.45 V or more	Multiply 0.2621	sec.
\$87	Percentage of monitoring time when the HO2S voltage is 0.45 V or more	Multiply 0.3906	%

WIRING DIAGRAM

Refer to DTC P0031 on page DI-49.

CONFIRMATION DRIVING PATTERN

- 2. Switch the hand-held tester from the normal mode to the check mode (See page DI-3). (\star 1)
- 3. Start the engine and let the engine idle for 60 seconds or more. (\star 2)
- 4. Drive the vehicle at 40 km/h (25 mph) or more for 40 seconds or more. $(\star 3)$
- 5. Let the engine idle for 10 seconds or more. $(\star 4)$
- 6. Perform steps 4. and 5. for 12 times.

HINT:

If a malfunction exists, the MIL will light up on the multi-information display during step 6. **NOTICE:**

If the conditions in this test are not strictly followed, a malfunction detection will not occur. If you do not have a hand-held tester, turn the ignition switch OFF after performing steps from 3 to 6, then perform steps from 3 to 6 again.

INSPECTION PROCEDURE

HINT:

Hand-held tester only:

The narrowing down the trouble area is possible by performing ACTIVE TEST of the following "A/F CON-TROL" (Heated oxygen sensor or another can be distinguished).

(a) Perform ACTIVE TEST by hand-held tester (A/F CONTROL).

HINT:

"A/F CONTROL" is the ACTIVE TEST which changes the injection volume to -12.5 % or +25 %.

- (1) Connect the hand-held tester to the DLC3 on the vehicle.
- (2) Turn the ignition switch ON.
- (3) Warm up the engine with the engine speed at 2,500 rpm for approximately 90 seconds.
- (4) Select the item "DIAGNOSIS / ENHANCED OBD II / ACTIVE TEST / A/F CONTROL".
- (5) Perform "A/F CONTROL" with the engine in an idle condition (press the right or left button).

RESULT:

Heated oxygen sensor reacts in accordance with increase and decrease of injection volume +25 % \rightarrow rich output: More than 0.5 V

-12.5 % \rightarrow lean output: Less than 0.4 V

NOTICE:

However, there is a few seconds delay in the sensor 1 (front sensor) output. And there is about 20 seconds delay in the sensor 2 (rear sensor).

	Output voltage of heated oxygen sensor (sensor 1: front sensor)	Output voltage of heated oxygen sensor (sensor 2: rear sensor)	Mainly suspect trouble area
Case 1	Injection volume +25 % -12.5 % Output voltage More than 0.5 V Less than 0.4 V	Injection volume +25 % -12.5 % Output voltage More than 0.5 V Less than 0.4 V	
Case 2	Injection volume +25 % -12.5 % Output voltage Almost no reaction NG	Injection volume +25 % -12.5 % Output voltage More than 0.5 V Less than 0.4 V	Sensor 1: front sensor (sensor 1, heater, sensor 1 circuit)
Case 3	Injection volume +25 % -12.5 % Output voltage More than 0.5 V Less than 0.4 V	Injection volume +25 % -12.5 % Output voltage Almost no reaction NG	Sensor 2: rear sensor (sensor 2, heater, sensor 2 circuit)
Case 4	Injection volume +25 % -12.5 % Output voltage Almost no reaction NG	Injection volume +25 % -12.5 % Output voltage Almost no reaction	Extremely rich or lean of the actual air-fuel ratio (Injector, fuel pressure, gas leakage in exhaust system, etc.)

The following A/F CONTROL procedure enables the technician to check and graph the voltage output of the heated oxygen sensors.

For displaying the graph indication, first enter "ACTIVE TEST / A/F CONTROL / USER DATA," then select "02S B1S1 and O2S B1S2" by pressing "YES" button, and push "ENTER" button before pressing "F4" button. HINT:

- □ If different DTCs that are related to different system are output simultaneously while terminal E2 is used as a ground terminal, terminal E2 may be open.
- □ Read freeze frame data using the hand-held tester or the OBD II scan tool. Freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, it is useful for determining whether the vehicle was running or stopped, the engine was warmed up or not, the air-fuel ratio was lean or rich, etc. at the time of the malfunction.
 - 1

Are there any other codes (besides DTC P0136 or P0156) being output?

PREPARATION:

- (a) Connect the hand-held tester or the OBD II scan tool to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester or OBD II scan tool main switch ON.
- (c) When using hand-held tester, enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.

CHECK:

Read the DTC using the hand-held tester or the OBD II scan tool.

RESULT:

Display (DTC Output)	Proceed to
P0136	А
"P0136" and other DTCs	В

HINT:

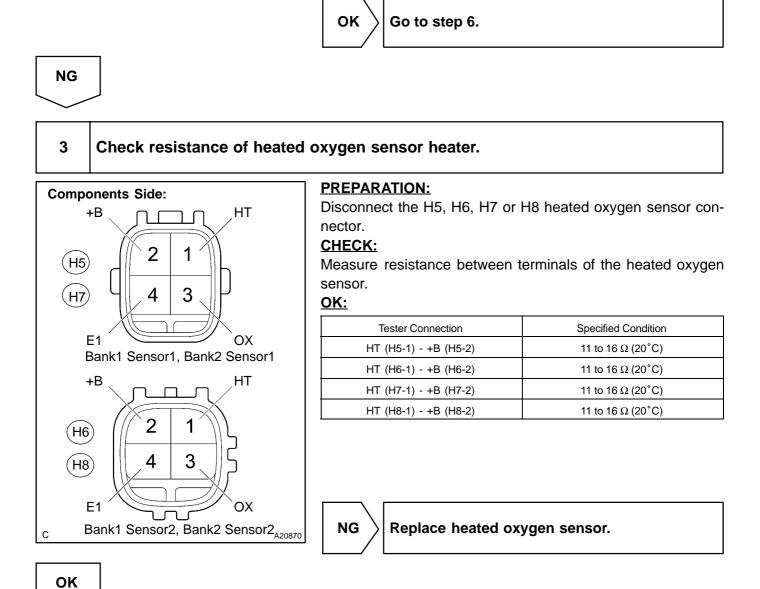
If any other codes besides P0136 are output, perform the troubleshooting for those DTCs first.

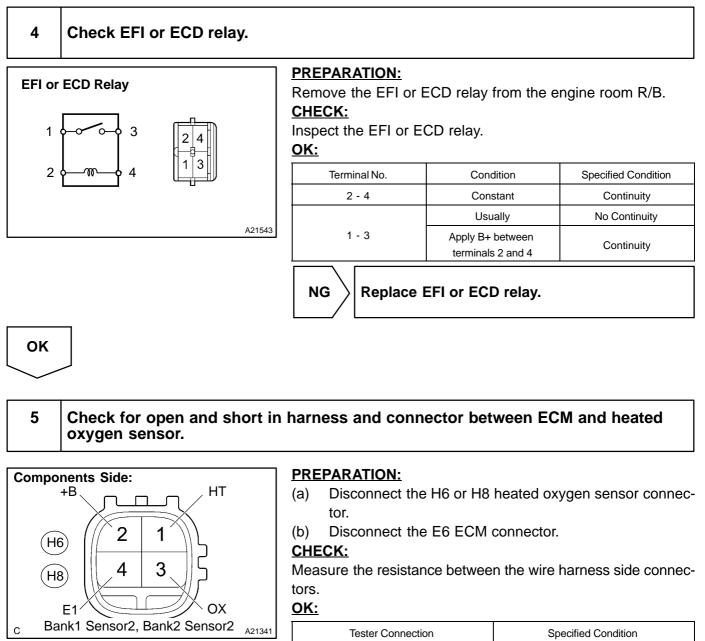
Α

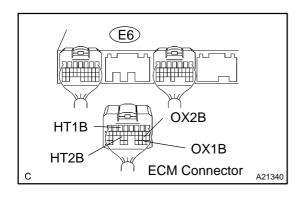
2 Check output voltage of heated oxygen sensor.

PREPARATION:

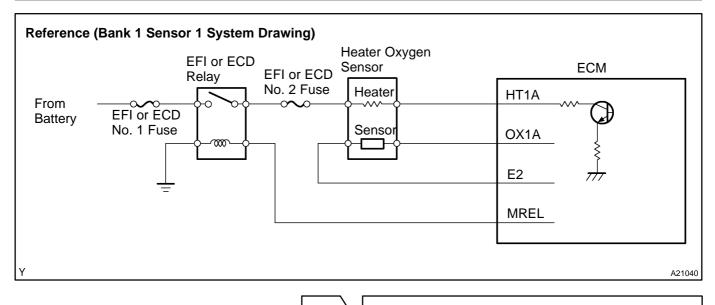
- (a) Connect the OBD II scan tool or the hand-held tester to the DLC3.
- (b) After warming up the engine, run the engine at 2,500 rpm for 3 minutes.
- (c) When using hand-held tester, enter the following menu: DIAGNOSIS / ENHANCED OBD II / DATA LIST / ALL / O2S B2 S1 or B2 S2.


CHECK:


Read the voltage output of the heated oxygen sensor when the engine speed is suddenly increased. HINT:


Quickly accelerate the engine to 4,000 rpm 3 minutes by using the accelerator pedal.

<u>OK:</u>

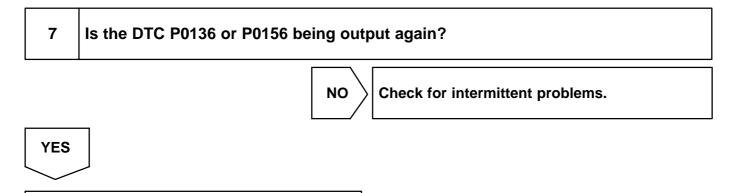

Heated oxygen sensor output voltage: Alternates from 0.4 V or less to 0.5 V or more.

Tester Connection	Specified Condition
OX (H6-3) - OX1B (E6-29)	Below 1 Ω
HT (H6-1) - HT1B (E6-5)	Below 1 Ω
OX (H8-3) - OX2B (E6-21)	Below 1 Ω
HT (H8-1) - HT2B (E6-25)	Below 1 Ω
OX (H6-3) or OX1B (E6-29) - Body ground	10 k Ω or higher
HT (H6-1) or HT1B (E6-5) - Body ground	10 k Ω or higher
OX (H8-3) or OX2B (E6-21) - Body ground	10 k Ω or higher
HT (H8-1) or HT2B (E6-25) - Body ground	10 k Ω or higher

NG

Repair or replace harness or connector.

Replace heated	oxygen sensor.


6 Perform confirmation driving pattern.

HINT:

OK

Clear all DTCs prior to performing the confirmation driving pattern.

Go

Replace heated oxygen sensor.

	-	DIC2A-01
DTC	P0171	System too Lean (Bank 1)
DTC	P0172	System too Rich (Bank 1)
	-	
DTC	P0174	System too Lean (Bank 2)
DTC	P0175	System too Rich (Bank 2)

CIRCUIT DESCRIPTION

The fuel trim is related to the feedback compensation value, not to the basic injection time. The fuel trim includes the short-term fuel trim and the long-term fuel trim.

The short-term fuel trim is the short-term fuel compensation used to maintain the air-fuel ratio at stoichiometric air-fuel ratio. The signal from the heated oxygen sensor indicates whether the air-fuel ratio is RICH or LEAN compared to the stoichiometric air-fuel ratio. This variance triggers a reduction in the fuel volume if the air-fuel ratio is RICH, and an increase in the fuel volume if it is LEAN.

The long-term fuel trim is the overall fuel compensation carried out in long-term to compensate for a continual deviation of the short-term fuel trim from the central value, due to individual engine differences, wear overtime and changes in the operating environment.

If both the short-term fuel trim and the long-term fuel trim are LEAN or RICH beyond a certain value, it is detected as a malfunction and the MIL is illuminated and a DTC is set.

DTC No.	DTC Detecting Condition	Trouble Area
P0171 P0174	When air-fuel ratio feedback is stable after warming up engine, fuel trim is considerably in error on LEAN side (2 trip detection logic)	 Air induction system Injector blockage Mass air flow meter Engine coolant temperature sensor Fuel pressure Gas leakage in exhaust system Open or short in heated oxygen sensor (bank 1, 2 sensor 1) circuit Heated oxygen sensor (bank 1, 2 sensor 1) Heated oxygen sensor heater (bank 1, 2 sensor 1) EFI or ECD relay PCV piping ECM
P0172 P0175	When air-fuel ratio feedback is stable after warming up engine, fuel trim is considerably in error on RICH side (2 trip detection logic)	 Injector leak, blockage Mass air flow meter Engine coolant temperature sensor Ignition system Fuel pressure Gas leakage in exhaust system Open or short in heated oxygen sensor (bank 1, 2 sensor 1) circuit Heated oxygen sensor (bank 1, 2 sensor 1) ECM

HINT:

- □ When DTC P0171 or P0174 is recorded, the actual air-fuel ratio is on the LEAN side. When DTC P0172 or P0175 is recorded, the actual air-fuel ratio is on the RICH side.
- □ If the vehicle runs out of fuel, the air-fuel ratio is LEAN and DTC P0171 or P0174 may be recorded. The MIL then comes on.
- If the total of the short-term fuel trim value and long-term fuel trim value is within \pm 35 % (engine coolant temperature is more than 75 C (167 F)), the system is functioning normally.

+40 (%): Thershold at LEAN 1.40 Fuel compensation amount 1.0 0.65 -35 (%): Thershold at RICH

MONITOR DESCRIPTION

Under closed-loop fuel control, fuel injection amounts that deviate from the ECM's estimated fuel amount will cause a change in the long-term fuel trim compensation value. This long-term fuel trim is adjusted when there are persistent deviations in the short-term fuel trim values. And the deviation from a simulated fuel injection amount by the ECM affects a smoothed fuel trim learning value. The smoothed fuel trim learning value is the combination of smoothed short term fuel trim (fuel feedback compensation value) and smoothed long term fuel trim (learning value of the air-fuel ratio). When the smoothed fuel trim learning value exceeds the DTC threshold, the ECM interprets this as a fault in the fuel system and sets a DTC. Example:

If the smoothed fuel trim learning value is more than +40% or less than -35% the ECM interprets this as a malfunction in the fuel system.

A20489

A21204

MONITOR STRATEGY

	P0171	Fuel system lean (Bank 1)
Related DTCs	P0172	Fuel system rich (Bank 1)
	P0174	Fuel system lean (Bank 2)
	P0175	Fuel system rich (Bank 2)
	Main sensors/components	Front oxygen sensor
Required sensors/components	Related sensors/components	Engine coolant temperature sensor, Mass air flow meter, Crankshaft position sensor
Frequency of operation Continuous		
Duration	10 sec.	
MIL operation	2 driving cycles	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS

	Specification	
Item	Minimum	Maximum
The monitor will run whenever the follow- ing DTCs are not present	See "List of disable a	a monitor" (on page DI-3)
Battery voltage	11 V	-
Fuel system: Closed loop	13 sec.	-
One of the following conditions is met:	A or B	
A. Engine speed	-	1,000 rpm
B. Intake air amount per revolution	0.26 g/sec.	-
Warm up condition to enable air fuel ratio learning control	Conditions are met	

TYPICAL MALFUNCTION THRESHOLDS

Detection Criteria	Threshold
Following condition is continue for 3 sec.	A or B
A. Smoothed fuel trim learning value (Lean)	40% or more
B. Smoothed fuel trim learning value (Rich)	-35% or less

WIRING DIAGRAM

Refer to DTC P0031 on page DI-49.

INSPECTION PROCEDURE

HINT:

Hand-held tester only:

The narrowing down the trouble area is possible by performing ACTIVE TEST of the following "A/F CON-TROL" (Heated oxygen sensor or another can be distinguished).

(a) Perform ACTIVE TEST by hand-held tester (A/F CONTROL).

HINT:

"A/F CONTROL" is the ACTIVE TEST which changes the injection volume to -12.5 % or +25 %.

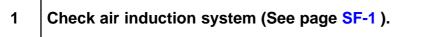
- (1) Connect the hand-held tester to the DLC3 on the vehicle.
- (2) Turn the ignition switch ON.
- (3) Warm up the engine with the engine speed at 2,500 rpm for approximately 90 seconds.
- (4) Select the item "DIAGNOSIS / ENHANCED OBD II / ACTIVE TEST / A/F CONTROL".
- (5) Perform "A/F CONTROL" with the engine in an idle condition (press the right or left button).

RESULT:

Heated oxygen sensor reacts in accordance with increase and decrease of injection volume +25 % \to rich output: More than 0.5 V

-12.5 % \rightarrow lean output: Less than 0.4 V

NOTICE:

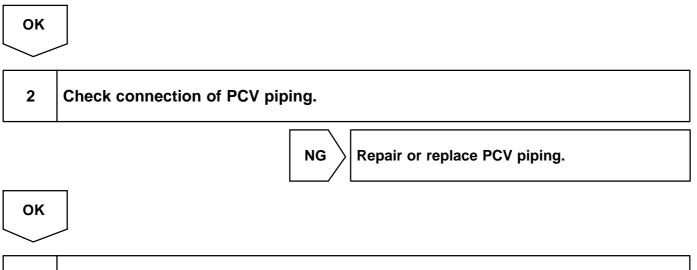

However, there is a few seconds delay in the sensor 1 (front sensor) output. And there is about 20 seconds delay in the sensor 2 (rear sensor).

	Output voltage of heated oxygen sensor (sensor 1: front sensor)	Output voltage of heated oxygen sensor (sensor 2: rear sensor)	Mainly suspect trouble area
Case 1	Injection volume +25 % -12.5 % Output voltage More than 0.5 V Less than 0.4 V	Injection volume +25 % -12.5 % Output voltage More than 0.5 V Less than 0.4 V	
Case 2	Injection volume +25 % -12.5 % Output voltage Almost no reaction — NG	Injection volume +25 % -12.5 % Output voltage More than 0.5 ∨ Less than 0.4 ∨OK	Sensor 1: front sensor (sensor 1, heater, sensor 1 circuit)
Case 3	Injection volume +25 % -12.5 % Output voltage More than 0.5 V Less than 0.4 V	Injection volume +25 % -12.5 % Output voltage Almost no reaction	Sensor 2: rear sensor (sensor 2, heater, sensor 2 circuit)
Case 4	Injection volume +25 % -12.5 % Output voltage Almost no reaction NG	Injection volume +25% -12.5% Output voltage Almost no reaction $$ NG	Extremely rich or lean of the actual air-fuel ratio (Injector, fuel pressure, gas leakage in exhaust system, etc.)

The following A/F CONTROL procedure enables the technician to check and graph the voltage output of the heated oxygen sensors (sensor 1 and 2).

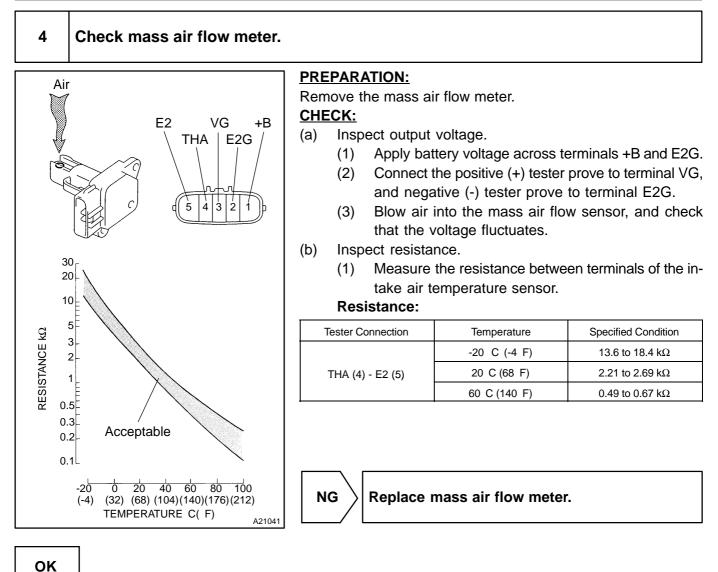
For displaying the graph indication, enter "ACTIVE TEST / A/F CONTROL / USER DATA" then select "O2S B1S1 and O2S B1S2" by pressing "YES" button and push "ENTER" button before pressing "F4" button. HINT:

- □ If different DTCs related to different systems that have terminal E2 as the ground terminal, terminal E2 may be open.
- □ Read freeze frame data using the hand—held tester or the OBD II scan tool. Freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, it is useful for determining whether the vehicle was running or stopped, the engine was warmed up or not, the air-fuel ratio was lean or rich, etc. at the time of the malfunction.
- A high heated oxygen sensor (sensor 1) voltage (0.5 V or more) could be caused by a rich air fuel mixture. Check for conditions that would cause the engine to run rich.
- □ A low heated oxygen sensor (sensor 1) voltage (0.4 V or less) could be caused by a lean air fuel mixture. Check for conditions that would cause the engine to run lean.

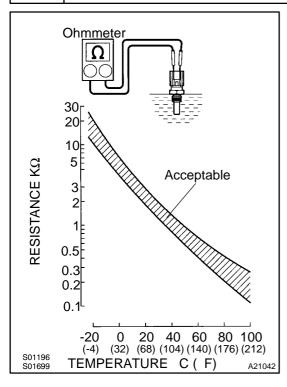


CHECK:

Check the air induction system for vacuum leaks.



 \rangle Repair or replace air induction system.



3	Check injector injection (See page SF-24).	
	NG Replace injector.	

OK

5 Check engine coolant temperature sensor.

PREPARATION:

Remove the engine coolant temperature sensor.

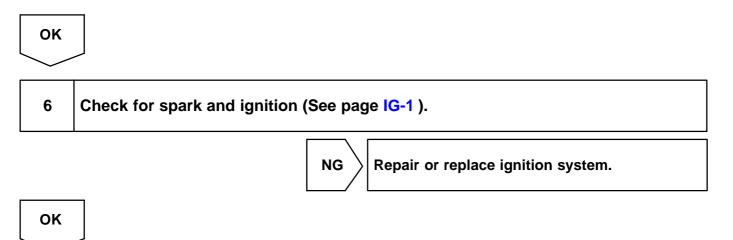
CHECK:

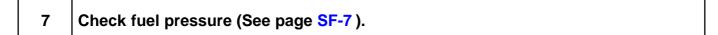
(a) Measure the resistance between the terminals of the engine coolant temperature sensor.

Resistance:

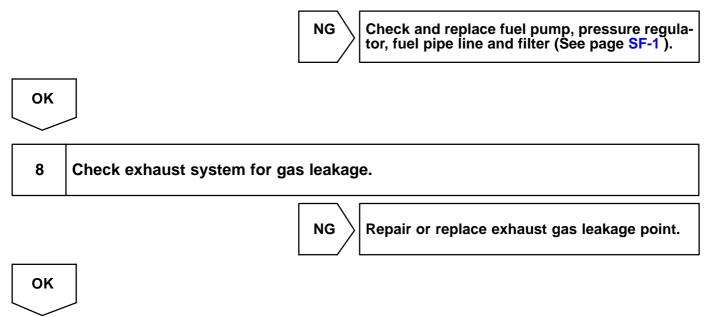
Tester Connection	Specified Condition
	2.32 to 2.59 kΩ (20 C (68 F))
1 - 2	0.310 to 0.326 kΩ (80 C (176 F))

NOTICE:


In case of checking the engine coolant temperature sensor in the water, be careful not to allow water to go into the terminals. After checking, dry the sensor. HINT:


Alternate procedure: Connect an ohmmeter to the installed engine coolant temperature sensor and read the resistance. Use an infrared thermometer to measure the engine temperature in the immediate vicinity of the sensor. Compare these values to the resistance/temperature graph. Change the engine temperature (warm up or allow to cool down) and repeat the test.

(b) Reinstall the engine coolant temperature sensor.


Repair or replace engine coolant temperature sensor.

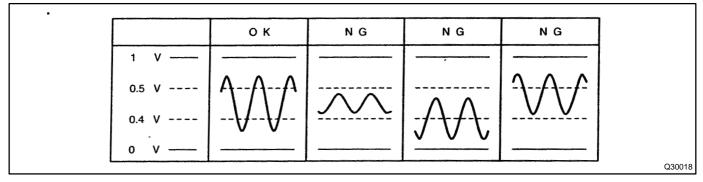
CHECK:

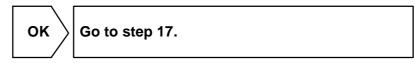
Check the fuel pressure (high or low pressure).

Check output voltage of heated oxygen sensor (bank 1, 2 sensor 1) during id-
ling.

PREPARATION:

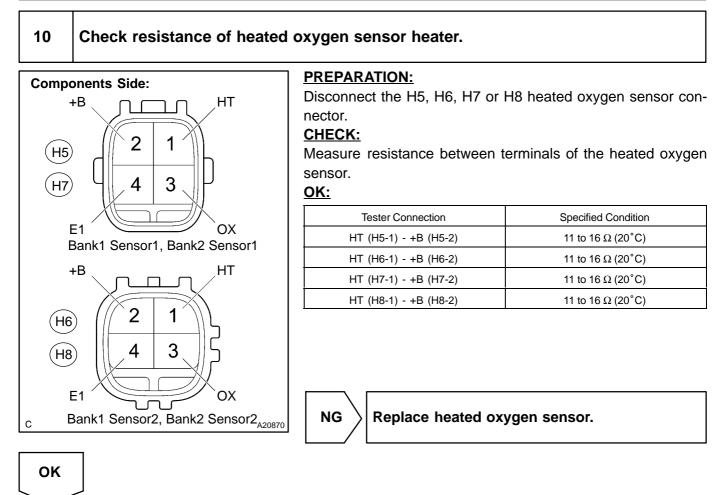
- (a) Warm up the heated oxygen sensor with the engine speed at 2,500 rpm for approximately 90 seconds.
- (b) Connect the hand-held tester or OBD II scan tool to the DLC3.
- (c) When using hand-held tester, enter the following menu: DIAGNOSIS / ENHANCED OBD II / DATA LIST / ALL / O2S B1 S1 or B2 S1.

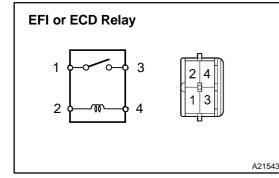

CHECK:


Check the output voltage of the heated oxygen sensor during idling using the OBD II scan tool or hand-held tester.

<u>OK:</u>

Heated oxygen sensor output voltage:


Alternates between less than 0.4 V and more than 0.55 V (See the following table).



NG

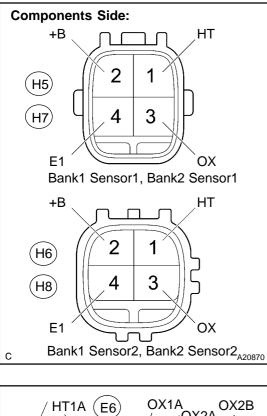
DI-156

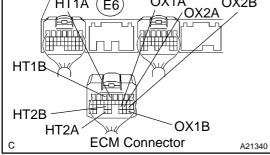
11 Check EFI or ECD relay.

PREPARATION:

Remove the EFI or ECD relay from the engine room R/B. CHECK:

Inspect the EFI or ECD relay.


<u>OK:</u>

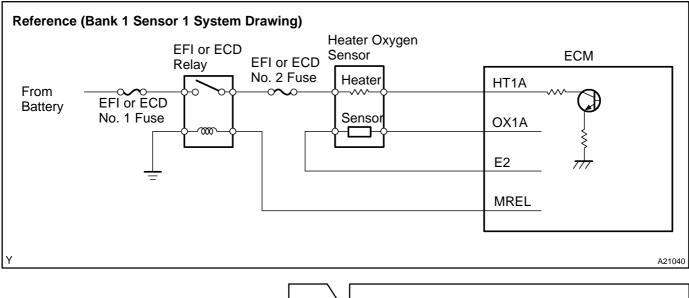

Terminal No.	Condition	Specified Condition
2 - 4	Constant	Continuity
	Usually	No Continuity
1 - 3	Apply B+ between terminals 2 and 4	Continuity
NG Replace EFI or ECD relay.		

12

Check for open and short in harness and connector between ECM and heated oxygen sensor.

PREPARATION:

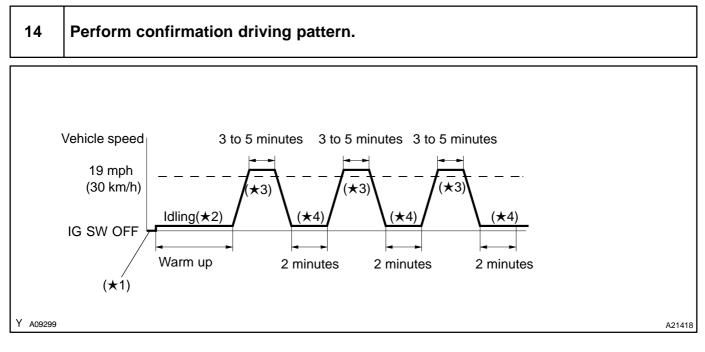
- (a) Disconnect the H5, H6, H7 or H8 heated oxygen sensor connector.
- (b) Disconnect the E6 ECM connector.


CHECK:

Measure the resistance between the wire harness side connectors.

<u>OK:</u>

Tester Connection	Specified Condition
OX (H5-3) - OX1A (E6-23)	Below 1 Ω
HT (H5-1) - HT1A (E6-4)	Below 1 Ω
OX (H6-3) - OX1B (E6-29)	Below 1 Ω
HT (H6-1) - HT1B (E6-5)	Below 1 Ω
OX (H7-3) - OX2A (E6-22)	Below 1 Ω
HT (H7-1) - HT2A (E6-33)	Below 1 Ω
OX (H8-3) - OX2B (E6-21)	Below 1 Ω
HT (H8-1) - HT2B (E6-25)	Below 1 Ω
OX (H5-3) or OX1A (E6-23) - Body ground	10 k Ω or higher
HT (H5-1) or HT1A (E6-4) - Body ground	10 k Ω or higher
OX (H6-3) or OX1B (E6-29) - Body ground	10 k Ω or higher
HT (H6-1) or HT1B (E6-5) - Body ground	10 k Ω or higher
OX (H7-3) or OX2A (E6-22) - Body ground	10 k Ω or higher
HT (H7-1) or HT2A (E6-33) - Body ground	10 k Ω or higher
OX (H8-3) or OX2B (E6-21) - Body ground	10 k Ω or higher
HT (H8-1) or HT2B (E6-25) - Body ground	10 k Ω or higher


Γ

NG

Replace or replace harness or connector.

ОК	
13	Replace heated oxygen sensor.
Go	

- (a) Disconnect the battery terminal and wait for a minute (clear learning value of the air fuel ratio). (\star 1)
- (b) Connect the hand-held tester to the DLC3. (\star 1)
- (c) Switch the hand-held tester from the normal mode to the check mode (See page DI-3). (\pm 1)
- (d) Start the engine and let it idle until engine coolant temperature is 75 $^{\circ}$ C (167 $^{\circ}$ F) or more. (\pm 2)
- (e) Drive the vehicle at 19 mph (30 km/h) or more for 3 minutes or more. $(\bigstar 3)$
- (f) Let the engine idle for approx. 2 minutes. $(\bigstar 4)$
- (g) Perform steps (e) and (g) at least 3 times.

HINT:

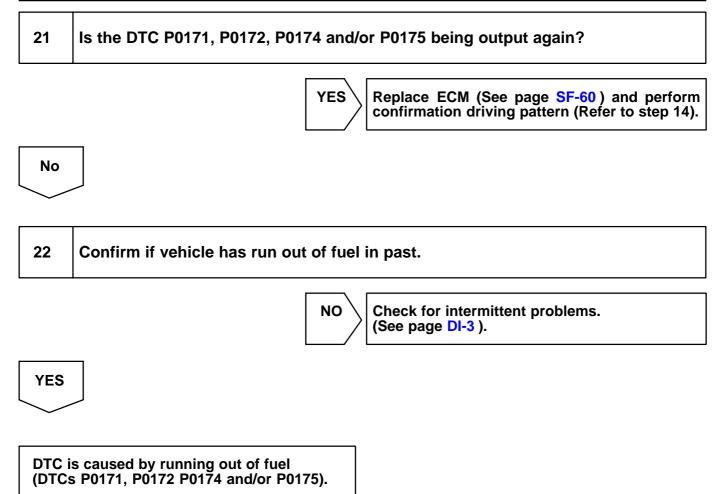
If a malfunction exists, the MIL will be illuminated during step (f).

NOTICE:

If the conditions in this test are not strictly followed, detecting a malfunction may be difficult. If you do not have a hand-held tester, turn the ignition switch OFF after performing steps (e) to (f), and then do step (f) again.

15	Is there DTC P0171, P0172, P0174 or P0175 being output ag	gain?
15	13 there Dict 0171, 1 0172, 1 0174 of 1 0175 being output a	gann:

Replace ECM (See page SF-60) and perform confirmation driving pattern (Refer to step 14).


NO

DI-159

DI-160

	DIAGNOSTICS - ENGINE
16	Confirm if vehicle has run out of fuel in past.
	NO Check for intermittent problems (See page DI-3).
YES	
DTC I	P0171, P0172, P0174 or P0175 is caused by running out of fuel.
17	Perform confirmation driving pattern.
HINT: Clear al	I DTCs prior to performing the confirmation driving pattern (Refer to step 14).
Go	
18	Is there DTC P0171, P0172 P0174 and/or P0175 being output again?
	NO Go to step 22.
YES	
Ť	
19	Replace heated oxygen sensor.
Go	
20	Perform confirmation driving pattern.
HINT: Clear al	DTCs prior to performing the confirmation driving pattern (Refer to step 14).
Go	

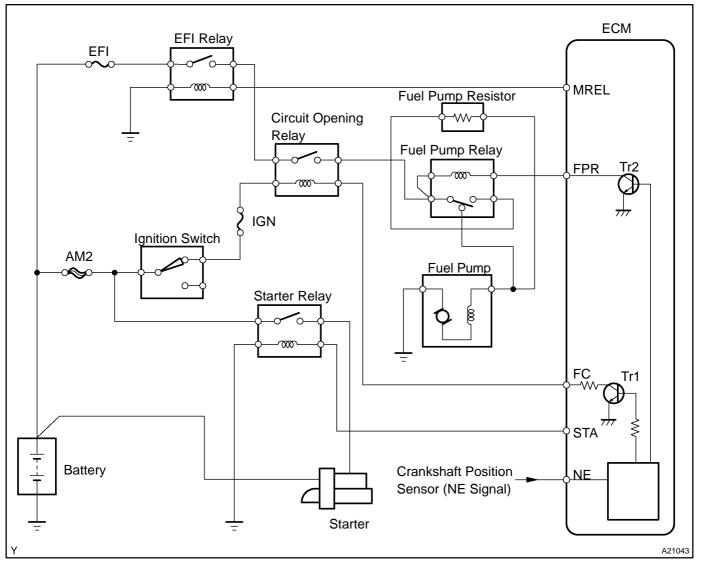
Author :

DTC

P0230

Fuel Pump Primary Circuit

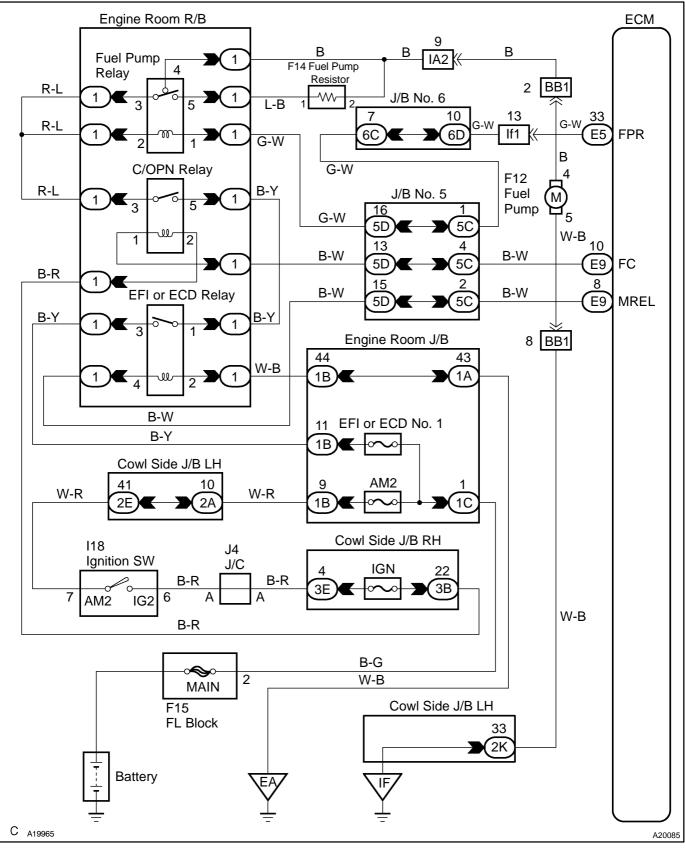
CIRCUIT DESCRIPTION


In the diagram below, when the engine is cranked, current flows from terminal STAR of the ECM to the starter relay coil and also current flows to terminal STA of the ECM (STA signal).

When the STA signal and NE signal are input to the ECM, the Tr1 is turned ON, current flows to the coil of the circuit opening relay, the relay switches on, power is supplied to the fuel pump, and the fuel pump operates.

While the NE signal is generated (engine running), the ECM keeps the Tr1 ON (circuit opening relay ON) and the fuel pump also keeps operating.

The fuel pump speed is controlled at two levels (high speed or low speed) by the condition of the engine (starting, light load, heavy load). When the engine starts (STA ON), the Tr2 in the ECM is OFF, so the fuel pump relay closes and battery positive voltage is applied directly to the fuel pump. The fuel pump operates at high speed.

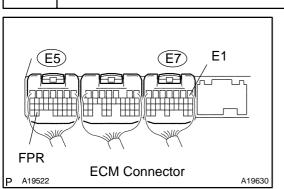

After the engine starts during idling or light loads, since the Tr2 goes ON, power is supplied to the fuel pump via the fuel pump resistor. The fuel pump operates at low speed.

DIC2B-01

DTC No.	DTC Detecting Condition	Trouble Area
P0230	Open or short in fuel pump relay circuit	 ★Open or short in fuel pump relay circuit ★Fuel pump relay ★Circuit opening relay ★Fuel pump ★ECM

WIRING DIAGRAM

HINT:


This diagnostic chart is based on premise that engine is started. If the engine is not started, proceed to problem symptoms table on DI-48.

INSPECTION PROCEDURE

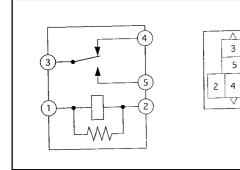
HINT:

1

Read freeze frame data using the hand-held tester or the OBD II scan tool. Freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, as well as other data from the time when a malfunction occurred.

CHECK:

Measure the voltage between terminals of E5 and E7 ECM connectors.


OK:

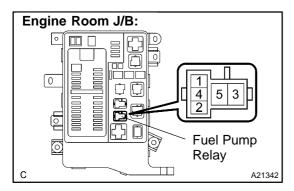
Check voltage between terminal FPR and E1 of ECM.

Tester Connection	Condition	Specified Condition	
FPR (E5-33) - E1 (E7-1)	STA signal ON	9 to 14 V	
FPR (E5-33) - E1 (E7-1)	STA signal OFF	0 to 3 V	
OK Replace ECM (See page SF-60).			

NG

2 Check fuel pump relay.

PREPARATION:

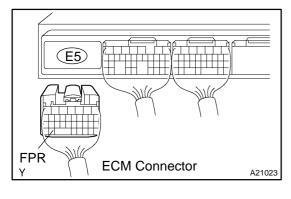

Remove the fuel pump relay from the engine room R/B. CHECK:

Inspect the fuel pump relay.

Teste	er Connection	Specified Condition
	1 - 2	Continuity
	3 - 4	Continuity
	3 - 5	No continuity
	3 - 5	Continuity (Apply battery voltage terminal 1 and 2)

OK

3 Check for open and short in harness and connector between fuel pump relay and ECM.


PREPARATION:

- (a) Remove the fuel pump relay from the engine room J/B.
- (b) Disconnect the E5 ECM connector.

CHECK:

Measure the resistance between wire harness side connectors. **OK:**

Tester Connection	Specified Condition
Engine Room J/B (Fuel pump relay ter- minal 1) - FPR (E5-33)	Below 1 Ω
Engine Room J/B (Fuel pump relay ter- minal 1) or FPR (E5-33) - Body ground	10 k Ω or higher

NG

Repair or replace harness or connector.

ΟΚ

Replace ECM (See page SF-60).

D	I-1	67

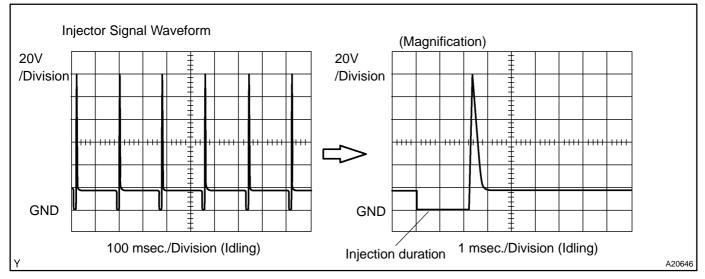
		Dic2c-01
DTC	P0300	Random/Multiple Cylinder Misfire Detected
DTC	P0301	Cylinder 1 Misfire Detected
DTC	P0302	Cylinder 2 Misfire Detected
DTC	P0303	Cylinder 3 Misfire Detected
DTC	P0304	Cylinder 4 Misfire Detected
DTC	P0305	Cylinder 5 Misfire Detected
	•	
DTC	P0306	Cylinder 6 Misfire Detected
DTC	P0307	Cylinder 7 Misfire Detected
L		
DTC	P0308	Cylinder 8 Misfire Detected

CIRCUIT DESCRIPTION

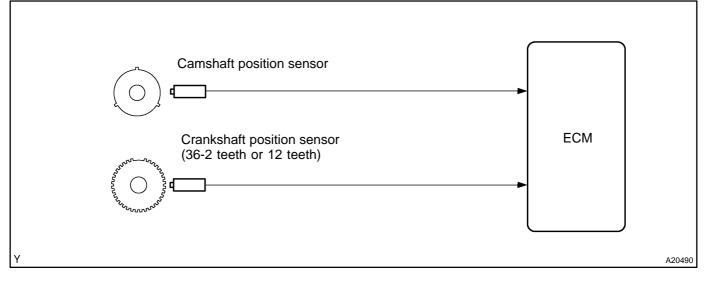
When a misfire occurs in the engine, hydrocarbons (HC) enter the exhaust in high concentrations. If this HC concentration is high enough, there could be an increase in exhaust emissions levels. High concentrations of HC can also cause to temperature of the catalyst to increase, possibly damaging the catalyst. To prevent this increase in emissions and limit the possibility of thermal damage, the ECM monitors the misfire rate. When the temperature of the catalyst reaches a point of thermal degradation, the ECM will blink the MIL. For monitoring misfire, the ECM uses both the camshaft position sensor and the crankshaft position sensor. The camshaft position sensor is used to identify misfiring cylinders and the crankshaft position sensor is used to measure variations in the crankshaft rotation speed. The misfire counter increments when crankshaft rotation speed variations exceed threshold values.

If the misfiring rate exceeds the threshold value and could cause emissions deterioration, the ECM illuminates the MIL.

DTC No.	DTC Detecting Condition	Trouble Area
P0300	Misfiring of random cylinders is detected	★Open or short in engine wire ★Connector connection
1 0000		★Vacuum hose connection
		⊭ gnition system
P0301		₩njector
P0302		★Fuel pressure
P0303		₩Mass air flow meter
P0304	Misfiring of each cylinder is detected	₩ ngine coolant temperature sensor
P0305	Inisining of each cylinder is delected	*Compression pressure
P0306		★Valve clearance
P0307		★Valve timing
P0308		⊀ PCV piping
		★ ECM


HINT:

When several codes for a misfiring cylinder are recorded repeatedly but no random misfire code is recorded, it indicates that the misfires have been detected and recorded at different times.


Reference: Inspection using the oscilloscope.

With the engine idling, check the waveform between terminals #1 to #8 and E01 of the ECM connectors. HINT:

The correct waveform is as shown.

MONITOR DESCRIPTION

The ECM illuminates the MIL (2 trip detection logic) if:

The ECM will illuminate the MIL when the percent misfire exceeds the specified limit per 1,000 engine revolutions. One occurrence of excessive misfire during engine start will set the MIL. Four occurrences are required to set the MIL 1,000 revolutions after engine start.

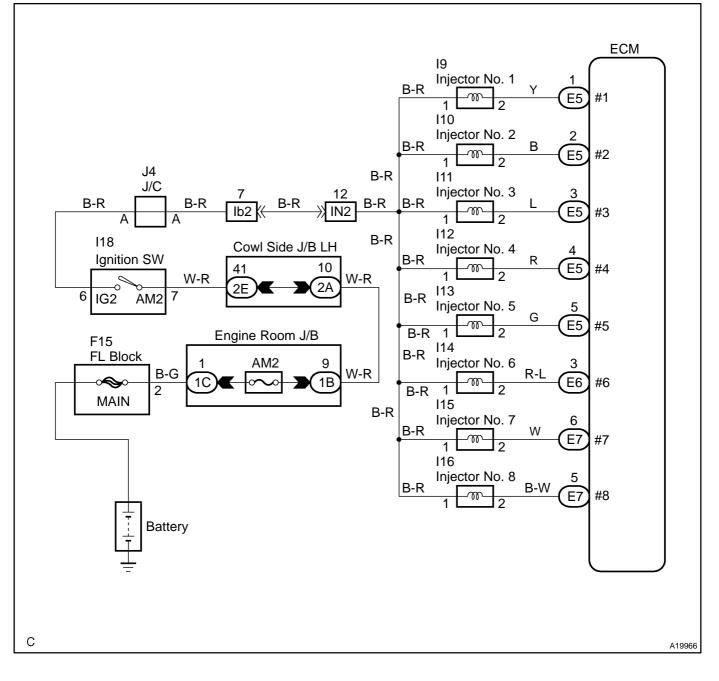
The ECM blinks the MIL (MIL blinks immediately) if:

- ★ Within 200 engine revolutions at a high rpm, the threshold for "percent of misfire causing catalyst damage" is reached 1 time.
- ★ Within 200 engine revolutions at a normal rpm, the threshold for "percent of misfire causing catalyst damage" is reached 3 time.

	P0300	Random/Multiple cylinder misfire detected
	P0301	Cylinder 1 misfire detected
	P0302	Cylinder 2 misfire detected
	P0303	Cylinder 3 misfire detected
Related DTCs	P0304	Cylinder 4 misfire detected
	P0305	Cylinder 5 misfire detected
	P0306	Cylinder 6 misfire detected
	P0307	Cylinder 7 misfire detected
	P0308	Cylinder 8 misfire detected
	Main sensors/components	Camshaft position sensor, Crankshaft position sensor
Required sensors/components	Related sensors/components	Engine coolant temperature sensor, Intake air temperature sensor, Throttle position sensor
Frequency of operation	Continuous	
Duration	Every 1,000 revolutions (soon after engine is started: 1 time, other 4 times) (emission related misfire) Every 200 revolutions (1 or 3 times) (catalyst deteriorating misfire)	
MIL operation	2 driving cycles MIL ON Immediate MIL blinking (Catalyst deteriorating misfire)	
Sequence of operation	None	

MONITOR STRATEGY

TYPICAL ENABLING CONDITIONS


	Specification		
Item	Minimum	Maximum	
The monitor will run whenever the follow- ing DTCs are not present	See "List of disable a monitor" (on page DI-3)		
Battery voltage	8 V	_	
VVT	Normal operation (i. e. no	t under scan-tool control)	
Engine speed fluctuation	Engine speed should no	ot have changed rapidly	
Engine speed (Two full revolutions (2 rev.) after engine has started)	400 rpm	5,300 rpm	
All of the following conditions are met:	A, B a	and C	
A. Engine coolant temperature	-10 ⊑C (14⊑ F)	-	
B. Either of the following conditions is met:	(a) c	or (b)	
(a) Intake air temperature	-10 ⊡C (14⊡F)	-	
(b) Engine coolant temperature	75⊡€ (167⊡)	-	
C. Either of the following conditions is met:	(a) or (b)		
(a) Engine coolant temperature at engine started	-7 ⊡C (19⊡F)	-	
(b) Engine coolant temperature	20⊡C (68□F)	-	
Intake air amount per revolution (varies with engine speed)	0.4 g/rev.	-	
Throttle position learning	Completed		
	Rapid throttle opening or closing operation has not occurred		
Throttle position	-	Changing value of throttle position Less than 0.5 per 0.008 sec.	
Rough road counter	-	14 times/1,000 revolutions (Not running on rough road)	
For paired cylinder misfire (6 or 8 cylinde	ers):		
When ECT is between -10⊡C (14⊡F) and 75⊡C (167⊡F), the following conditions are met:	A and B		
A. Engine speed	-	3,000 rpm	
B. Intake air amount per revolution at 1,800 rpm (varies with engine speed)	0.7 g/sec.	-	
When ECT is over 75⊡€ (167⊡), the fol- lowing conditions are met:	A or (B and C)		
A. NE signal plate tooth width learning was i	not completed		
B. Engine speed	-	3,000 rpm	
C. Intake air amount per revolution at 1,800 rpm (varies with engine speed)	0.7 g/sec.	-	

TYPICAL MALFUNCTION THRESHOLDS

Detection Criteria	Threshold
 Emission related misfire rate: 1. During the first 1,000 revolutions after engine start (MIL is set when misfire is detected 1 time) 2. After the first 1,000 revolutions have occurred (MIL is set when misfire is detected 4 times) 	3 %/1,000 revolutions
 Catalyst damage misfire count: 1. Low engine rpm area (ex. less than 3,000 rpm): 200 revolutions (MIL is set when misfire is detected 3 times) 2. High engine rpm area: Every 200 revolutions 	96 count/200 revolutions (Threshold varies with engine speed and intake air amount per revolution)

WIRING DIAGRAM

Refer to DTC P0351 on page DI-202 for the wiring diagram of the ignition system.

CONFIRMATION DRIVING PATTERN

- (a) Connect the hand-held tester to the DLC3.
- (b) Record DTC and the freeze frame data.
- (c) Use the hand-held tester to set to the check mode (See page DI-3).
- (d) Read the value on the misfire counter for each cylinder when idling. If the value is displayed on the misfire counter, skip the following procedure of confirmation driving.
- (e) Drive the vehicle several times with the engine speed, load and its surrounding range shown with EN-GINE SPD, CALC LOAD in the freeze frame data or MISFIRE RPM, MISFIRE LOAD in the DATA LIST.

If you have no hand-held tester, turn the ignition switch OFF after the symptom is simulated once. Then repeat the simulation process again.

HINT:

In order to memorize the DTC of misfire, it is necessary to drive around MISFIRE RPM, MISFIRE LOAD in the DATA LIST for the following period of time. Take care not to turn the ignition switch OFF. Turning the ignition switch OFF switches the diagnosis system from check mode to normal mode. So all DTCs, etc., are erased.

Engine Speed	Time
Idling	3 minutes 30 seconds or more
1,000 rpm	3 minutes or more
2,000 rpm	1 minute 30 seconds or more
3,000 rpm	1 minute or more

(f) Check if there is misfire and DTC and the freeze frame data. Record the DTC's, freeze frame data and misfire counter data.

(g) Turn the ignition switch OFF and wait at least 5 seconds.

INSPECTION PROCEDURE

HINT:

- ★ If DTCs besides misfire DTCs are memorized simultaneously, troubleshoot the non-misfire DTCs first.
- ★ If the misfire does not occur when the vehicle is brought to the workshop, the misfire can be confirmed by reproducing the condition of the freeze frame data. Also, after finishing the repair, confirm that there is no misfire (See confirmation driving pattern).
- ★ On 6 and 8 cylinder engines, misfiring cylinder identification is disabled at high engine speed and only a general misfire fault code P0300 is stored instead of a cylinder specific misfire fault code (P0301 to P0308).

If the misfire starts in a high engine speed area or the misfire occurs only in a high engine speed area, only code P0300 may be stored.

When only a general misfire fault code like P0300 is stored:

- ★ Erase the general misfire fault code from the hand-held tester or OBD II scan tool.
- \star Start the engine and drive the confirmation patten.
- \star Read the value of the misfire ratio for each cylinder. Or read the DTC.
- ★ Perform repairs on the cylinder that has a high misfire ratio. Or repair the cylinder indicated by the DTC.
- ★ After finishing repairs, drive the confirmation pattern again and confirm that no misfire occurs.
- ★ When either of SHORT FT #1, LONG FT #1, SHORT FT #2 or LONG FT #2 in the freeze frame data is over the range of ±20 %, there is a possibility that the air-fuel ratio is becoming RICH (-20 % or less) or LEAN (+20 % or more).
- ★ When COOLANT TEMP in the freeze frame data is less than 80°C (176°F), there is a possibility of misfire only during engine warm-up.
- ★ If the misfire cannot be reproduced, the following reasons may apply: 1) the vehicle has low fuel, 2) improper fuel is being used, and 3) the ignition plug is contaminated.
 2004 LAND CRUISER (RM1071U)

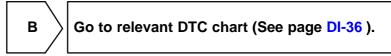
Date :

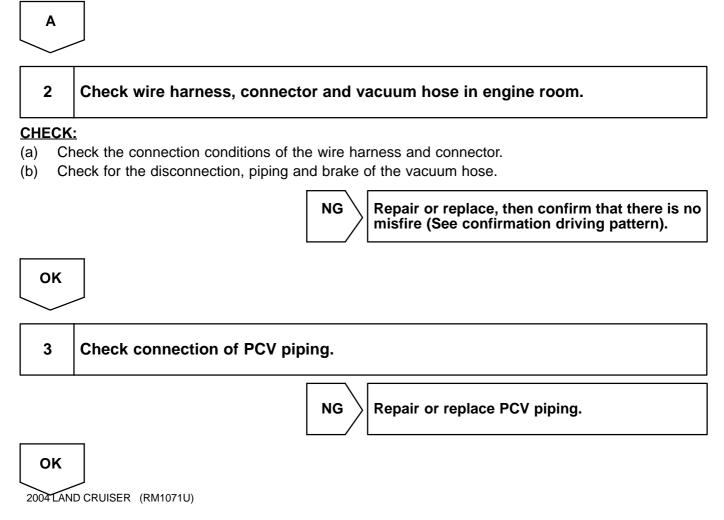
365

1 Are there any other codes (besides DTC P0300, P0301, P0302, P0303, P0304 P0305, P0306, P0307 or P0308) being output?

PREPARATION:

- (a) Connect the hand-held tester or the OBD II scan tool to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester or OBD II scan tool main switch ON.
- (c) When using hand-held tester, enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.


CHECK:


Read the DTC using hand-held tester or the OBD II scan tool. **RESULT:**

Display (DTC Output)	Proceed to
"P0300, P0301, P0302, P0303, P0304, P0305, P0306, P0307 and/or P0308"	А
"P0300, P0301, P0302, P0303, P0304, P0305, P0306, P0307 or P0308" and other DTCs	В

HINT:

If any other codes besides "P0300, P0301, P0302, P0303, P0304, P0305, P0306, P0307 or P0308" are output, perform the troubleshooting for those DTC.

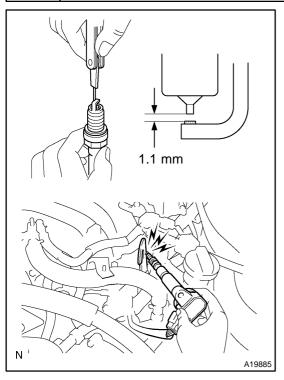
4 Connect hand-held tester, and read the number of misfire.

PREPARATION:

- (a) Connect the hand-held tester or the OBD II scan tool to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester or the OBD II scan tool main switch ON.
- (c) Start the engine.
- (d) When using hand-held tester, enter the following menus: DIAGNOSIS / ENHANCED OBD II / DATA LIST / ALL / CYL#1 to CYL#8.

CHECK:

Read the number of misfire on the hand-held tester or the OBD II scan tool. HINT:


When a misfire is not reproduced, be sure to branch below based on the stored DTC. **<u>RESULT</u>**:

High Misfire Rate Cylinder	Proceed to
1 or 2 cylinders	A
More than 3 cylinders	В
	B Go to step 15.

A

5

Check spark plug and spark of misfiring cylinder.

PREPARATION:

- (a) Remove the ignition coil assembly.
- (b) Remove the spark plug.

CHECK:

- (a) Check the electrode for carbon deposits.
- (b) Check the spark plug type (See page IG-1).
- (c) Check electrode gap.

<u> 0K:</u>

No large carbon deposit present. Not wet with gasoline or oil. Electrode gap: 1.0 to 1.3 mm (0.039 to 0.051 in.)

NOTICE:

If adjusting the gap of a new spark plug, bend only "the base / ground" electrode. Do not touch the tip. Never attempt to adjust the gap on a used plug. PREPARATION:

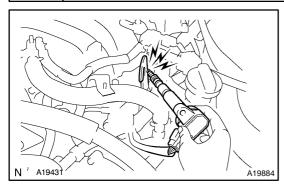
- (a) Install the spark plug to the ignition coil assembly.
- (b) Disconnect the injector connector.
- (c) Ground spark plug.

CHECK:

Check if spark occurs while engine is being cracked. **CAUTION:**

Always disconnect each injector connector. NOTICE:

Do not crank the engine for more than 2 seconds. <u>OK:</u>


Spark occurs across electrode gap.

NG

6

Change normal spark plug and check spark of misfiring cylinder.

PREPARATION:

(a) Change to the normal spark plug.

- (1) Remove the spark plug that may be faulty from the ignition coil assembly.
- (2) Install the spark plug to the ignition coil assembly.
- (b) Disconnect the injector connector.
- (c) Ground the spark plug.

CHECK:

Check if spark occurs while the engine is being cranked. **CAUTION:**

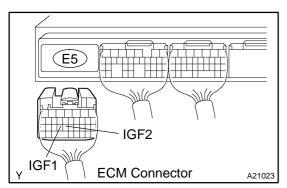
Always disconnect each injector connector. NOTICE:

Do not crank the engine for more than 2 seconds. <u>OK:</u>

Spark jumps across electrode gap.



NG


DI-177

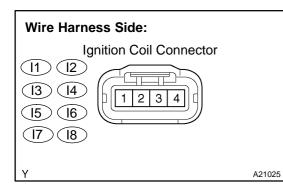
7

Check for open and short in harness and connector between ignition coil and ECM.

11 12 13 14 15 16 17 18 Y

Check the harness and connector between the ignition coil and the ECM (IGF terminal) connectors: <u>PREPARATION:</u>

- (a) Disconnect the I1, I2, I3, I4, I5, I6, I7 or I8 ignition coil connector.
- (b) Disconnect the E5 ECM connector.

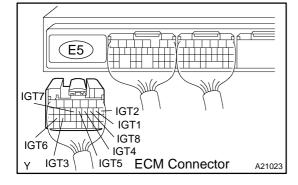

CHECK:

Check the resistance between the wire harness side connectors.

<u>OK:</u>

A21025

Tester Connection	Specified Condition
Ignition coil (I1-2) - IGF1 (E5-24)	Below 1 Ω
Ignition coil (I2-2) - IGF2 (E5-23)	Below 1 Ω
Ignition coil (I3-2) - IGF1 (E5-24)	Below 1 Ω
Ignition coil (I4-2) - IGF2 (E5-23)	Below 1 Ω
Ignition coil (I5-2) - IGF1 (E5-24)	Below 1 Ω
Ignition coil (I6-2) - IGF2 (E5-23)	Below 1 Ω
Ignition coil (I7-2) - IGF1 (E5-24)	Below 1 Ω
Ignition coil (I8-2) - IGF2 (E5-23)	Below 1 Ω
Ignition coil (I1-2) or IGF1 (E5-24) - Body ground	10 k Ω or higher
Ignition coil (I2-2) or IGF2 (E5-23) - Body ground	10 k Ω or higher
Ignition coil (I3-2) or IGF1 (E5-24) - Body ground	10 k Ω or higher
Ignition coil (I4-2) or IGF2 (E5-23) - Body ground	10 k Ω or higher
Ignition coil (I5-2) or IGF1 (E5-24) - Body ground	10 k Ω or higher
Ignition coil (I6-2) or IGF2 (E5-23) - Body ground	10 k Ω or higher
Ignition coil (I7-2) or IGF1 (E5-24) - Body ground	10 k Ω or higher
Ignition coil (I8-2) or IGF2 (E5-23) - Body ground	10 k Ω or higher


Check the harness and connector between the ignition coil and the ECM (IGT terminal) connectors: <u>PREPARATION:</u>

- (a) Disconnect the I1, I2, I3, I4, I5, I6, I7 or I8 ignition coil connector.
- (b) Disconnect the E5 ECM connector.

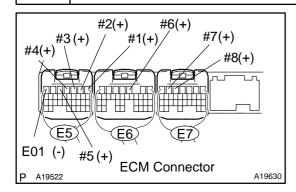
CHECK:

Check the resistance between the wire harness side connectors.

<u>OK:</u>

Tester Connection	Specified Condition
Ignition coil (I1-3) - IGT1 (E5-9)	Below 1 Ω
Ignition coil (I2-3) - IGT2 (E5-8)	Below 1 Ω
Ignition coil (I3-3) - IGT3 (E5-25)	Below 1 Ω
Ignition coil (I4-3) - IGT4 (E5-11)	Below 1 Ω
Ignition coil (I5-3) - IGT5 (E5-12)	Below 1 Ω
Ignition coil (I6-3) - IGT6 (E5-26)	Below 1 Ω
Ignition coil (I7-3) - IGT7 (E5-13)	Below 1 Ω
Ignition coil (I8-3) - IGT8 (E5-10)	Below 1 Ω
Ignition coil (I1-3) or IGT1 (E5-9) - Body ground	10 k Ω or higher
Ignition coil (I2-3) or IGT2 (E5-8) - Body ground	10 k Ω or higher
Ignition coil (I3-3) or IGT3 (E5-25) - Body ground	10 k Ω or higher
Ignition coil (I4-3) or IGT4 (E5-11) - Body ground	10 k Ω or higher
Ignition coil (I5-3) or IGT5 (E5-12) - Body ground	10 k Ω or higher
Ignition coil (I6-3) or IGT6 (E5-26) - Body ground	10 k Ω or higher
Ignition coil (I7-3) or IGT7 (E5-13) - Body ground	10 k Ω or higher
Ignition coil (I8-3) or IGT8 (E5-10) - Body ground	10 k Ω or higher

OK


Replace ignition coil with igniter, then confirm that there is no misfire.

NG

Repair or replace harness or connector.

8

Check ECM terminal of misfiring cylinder.

PREPARATION:

Turn the ignition switch ON.

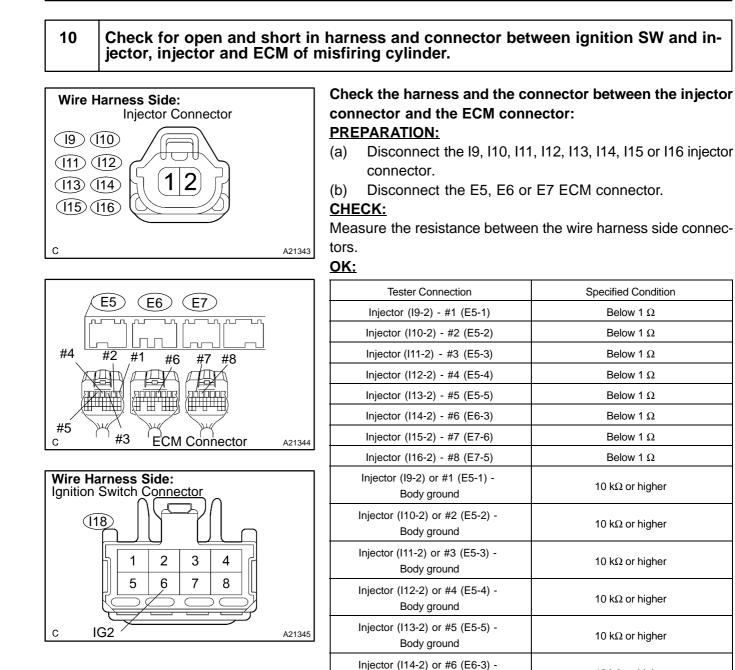
CHECK:

Measure the voltage between the terminals of the E5, E6 and E7 ECM connectors.

<u>OK:</u>

Specified Condition
9 to 14 V

OK Go to step 11.


9 Check injector resistance of misfiring cylinder (See page SF-19).

NG

Replace injector.

ΟΚ

NG

Body ground Injector (I15-2) or #7 (E7-6) -

Body ground Injector (I16-2) or #8 (E7-5) -

Body ground

10 kΩ or higher

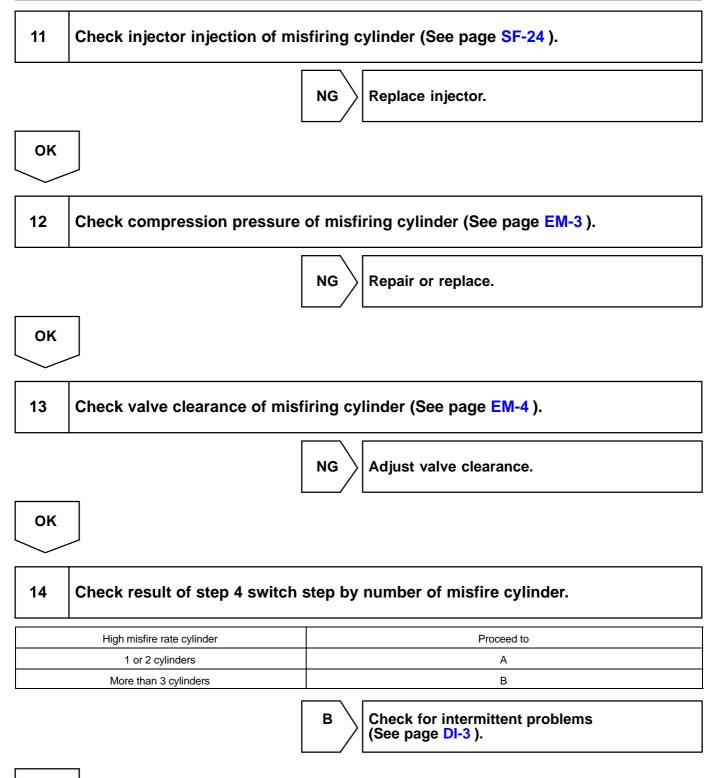
10 kΩ or higher

10 kΩ or higher

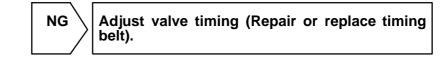
Check the harness and connector between the injector connector and the ignition switch: <u>PREPARATION:</u>

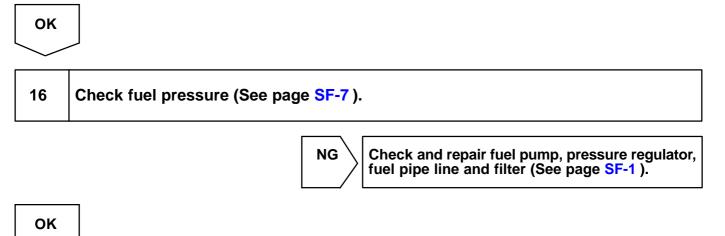
- (a) Disconnect the I9, I10, I11, I12, I13, I14, I15 or I16 injector connector.
- (b) Disconnect the I18 ignition switch connector.

CHECK:


Measure the resistance between the wire harness side connectors.

<u>OK:</u>


Tester Connection	Specified Condition
Injector (I9-1) - IG2 (I18-6)	Below 1 Ω
Injector (I10-1) - IG2 (I18-6)	Below 1 Ω
Injector (I11-1) - IG2 (I18-6)	Below 1 Ω
Injector (I12-1) - IG2 (I18-6)	Below 1 Ω
Injector (I13-1) - IG2 (I18-6)	Below 1 Ω
Injector (I14-1) - IG2 (I18-6)	Below 1 Ω
Injector (I15-1) - IG2 (I18-6)	Below 1 Ω
Injector (I16-1) - IG2 (I18-6)	Below 1 Ω
Injector (I9-1) or IG2 (I18-6) - Body ground	10 k Ω or higher
Injector (I10-1) or IG2 (I18-6) - Body ground	10 k Ω or higher
Injector (I11-1) or IG2 (I18-6) - Body ground	10 k Ω or higher
Injector (I12-1) or IG2 (I18-6) - Body ground	10 k Ω or higher
Injector (I13-1) or IG2 (I18-6) - Body ground	10 k Ω or higher
Injector (I14-1) or IG2 (I18-6) - Body ground	10 k Ω or higher
Injector (I15-1) or IG2 (I18-6) - Body ground	10 k Ω or higher
Injector (I16-1) or IG2 (I18-6) - Body ground	10 k Ω or higher
NG Repair or replace harness or connector.	


OK

DI-182


```
Α
```


2004 LAND CRUISER (RM1071U)

17 Check intake air temperature and mass air flow rate.

PREPARATION:

- (a) Connect the hand-held tester or the OBD II scan tool to the DLC3.
- (b) Turn the ignition switch ON.

CHECK:

Check the intake air temperature.

- (1) Select the item "DIAGNOSIS/ENHANCED OBD II/DATA LIST/ALL/INTAKE AIR".
- (2) Read its value displayed on the hand-held tester or the OBD II scan tool.

<u>OK:</u>

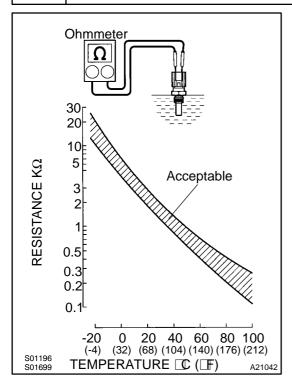
Equivalent to ambient temperature

CHECK:

Check the air flow rate.

- (1) Select the item "DIAGNOSIS/ENHANCED OBD II/DATA LIST/ALL/MAF".
- (2) Read its value displayed on the hand-held tester or the OBD II scan tool.

<u> 0K:</u>


Air Flow Rate (gm/s)
0
4 to 6
13 to 20
Air flow rate fluctuates

Replace mass air flow meter.

OK

18 Check engine coolant temperature sensor.

PREPARATION:

Remove the engine coolant temperature sensor.

CHECK:

Measure the resistance between the terminals of the engine coolant temperature sensor.

Resistance:

Tester Connection	Specified Condition
	2.32 to 2.59 kΩ (20⊡C (68⊡F))
1 - 2	0.310 to 0.326 kΩ (80⊡C (176⊡F))

NOTICE:

In case of checking the engine coolant temperature sensor in the water, be careful not to allow water to go into the terminals. After checking, dry the sensor. HINT:

Alternate procedure: Connect an ohmmeter to the installed engine coolant temperature sensor and read the resistance. Use an infrared thermometer to measure the engine temperature in the immediate vicinity of the sensor. Compare these values to the resistance/temperature graph. Change the engine temperature (warm up or allow to cool down) and repeat the test.

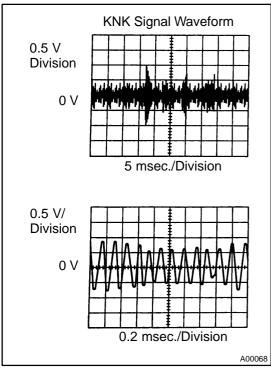
NG

\rangle Replace engine coolant temperature sensor.

ОК		
19 Switch step by number of misfire cylinder (Refer result of step 4).		
High misfire rate cylinder	Proceed to	
1 or 2 cylinders	А	
More than 3 cylinders	В	
	B Go to step 5.	
A		
Check for intermittent problems (See page DI-3).	•	

DTC P03	Knock Sensor 1 Circuit (Bank 1 or Single Sensor)
---------	--

DTC P0330 Knock Sensor 2 Circuit (Bank 2)	
---	--


CIRCUIT DESCRIPTION

Each knock sensor is fitted to the right bank and left bank of the cylinder block to detect engine knocking. This sensor contains a piezoelectric element which generates a voltage when it becomes deformed. The piezoelectric element sends a signal to the ECM, when the cylinder block vibrates due to knocking. If engine knocking occurs, ignition timing is retarded to suppress it.

DTC No.	DTC Detecting Condition	Trouble Area
P0325	No signal of knock sensor 1 signal to ECM with engine speed between 2,000 rpm and 5,400 rpm	₩Open or short in knock sensor 1 circuit ₩Knock sensor 1 (looseness) ₩ECM
P0330	No signal of knock sensor 2 signal to ECM with engine speed between 2,000 rpm and 5,400 rpm	₩Open or short in knock sensor 2 circuit ₩Knock sensor 2 (looseness) ₩ECM

HINT:

- \star Bank 1 refers to the bank that includes cylinder No. 1.
- \star Bank 2 refers the the bank that does not include cylinder No. 1.

Reference: INSPECTION USING OSCILLOSCOPE

★ With the engine racing (4,000 rpm), check the waveform between terminals KNK1 and KNK2 of the ECM connector and body ground.

HINT:

The correct waveform is as shown.

★ Spread the time on the horizontal axis, and confirm that period of the wave is 0.13 msec. (Normal mode vibration frequency of knock sensor: 8.1 kHz)

HINT:

If normal mode vibration frequency is not 8.1 kHz, the sensor has malfunction.

DI1LQ-14

MONITOR DESCRIPTION

The knock sensor located on the cylinder block, detects spark knock.

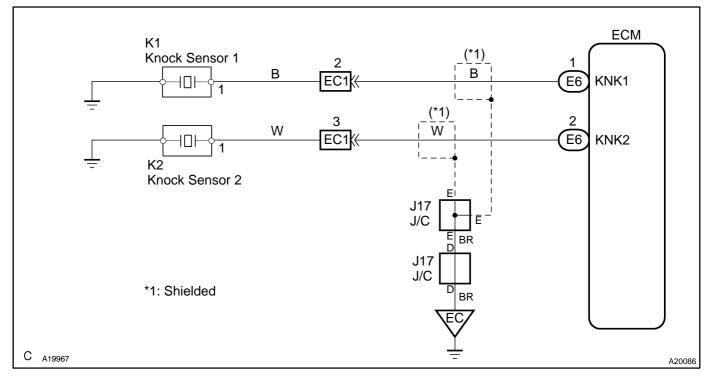
When spark knock occurs, the sensor pick-up vibrates in a specific frequency range. When the ECM detects the voltage in this frequency range, it retards the ignition timing to suppress the spark knock.

The ECM also senses background engine noise with the knock sensor and uses this noise to check for faults in the sensor. If the knock sensor signal level is too low for more than 10 sec., and if the knock sensor output voltage is out of normal range, the ECM interprets this as a fault in the knock sensor and sets a DTC.

MONITOR STRATEGY

	P0325	Knock sensor (Bank 1) range check or rationality
Related DTCs	P0330	Knock sensor (Bank 2) range check or rationality
	Main sensors/components	Knock sensor
Required sensors/components	Related sensors/components	Crankshaft position sensor, Camshaft position sensor, Engine coolant temperature sensor, Mass air flow meter
Frequency of operation	Continuous	
Duration	10 sec.	
MIL operation	Immediate	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS


	Specification	
Item	Minimum	Maximum
The monitor will run whenever the follow- ing DTCs are not present	See "List of disable a n	nonitor" (on page DI-3)
Battery voltage	ge 10 V -	
Idle	OFF	
Time after engine start	5 sec.	-
Engine coolant temperature	60⊑ᢗ (140⊑)	-
Intake air amount per revolution 0.45 g/rev		-
Engine speed	2,000 rpm	5,400 rpm

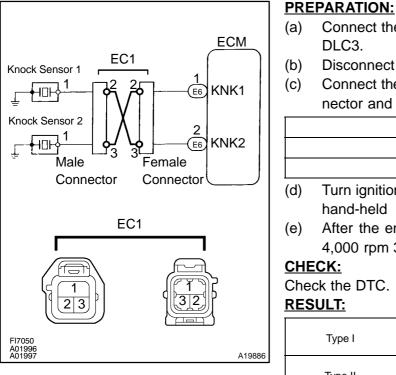
TYPICAL MALFUNCTION THRESHOLDS

Detection Criteria	Threshold
Sensor failure is indicated when the knock sensor output	10 000
level is below the specific threshold for:	10 sec.

DI-187

WIRING DIAGRAM

INSPECTION PROCEDURE


HINT:

- \star DTC P0325 is for the bank 1 knock sensor circuit.
- DTC P0330 is for the bank 2 knock sensor circuit. \star
- Read freeze frame data using the hand-held tester or the OBD II scan tool. Freeze frame data records \star the engine conditions when a malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, as well as other data from the time when a malfunction occurred.

Connect OBD II scan tool or hand-held tester, and check knock sensor circuit.

DI C3

1

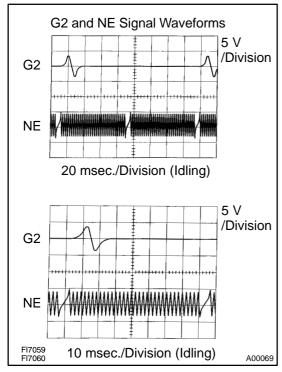
	(b)	Disconnect the EC1 connector.
1	(c)	Connect the terminals of the disconnected EC1 male con-
		nector and EC1 female as follows.
		Male connector \leftrightarrow Female connector
2		Terminal 2 \leftrightarrow Terminal 3
		Terminal 3 \leftrightarrow Terminal 2
	(d)	Turn ignition switch ON and push the OBD II scan tool or
		hand hald tastar main switch ON
		hand-held tester main switch ON.
	(e)	After the engine is warmed up, perform quick racing to
	(e)	
		After the engine is warmed up, perform quick racing to
	CHE	After the engine is warmed up, perform quick racing to 4,000 rpm 3 times.
	CHE Chee	After the engine is warmed up, perform quick racing to 4,000 rpm 3 times.
	CHE Chee	After the engine is warmed up, perform quick racing to 4,000 rpm 3 times. CK: ck the DTC. ULT: DTC same as when vehicle brought in
A 10886	CHE Chee	After the engine is warmed up, perform quick racing to 4,000 rpm 3 times. CK: ck the DTC. CULT:
A19886	CHE Chee	After the engine is warmed up, perform quick racing to 4,000 rpm 3 times.

Connect the OBD II scan tool or hand-held tester to the

Type I

2	Check for open and short in harness and connector between EC1 connector and ECM (See page IN-36).
	NG Repair or replace harness or connector.
ОК	
Repla	ace ECM (See page SF-60).
3	Check for open and short in harness and connector between EC1 connector and knock sensor (See page IN-36).
	DTC P0325 has changed to P0330, check the knock sensor circuit on the bank 1 side. DTC P0330 has changed to P0325, check the knock sensor circuit on the bank 2 side.
ок	

Replace knock sensor.


DTC	P0335	Crankshaft Position Sensor "A" Circuit
-----	-------	--

DTC P0339 Crankshaft Position Se termittent	ensor "A" Circuit In-
---	-----------------------

CIRCUIT DESCRIPTION

The crankshaft position sensor system consists of a crankshaft position sensor plate and a pick-up coil. The sensor plate has 34 teeth and is installed on the crankshaft. The pick-up coil is made of an iron core and magnet. The sensor plate rotates and as each tooth passes through the pick-up coil, a pulse signal is created. The pick-up coil generates 34 signals for each engine revolution. Based on these signals, the ECM calculates the crankshaft position and engine RPM. Using these calculations, the fuel injection time and ignition timing are controlled.

DTC No.	DTC Detecting Condition	Trouble Area
Dagas	No crankshaft position sensor signal to ECM during crank- ing (2 trip detection logic)	
P0335	No crankshaft position sensor signal to ECM with engine speed 600 rpm or more (2 trip detection logic)	★Open or short in crankshaft position sensor circuit
P0339	 In condition (a), (b) and (c), when no crankshaft position sensor (NE) signal is input for 0.05 sec. or more. : (1 trip detection logic) (c) Engine revolution 1000 rpm or more (d) STA signal is OFF (e) 3 sec. or more has lapsed after STA signal is switched from ON to OFF. 	Crankshaft position sensor ★Signal plate ★ECM

Reference: Inspection using the oscilloscope. The correct waveform is as shown.

Tester Connection	Specified Condition	
G2+ (E7-27) - G2- (E7-32)		
NE+ (E7-25) - NE- (E7-24)	Correct waveform is as shown	

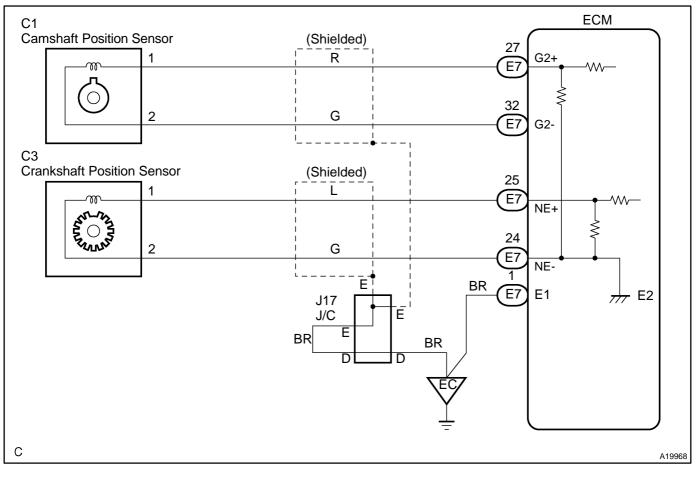
DIC2D-01

MONITOR DESCRIPTION

If there is no signal from the crankshaft sensor even though the engine is revolving, the ECM interprets this as a malfunction of the sensor.

MONITOR STRATEGY

Related DTCs	P0335	Crankshaft position sensor range check or ratio- nality
	Main sensors/components	Crankshaft position sensor
Required sensors/components	Related sensors/components	Engine speed sensor
Frequency of operation	Continuous	
Duration	Case 1: 4.7 sec. Case 2: 0.016 sec. Case 3: 2 rev x 5 times	
MIL operation	Case 1: 2 driving cycles Case 2, 3: 1 driving cycle	
Sequence of operation	None	

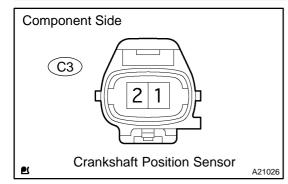

TYPICAL ENABLING CONDITIONS

	Specification	
Item	Minimum	Maximum
The monitor will run whenever the follow- ing DTCs are not present	See "List of disable a n	nonitor" (on page DI-3)
Case 1:		
Starter	0	N
Minimum battery voltage while starter ON	-	11 V
Case 2:		
Engine speed	600 rpm	-
Starter	O	FF
Time after starter ON to OFF	3 sec.	-
Case 3:		
Time after starter ON to OFF	0.3 sec.	-
Number of camshaft position sensor sig- nal pulse		1
Battery voltage	7 V	-
Minimum battery voltage while starter ON	-	11 V

TYPICAL MALFUNCTION THRESHOLDS

Detection Criteria	Threshold
Case 1:	
Engine speed signal	No signal for 4.7 sec.
Case 2:	
Engine speed signal	No signal for 0.016 sec.
Case 3:	
Number of crankshaft position sensor signal pulse	17 or more and 29 or less

WIRING DIAGRAM


INSPECTION PROCEDURE

HINT:

- ★ Read freeze frame data using the hand-held tester or the OBD II scan tool. Freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting it is useful for determining whether the vehicle was running or stopped. the engine was warmed up or not, the air-fuel ratio lean or rich, etc. at the time of the malfunction.
- ★ READ VALUE OF HAND-HELD TESTER OR OBD II SCAN TOOL
- (a) Connect the hand-held tester or the OBD II scan tool to the DLC3.
- (b) Start the engine and push the hand-held tester or the OBD II scan tool main switch ON.
- (c) Select the item "DIAGNOSIS / ENHANCED OBD II / DATA LIST / ALL / ENGINE SPD".
- ★ The engine speed can be confirmed in DATA LIST using the hand-held tester or OBD II scan tool. If there is no NE signals from the crankshaft position sensor despite the engine revolving, the engine speed will be indicated as zero. If voltage output of the crankshaft position sensor is insufficient, the engine speed will be indicated as lower RPM (than the actual RPM).

1

Check resistance of crankshaft position sensor.

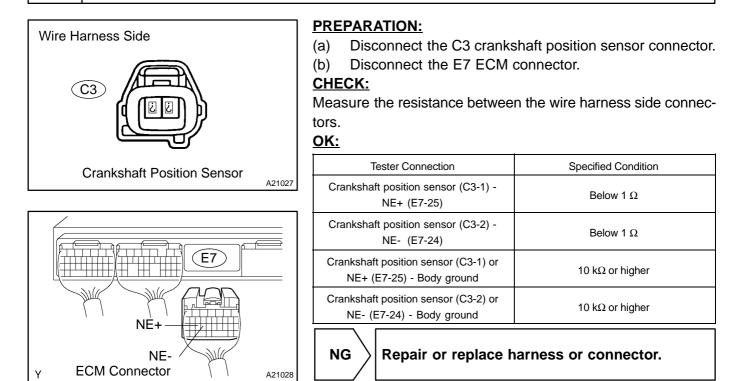
PREPARATION:

Disconnect the C3 crankshaft position sensor connector. **CHECK:**

Measure the resistance between terminals 1 and 2. **OK:**

Tester Connection	Specified Condition
	985 to 1,600 Ω at cold
1 - 2	1,265 to 1,890 Ω at hot

NOTICE:


" Cold" and "Hot" shown above mean the temperature of the coils themselves. "Cold" is form -10° C (14° F) to 50° C (122° F) and "Hot" is from 50° C (122° F) to 100° C (212° F).

NG

 \rangle Replace crankshaft position sensor.

OK

Check for open and short in harness and connector between ECM and crankshaft position sensor.

ок

Check sensor installation (crankshaft position sensor).

CHECK:

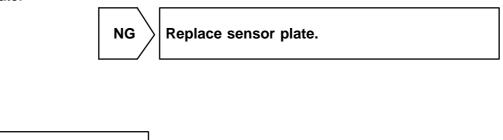
3

Check the crankshaft position sensor installation.

OK

DI-195

4 Inspect teeth of sensor plate.


PREPARATION:

Remove the crankshaft angle sensor plate (See page EM-15).

CHECK:

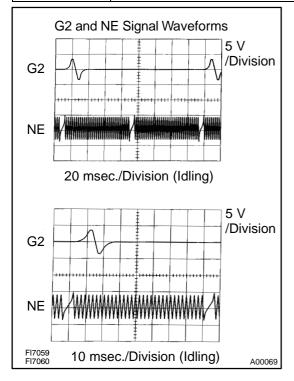
OK

Check the teeth of sensor plate.

Replace ECM (See page SF-60).

DTC		Camshaft Position Sensor "A" Circuit (Bank 1 or Single Sensor)	
-----	--	---	--

DTC	Camshaft Position Sensor "A" Circuit Range/Performance (Single Sensor)


CIRCUIT DESCRIPTION

The camshaft position sensor (G signal) consists of a magnet iron core and pickup coil.

The G signal plate has 1 tooth on its outer circumference and is installed on the LH camshaft timing pulley. When the camshafts rotate, protrusion on the signal plate and air gap on the pickup coil change, causing fluctuations in the magnetic field and generating a voltage in the pickup coil.

The NE signal plate has 34 teeth and is mounted on the crankshaft. The NE signal sensor generates 34 signals at every engine revolution. The ECM detects the crankshaft angle and the engine revolution based on the NE signals, and the cylinder and the angle of the G2 based on the combination of the G and NE signals.

DTC No.	DTC Detection Condition	Trouble Area
	No camshaft position sensor signal to ECM during cranking (2 trip detection logic)	
P0340	No camshaft position sensor signal to ECM with engine speed 600 rpm or more (1 trip detection logic)	★Open or short in camshaft position sensor circuit ★Camshaft position sensor
P0341	While crankshaft rotates twice, camshaft position sensor signal will be input to ECM 12 times or more (1 trip detec- tion logic) ★Hint: Under normal condition, the camshaft position signal is input into the ECM 3 times per 2 engine revolutions	★LH camshaft timing pulley ★Jumping teeth of timing belt ★ECM

Reference: Inspection using the oscilloscope. The correct waveform is as shown.

Tester Connection	Specified Condition
G2+ (E7-27) - G2- (E7-32)	
NF+ (F7-25) - NF- (F7-24)	Correct waveform is as shown

2004 LAND CRUISER (RM1071U)

MONITOR DESCRIPTION

If there is no signal from the camshaft position sensor even though the engine is turning, or if the rotation of the camshaft and the crankshaft is not synchronized, the ECM interprets this as a malfunction of the sensor.

MONITOR STRATEGY

	P0340	Camshaft position sensor (Bank 1) range check or rationality
Related DTCs	P0341	Camshaft position sensor (Bank 1) range check or rationality
	Main sensors/components	Camshaft position sensor
Required sensors/components	Related sensors/components	Crankshaft position sensor, Engine speed sensor
Frequency of operation	Continuous	
Duration	5 sec.	
MIL operation	P0340 case 1 (no signal): 2 driving cycles P0340 case 2 (mis-aligned), P0341: Immediate	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS

li e co	Specification	
Item	Minimum	Maximum
The monitor will run whenever the follow- ing DTCs are not present	See "List of disable a n	nonitor" (on page DI-3)
P0340 Case 1 (No signal):		
Starter	0	N
Minimum battery voltage while starter ON	-	11 V
P0340 Case 2 (Mis-aligned):		
Engine speed	600 rpm	-
Starter	O	-F
P0341:		
Starter	After OFF to ON timing	
Engine revolution	720	CA

TYPICAL MALFUNCTION THRESHOLDS

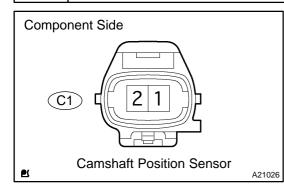
Detection Criteria	Threshold	
P0340 Case 1 (No signal):		
Camshaft position sensor signal	No signal	
P0340 Case 2 (Mis-aligned):		
Crankshaft/camshaft alignment is mis-aligned (judged by com	paring the crankshaft position to the camshaft position)	
Camshaft position sensor signal: No input in appropriate timing.		
P0341:		
Crankshaft/Camshaft alignment	Mis-aligned	
Camshaft position sensor count	12 or more / 720 CA (= Engine 2 revolutions)	

COMPONENT OPERATING RANGE

Parameter	Standard Value
Camshaft position sensor signal input during every 720 CA	3

WIRING DIAGRAM

Refer to DTC P0335 on page DI-191 .


INSPECTION PROCEDURE

HINT:

1

Read freeze frame data using the hand-held tester or the OBD II scan tool. Freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, as well as other data from the time when a malfunction occurred.

Check resistance of camshaft position sensor.

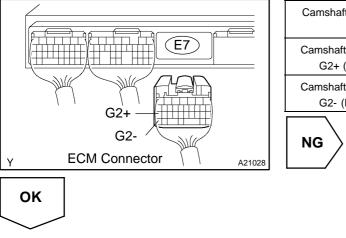
PREPARATION:

Disconnect the C1 camshaft position sensor connector. CHECK:

Measure the resistance between terminals 1 and 2. **OK:**

Tester Connection	Specified Condition
1 - 2	1,630 to 2,740 Ω at cold
	2,065 to 3,225 Ω at hot

NOTICE:


" Cold" and "Hot" shown above mean the temperature of the coils themselves. "Cold" is from -10°C (14°F) to 50°C (122°F) and "Hot" is from 50°C (122°F) to 100°C (212°F).

NG

 \rangle Replace camshaft position sensor.

ΟΚ

2 Check for open and short in harness and connector between ECM and camshaft position sensor. **PREPARATION:** Wire Harness Side Disconnect the C1 camshaft position sensor connector. (a) Disconnect the E7 ECM connector. (b) CHECK: C1 Measure the resistance between the wire harness side connectors. **0K**. **Camshaft Position Sensor** A21029

Tester Connection	Specified Condition	
Camshaft position sensor (C1-1) - G2+ (E7-27)	Below 1 Ω	
Camshaft position sensor (C1-2) - G2- (E7-32)	Below 1 Ω	
Camshaft position sensor (C1-1) or G2+ (E7-27) - Body ground	10 k Ω or higher	
Camshaft position sensor (C1-2) or G2- (E7-32) - Body ground	10 k Ω or higher	
NG Repair or replace harness or connector.		

Check sensor installation (Camshaft position sensor).

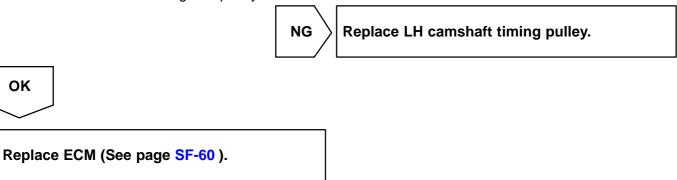
CHECK:

3

Check the camshaft position sensor installation.

ΟΚ

Inspect teeth of LH camshaft timing belt pulley. 4


PREPARATION:

Remove the LH camshaft timing belt pulley (See page EM-35).

CHECK:

OK

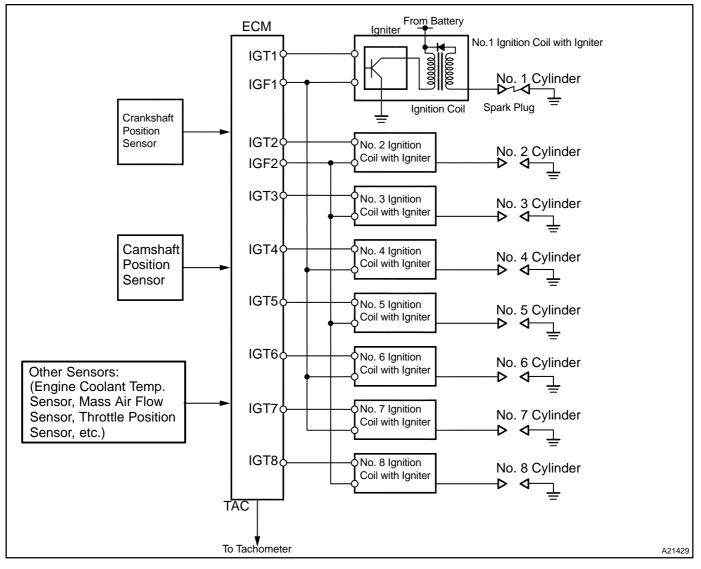
Check the LH camshaft timing belt pulley.

DTCP0351Igniter Coil "A" Primary/Secondary CircuitDTCP0352Igniter Coil "B" Primary/Secondary CircuitDTCP0353Igniter Coil "C" Primary/Secondary CircuitDTCP0354Igniter Coil "D" Primary/Secondary CircuitDTCP0355Igniter Coil "E" Primary/Secondary CircuitDTCP0356Igniter Coil "F" Primary/Secondary Circuit			DIC2F-01
DTC P0353 Igniter Coil "C" Primary/Secondary Circuit DTC P0354 Igniter Coil "D" Primary/Secondary Circuit DTC P0355 Igniter Coil "E" Primary/Secondary Circuit	DTC	P0351	Igniter Coil "A" Primary/Secondary Circuit
DTC P0353 Igniter Coil "C" Primary/Secondary Circuit DTC P0354 Igniter Coil "D" Primary/Secondary Circuit DTC P0355 Igniter Coil "E" Primary/Secondary Circuit			
DTC P0354 Igniter Coil "D" Primary/Secondary Circuit DTC P0355 Igniter Coil "E" Primary/Secondary Circuit	DTC	P0352	Igniter Coil "B" Primary/Secondary Circuit
DTC P0354 Igniter Coil "D" Primary/Secondary Circuit DTC P0355 Igniter Coil "E" Primary/Secondary Circuit			
DTC P0355 Igniter Coil "E" Primary/Secondary Circuit	DTC	P0353	Igniter Coil "C" Primary/Secondary Circuit
DTC P0355 Igniter Coil "E" Primary/Secondary Circuit			
	DTC	P0354	Igniter Coil "D" Primary/Secondary Circuit
DTC P0356 Igniter Coil "F" Primary/Secondary Circuit	DTC	P0355	Igniter Coil "E" Primary/Secondary Circuit
DTC P0356 Igniter Coil "F" Primary/Secondary Circuit			
	DTC	P0356	Igniter Coil "F" Primary/Secondary Circuit
DTC P0357 Igniter Coil "G" Primary/Secondary Circuit	DTC	P0357	Igniter Coil "G" Primary/Secondary Circuit

DTC	P0358	Igniter Coil "H" Primary/Secondary Circuit

HINT:

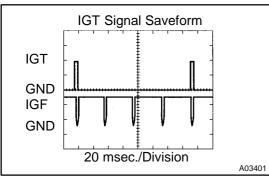
- \star These DTCs indicate a malfunction related to primary circuit.
- \star If DTC P0351 is displayed, check No. 1 ignition coil with igniter circuit.
- ★ If DTC P0352 is displayed, check No. 2 ignition coil with igniter circuit.
- \star If DTC P0353 is displayed, check No. 3 ignition coil with igniter circuit.
- ★ If DTC P0354 is displayed, check No. 4 ignition coil with igniter circuit.
- ★ If DTC P0355 is displayed, check No. 5 ignition coil with igniter circuit.
- \star If DTC P0356 is displayed, check No. 6 ignition coil with igniter circuit.
- ★ If DTC P0357 is displayed, check No. 7 ignition coil with igniter circuit.
- \star If DTC P0358 is displayed, check No. 8 ignition coil with igniter circuit.


Author:

CIRCUIT DESCRIPTION

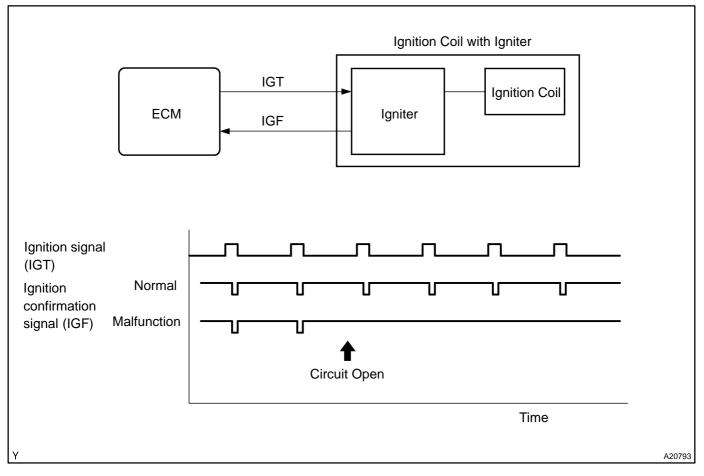
These DTCs indicate a malfunction related to primary circuit.

The DIS is a 1-cylinder ignition system which ignites one cylinder with one ignition coil. In the 1-cylinder ignition system, the one spark plug is connected to the end of the secondary winding. High voltage generated in the secondary winding is applied directly to the spark plug. The spark of the spark plug passes from the center electrode to the ground electrode.


The ECM determines the ignition timing and outputs the ignition signals (IGTs) for each cylinder. Using the IGT, the ECM turns on and off the power transistor inside the igniter and this switches on and off the current to the primary coil. When current to the primary coil is cut off, high-voltage is generated in the secondary coil and this voltage is applied to the spark plugs to create sparks inside the cylinders. As the ECM cuts the current to the primary coil, the igniter sends back the ignition confirmation signal (IGF) for each cylinder ignition to the ECM.

DI-204

DIAGNOSTICS - ENGINE


DTC No.	DTC Detecting Condition	Trouble Area
P0351 P0352 P0353 P0354 P0355 P0356 P0357 P0358	No IGF signal to ECM while engine is running	 ★Open or short in IGF1 or IGF2 and IGT1 to IGT8 circuit from ignition coil with igniter to ECM ★No. 1 to No. 8 ignition coil with igniter ★Ignition system ★ECM

Reference: Inspection using the oscilloscope.

During cranking or idling, check the waveform between terminals IG1 to IG8 and E1, and IGF1, IGF2 and E1 of the E5 and E7 ECM connectors.

MONITOR DESCRIPTION

If the ECM does not receive the IGF after sending the IGT it interprets this as a fault in the igniter and sets a DTC.

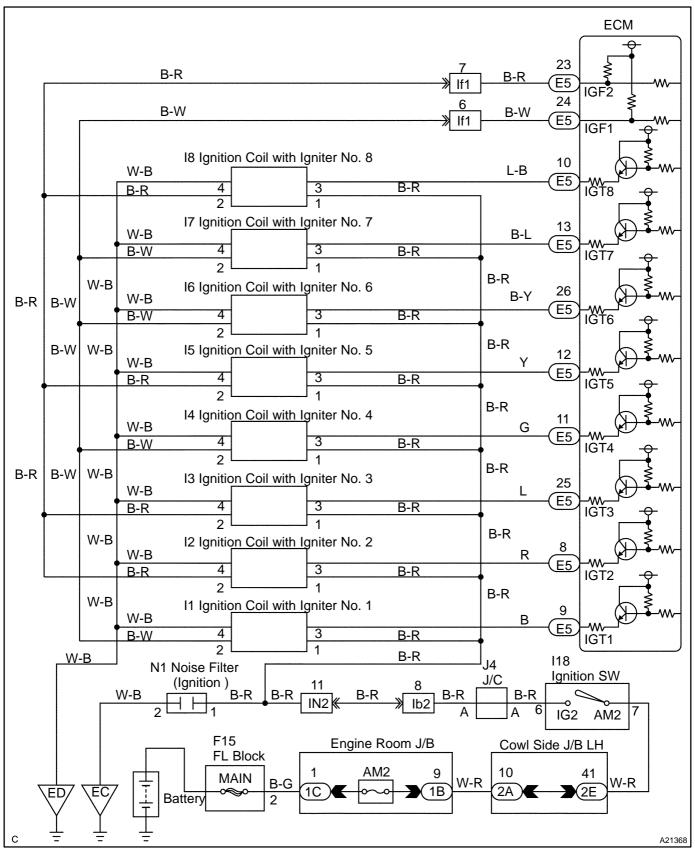
Date :

MONITOR STRATEGY

	P0351	No. 1 ignition coil with igniter circuit malfunction
	P0352	No. 2 ignition coil with igniter circuit malfunction
	P0353	No. 3 ignition coil with igniter circuit malfunction
	P0354	No. 4 ignition coil with igniter circuit malfunction
Related DTCs	P0355	No. 5 ignition coil with igniter circuit malfunction
	P0356	No. 6 ignition coil with igniter circuit malfunction
	P0357	No. 7 ignition coil with igniter circuit malfunction
	P0358	No. 8 ignition coil with igniter circuit malfunction
Required sensors/components	Igniter	
Frequency of operation	Continuous	
Duration	0.256 sec.	
MIL operation	Immediate	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS

	Specification	
Item	Minimum	Maximum
The monitor will run whenever the follow- ing DTCs are not present	See "List of disable a monitor" (on page DI-3)	
Engine speed	-	1,500 rpm
Either of the following conditions is met:	A or B	
A. Following conditions are met:	(a) and (b)	
(a) Engine speed	- 500 rpm	
(b) Battery voltage	6 V	-
B. Following conditions are met:	(a) and (b)	
(a) Engine speed	500 rpm	-
(b) Battery voltage	10 V	-


TYPICAL MALFUNCTION THRESHOLDS

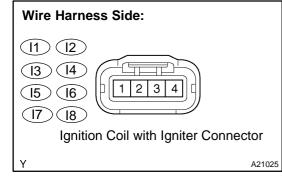
Detection Criteria	Threshold
"Ignition signal fail count"	More than 2
"Ignition signal fail count" is as follows:	When IGF should have returned despite sending IGT.

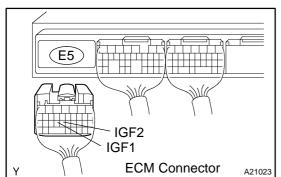
COMPONENT OPERATING RANGE

	Standard Value	
Confirmed signal number = ignition signal number		

WIRING DIAGRAM

INSPECTION PROCEDURE


HINT:


- ★ If DTCs P0351, P0354, P0356 and P0357 are output simultaneously, IGF1 circuit may be open or short.
- ★ If DTCs P0352, P0353, P0355 and P0358 are output simultaneously, IGF2 circuit may be open or short.
- ★ Read freeze frame data using the hand-held tester or the OBD II scan tool. Freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, as well as other data from the time when a malfunction occurred.

1	Check spark plug and spark (See page IG-1).	
	NG Go to step 4.	

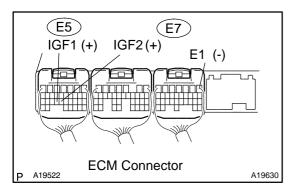
ок

Check for open and short in harness and connector in IGF signal circuits between ECM and ignition coil with igniter.

PREPARATION:

- (a) Disconnect the I1, I2, I3, I4, I5, I6, I7 or I8 ignition coil will igniter connector.
- (b) Disconnect the E5 ECM connector.

CHECK:


| /|

Check the resistance between the wire harness side connectors.

<u> 0K:</u>

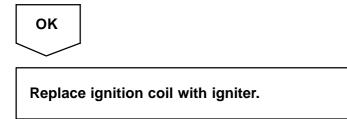
Tester Connection	Specified Condition		
Ignition coil (I1-2) - IGF1 (E5-24)	Below 1 Ω		
Ignition coil (I2-2) - IGF2 (E5-23)	Below 1 Ω		
Ignition coil (I3-2) - IGF1 (E5-24)	Below 1 Ω		
Ignition coil (I4-2) - IGF2 (E5-23)	Below 1 Ω		
Ignition coil (I5-2) - IGF1 (E5-24)	Below 1 Ω		
Ignition coil (I6-2) - IGF2 (E5-23)	Below 1 Ω		
Ignition coil (I7-2) - IGF1 (E5-24)	Below 1 Ω		
Ignition coil (I8-2) - IGF2 (E5-23)	Below 1 Ω		
Ignition coil (I1-2) or IGF1 (E5-24) - Body ground	10 k Ω or higher		
Ignition coil (I2-2) or IGF2 (E5-23) - Body ground	10 k Ω or higher		
Ignition coil (I3-2) or IGF1 (E5-24) - Body ground	10 k Ω or higher		
Ignition coil (I4-2) or IGF2 (E5-23) - Body ground	10 k Ω or higher		
Ignition coil (I5-2) or IGF1 (E5-24) - Body ground	10 k Ω or higher		
Ignition coil (I6-2) or IGF2 (E5-23) - Body ground	10 k Ω or higher		
Ignition coil (I7-2) or IGF1 (E5-24) - Body ground	10 k Ω or higher		
Ignition coil (I8-2) or IGF2 (E5-23) - Body ground	10 k Ω or higher		
NG Repair or replace harness or connector.			

OK

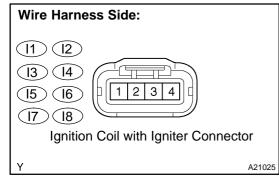
PREPARATION:

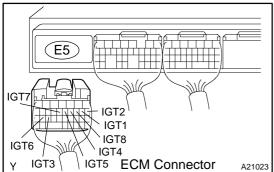
Disconnect ignition coil with igniter connector, and check voltage between terminals IGF1, IGF2 and E1 of ECM connector.

- (a) Disconnect the I1, I2, I3, I4, I5, I6, I7 or I8 ignition coil with igniter connector.
- (b) Turn the ignition switch ON.


CHECK:

Measure the voltage between the E5 and E7 ECM connectors. **OK:**


Tester Connection	Specified Condition
IGF1 (E5-24) - E1 (E7-1)	4.5 to 5.5 V
IGF2 (E5-23) - E1 (E7-1)	4.5 to 5.5 V


NG

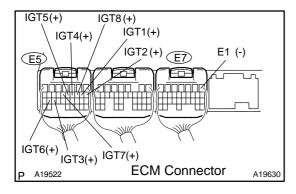
Replace ECM (See page SF-60).

Check for open and short in harness and connector in IGT signal circuit between ECM and ignition coil with igniter.

PREPARATION:

- (a) Disconnect the I1, I2, I3, I4, I5, I6, I7 or I8 ignition coil connector.
- (b) Disconnect the E5 ECM connector.

CHECK:


Check the resistance between the wire harness side connectors.

<u> 0K:</u>

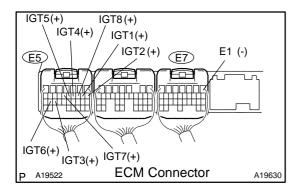
Tester Connection	Specified Condition
Ignition coil (I1-2) - IGT1 (E5-9)	Below 1 Ω
Ignition coil (I2-2) - IGT2 (E5-8)	Below 1 Ω
Ignition coil (I3-2) - IGT3 (E5-25)	Below 1 Ω
Ignition coil (I4-2) - IGT4 (E5-11)	Below 1 Ω
Ignition coil (I5-2) - IGT5 (E5-12)	Below 1 Ω
Ignition coil (I6-2) - IGT6 (E5-26)	Below 1 Ω
Ignition coil (I7-2) - IGT7 (E5-13)	Below 1 Ω
Ignition coil (I8-2) - IGT8 (E5-10)	Below 1 Ω
Ignition coil (I1-2) or IGT1 (E5-9) - Body ground	10 k Ω or higher
Ignition coil (I2-2) or IGT2 (E5-8) - Body ground	10 k Ω or higher
Ignition coil (I3-2) or IGT3 (E5-25) - Body ground	10 k Ω or higher
Ignition coil (I4-2) or IGT4 (E5-11) - Body ground	10 k Ω or higher
Ignition coil (I5-2) or IGT5 (E5-12) - Body ground	10 k Ω or higher
Ignition coil (I6-2) or IGT6 (E5-26) - Body ground	10 k Ω or higher
Ignition coil (I7-2) or IGT7 (E5-13) - Body ground	10 k Ω or higher
Ignition coil (I8-2) or IGT8 (E5-10) - Body ground	10 k Ω or higher

OK

Check voltage between terminals IGT1 - IGT8 and E1 of ECM connector and body ground.

CHECK:

NG


Measure the voltage between terminals the E5 and E7 ECM connectors when the engine is cranked. <u> 0K:</u>

Tester Connection	Specified Condition
IGT1 (E5-9) - E1 (E7-1)	
IGT2 (E5-8) - E1 (E7-1)	
IGT3 (E5-25) - E1 (E7-1)	
IGT4 (E5-11) - E1 (E7-1)	
IGT5 (E5-12) - E1 (E7-1)	More than 0.1 V or less than 4.5 V
IGT6 (E5-26) - E1 (E7-1)	
IGT7 (E5-13) - E1 (E7-1)	
IGT8 (E5-10) - E1 (E7-1)	

Replace ECM (See page SF-60).

ΟΚ

6 Disconnect ignition coil with igniter connector, and check voltage between terminals IGT1 - IGT8 of ECM connector and body ground.

PREPARATION:

Disconnect the I1, I2, I3, I4, I5, I6, I7 or I8 ignition coil with igniter connector.

CHECK:

Measure the voltage between terminals the E5 and E7 ECM connectors when the engine is cranked.

<u>OK:</u>

IGT6 (E5-26) - E1 (E7-1) IGT7 (E5-13) - E1 (E7-1) IGT8 (E5-10) - E1 (E7-1)		
IGT5 (E5-12) - E1 (E7-1)	4.5 V or more	
IGT4 (E5-11) - E1 (E7-1)		
IGT3 (E5-25) - E1 (E7-1)		
IGT2 (E5-8) - E1 (E7-1)		
IGT1 (E5-9) - E1 (E7-1)		
Tester Connection	Specified Condition	

ΟΚ

Check ignition coil with igniter power source circuit.

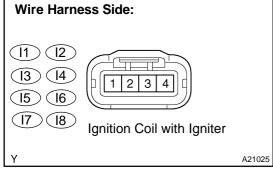
A21025

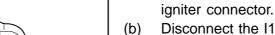
PREPARATION:

Disconnect the I1, I2, I3, I4, I5, I6, I7 or I8 ignition coil with igniter connector.

CHECK:

Measure the voltage between the terminal of the wire harness side connector and body ground.

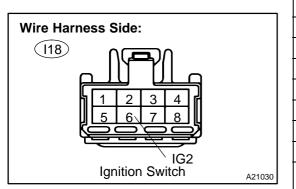

<u>OK:</u>


Tester Connection	Specified Condition	
I1-1 - Body ground		
I2-1 - Body ground		
I3-1 - Body ground		
I4-1 - Body ground		
I5-1 - Body ground	9 to 14 V	
l6-1 - Body ground		
I7-1 - Body ground		
l8-1 - Body ground		
OK Repair ignition coil with igniter.		

NG

8 Check for open and short in harness and connector between ignition switch and ignition coil with igniter.

PREPARATION:


(b) Disconnect the I18 ignition switch connector. **CHECK:**

Measure the resistance between the wire harness side connectors.

Disconnect the I1, 2, I3, I4, I5, I6, I7 or I8 ignition coil with

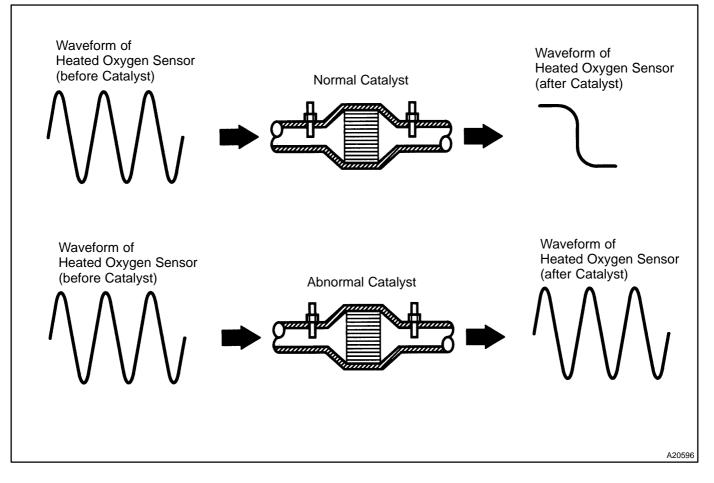
<u>OK:</u>

(a)

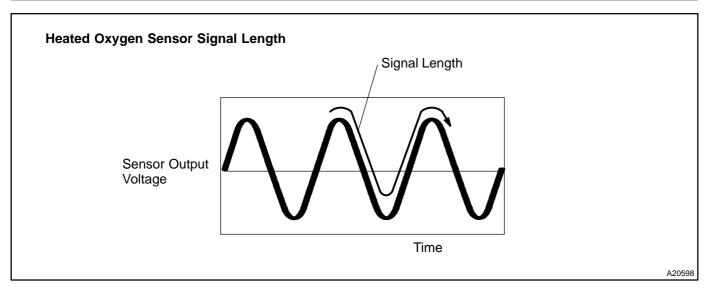
Tester Connection	Specified Condition
Ignition coil (I1-1) - IG2 (I18-6)	Below 1 Ω
Ignition coil (I2-1) - IG2 (I18-6)	Below 1 Ω
Ignition coil (I3-1) - IG2 (I18-6)	Below 1 Ω
Ignition coil (I4-1) - IG2 (I18-6)	Below 1 Ω
Ignition coil (I5-1) - IG2 (I18-6)	Below 1 Ω
Ignition coil (I6-1) - IG2 (I18-6)	Below 1 Ω
Ignition coil (I7-1) - IG2 (I18-6)	Below 1 Ω
Ignition coil (I8-1) - IG2 (I18-6)	Below 1 Ω
Ignition coil (I1-1) or IG2 (I18-6) - Body ground	10 k Ω or higher
Ignition coil (I2-1) or IG2 (I18-6) - Body ground	10 k Ω or higher
Ignition coil (I3-1) or IG2 (I18-6) - Body ground	10 k Ω or higher
Ignition coil (I4-1) or IG2 (I18-6) - Body ground	10 k Ω or higher
Ignition coil (I5-1) or IG2 (I18-6) - Body ground	10 k Ω or higher
Ignition coil (I6-1) or IG2 (I18-6) - Body ground	10 k Ω or higher
Ignition coil (I7-1) or IG2 (I18-6) - Body ground	10 k Ω or higher
Ignition coil (I8-1) or IG2 (I18-6) - Body ground	10 k Ω or higher

οк

Replace ignition coil with igniter.


DTC	P0420	Catalyst System Efficiency Below Threshold (Bank 1)
-----	-------	---

DTC		Catalyst System Efficiency Below Threshold (Bank 2)
-----	--	---


MONITOR DESCRIPTION

The vehicle is equipped with two heated oxygen sensors. One is mounted upstream from the TWC (Three-Way Catalytic) converter (Front Oxygen Sensor, "sensor 1"), the second is mounted downstream (Rear Oxygen Sensor "sensor 2"). The catalyst efficiency monitor compares the sensor 1 and sensor 2 signals in order to calculate TWC ability to store the oxygen.

During normal operation, the TWC stores and releases oxygen as needed. This results in low oxygen variations in the post TWC exhaust stream as shown below.

DIC2G-01

DTC No.	DTC Detecting Condition	Trouble Area
P0420 P0430	After engine and catalyst are warmed up, and while vehicle is driven within set vehicle and engine speed range, waveform of heated oxygen sensors have same amplitude (2 trip detection logic)	★Gas leakage on exhaust system ★Heated oxygen sensor (bank 1, 2 sensor 1, 2) ★Three-way catalytic converter

HINT:

- \star Bank 1 refers to the bank that includes cylinder No.1.
- ★ Bank 2 refers to the bank that does not include cylinder No.1.
- \star Sensor 1 refers to the sensor closest to the engine assembly.
- \star Sensor 2 refers to the sensor farthest away from the engine assembly.

MONITOR STRATEGY

	P0420	Bank 1 catalyst is deteriorated
Related DTCs	P0430	Bank 2 catalyst is deteriorated
	Main sensors/components	Front and rear heated oxygen sensor
Required sensors/components	Related sensors/components	Mass air flow meter, Engine coolant temperature sensor, Engine speed sensor, Intake air tempera- ture sensor
Frequency of operation	Once per driving cycle	
Duration	90 sec.	
MIL operation	2 driving cycles	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS

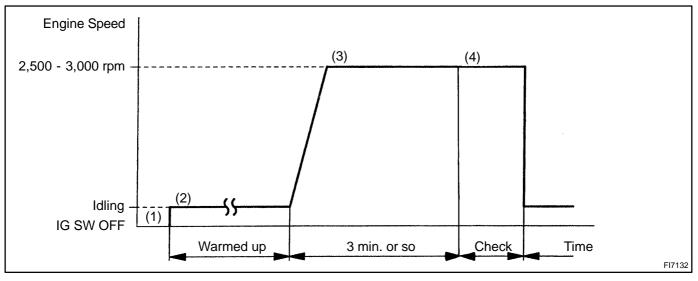
	Specification		
Item	Minimum	Maximum	
The monitor will run whenever the follow- ing DTCs are not present	See "List of disable a monitor" (on page DI-3)		
Battery voltage	11 V	-	
Intake air temperature	-10 ⊡C (14⊡F)	-	
Idle	OFF		
Intake air amount	8 g/sec.	50 g/sec.	
Engine speed	-	4,000 rpm	
Engine coolant temperature	75°C (167°F)		
Estimated catalyst temperature conditions are met:	A and B		
A. Estimated temperature of up stream catalyst	450⊑C (842⊑F)	820[C (1,508[F)	
B. Estimated temperature of down stream catalyst	450 C (842 H) 820 C (1.508 H)		
Fuel system status	Closed loop		

TYPICAL MALFUNCTION THRESHOLDS

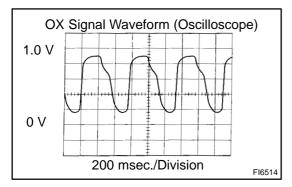
Detection Criteria	Threshold
Catalyst deterioration level (Heated oxygen sensor locus length ratio)	0.6 or more
Number of times detection	8 times

MONITOR RESULT

The detailed information is described in "CHECKING MONITOR STATUS" (see page DI-3).


- ★ TID (Test Identification) is assigned to each emission-related component.
- ★ TLT (Test Limit Type):
 - If TLT is 0, the component is malfunctioning when the test value is higher than the test limit. If TLT is 1, the component is malfunctioning when the test value is lower than the test limit.
- ★ CID (Component Identification) is assigned to each test value.

★ Unit Conversion is used to calculate the test value indicated on generic OBD scan tools.


TID \$01: Catalyst- Using Front HO2S and Rear HO2S

TLT	CID	Unit Conversion	Description of Test Value	Description of Test Limit
0	\$01	Multiply by 0.0078 (no dimension)	Catalyst deterioration level bank 1: Determined by waveform of front HO2S and rear HO2S	Malfunction criterion
0	\$02	Multiply by 0.0078 (no dimension)	Catalyst deterioration level bank 2: Determined by waveform of front HO2S and rear HO2S	Malfunction criterion

CONFIRMATION ENGINE RACING PATTERN

- (a) Connect the hand-held tester to the DLC3, or connect the probe of the oscilloscope between terminals OXL1, OXL2, OXR1, OXR2 and E1 of the ECM connector.
- (b) Start the engine and warm it up with all accessories switched OFF until engine coolant temperature is stable.
- (c) Race the engine at 2,500 3,000 rpm for about 3 minutes.
- (d) After confirming that the waveform of the heated oxygen sensor (bank 1, 2 sensor 1 (OX1A, OX2A)), oscillate around 0.5 V during feedback to the ECM, check the waveform of the heated oxygen sensor (bank 1, 2 sensor 2 (OX1B, OX2B)).

HINT:

If there is a malfunction in the system, the waveform of the heated oxygen sensor (bank 1, 2 sensor 2 (OX1B, OX2B)) is almost the same as that of the heated oxygen sensor (bank 1, 2 sensor 1 (OX1A, OX2A)) on the left.

There are some cases where, even though a malfunction exists, the MIL may either light up or not light up.

INSPECTION PROCEDURE

HINT:

1

Read freeze frame data using the hand-held tester or the OBD II scan tool. Freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, as well as other data from the time when a malfunction occurred.

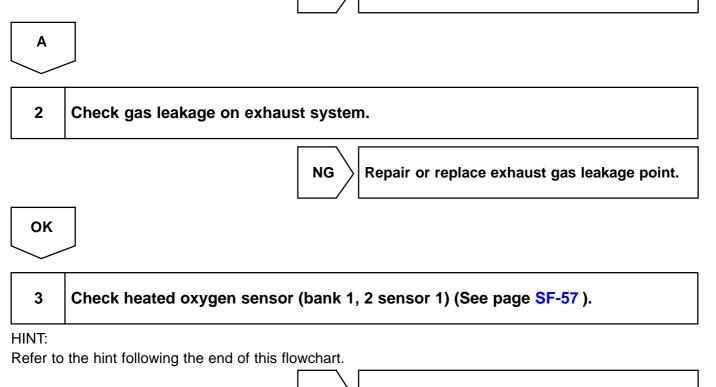
Are there any other codes (besides DTC P0420 or P0430) being output?

PREPARATION:

- (a) Connect the hand-held tester or the OBD II scan tool to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester or OBD II scan tool main switch ON.
- (c) When using hand-held tester, enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.

CHECK:

Read the DTC using the hand-held tester or the OBD II scan tool.


RESULT:

Display (DTC Output)	Proceed to
"P0420 and/or P0430"	А
"P0420 or P0430" and other DTCs	В

HINT:

If any other codes besides "P0420 and/or P0430" are output, perform the troubleshooting for those DTCs first.

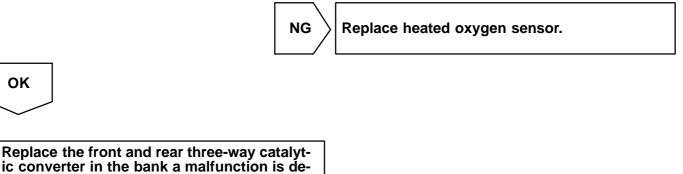
В

NG >

 \rangle Replace heated oxygen sensor.

Go to relevant DTC chart (See page DI-36).

OK


4 Check heated oxygen sensor (bank 1, 2 sensor 2) (See page SF-57).

HINT:

OK

tected.

Refer to the hint following the end of this flowchart.

HINT:

Hand-held tester only:

The narrowing down the trouble area is possible by performing ACTIVE TEST of the following "A/F CON-TROL" (Heated oxygen sensor or another can be distinguished).

Perform ACTIVE TEST by hand-held tester (A/F CONTROL). (a)

HINT:

"A/F CONTROL" is the ACTIVE TEST which changes the injection volume to -12.5 % or +25 %.

Connect the hand-held tester to the DLC3 on the vehicle. (1)

- (2) Turn the ignition switch ON.
- Warm up the engine with the engine speed at 2,500 rpm for approximately 90 seconds. (3)
- Select the item "DIAGNOSIS / ENHANCED OBD II / ACTIVE TEST / A/F CONTROL". (4)
- Perform "A/F CONTROL" with the engine in an idle condition (press the right or left button). (5)

RESULT:

Heated oxygen sensor reacts in accordance with increase and decrease of injection volume +25 % \rightarrow rich output: More than 0.5 V

-12.5 % \rightarrow lean output: Less than 0.4 V

NOTICE:

However, there is a few second delay in the sensor 1 (front sensor) output. And there is about 20 seconds delay in the sensor 2 (rear sensor).

	Output voltage of heated oxygen sensor (sensor 1: front sensor)	Output voltage of heated oxygen sensor (sensor 2: rear sensor)	Mainly suspect trouble area
Case 1	Injection volume +25 % -12.5 % Output voltage More than 0.5 V Less than 0.4 V	Injection volume +25 % -12.5 % Output voltage More than 0.5 V Less than 0.4 V	
Case 2	Injection volume +25 % -12.5 % Output voltage Almost no reaction — NG	Injection volume +25 % -12.5 % Output voltage More than 0.5 V Less than 0.4 V	Sensor 1: front sensor (sensor 1, heater, sensor 1 circuit)
Case 3	Injection volume +25 % -12.5 % Output voltage More than 0.5 V Less than 0.4 V	Injection volume +25 % -12.5 % Output voltage Almost no reaction NG	Sensor 2: rear sensor (sensor 2, heater, sensor 2 circuit)
Case 4	Injection volume +25 % -12.5 % Output voltage Almost no reaction - NG	Injection volume +25 % -12.5 % Output voltage Almost no reaction	Extremely rich or lean of the actual air-fuel ratio (Injector, fuel pressure, gas leakage in exhaust system, etc.)

The following A/F CONTROL procedure enables the technician to check and graph the voltage output of the heated oxygen sensors (sensor 1 and 2).

For displaying the graph indication, enter "ACTIVE TEST / A/F CONTROL / USER DATA" then select "O2S B1S1 and O2S B1S2" by pressing "YES" button and push "ENTER" button before pressing "F4" button. **NOTICE:**

If the vehicle is short of fuel, the air-fuel ratio becomes LEAN and DTCs P0133 and/or P0153 will be recorded, and the MIL then comes on.

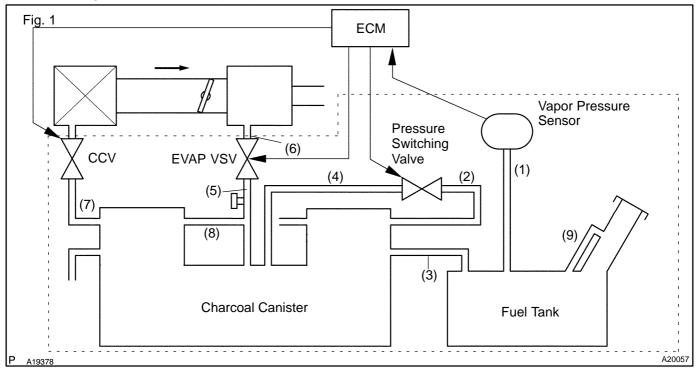
- ★ If different DTCs related to different systems while terminal E2 as ground terminal are output simultaneously, terminal E2 may be open.
- ★ Read freeze frame data using the hand—held tester or the OBD II scan tool. Freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, it is useful for determining whether the vehicle was running or stopped, the engine was warmed up or not, the air-fuel ratio was lean or rich, etc. at the time of the malfunction.
- ★ A high heated oxygen sensor (sensor 1) voltage (0.5 V or more) could be caused by a rich air fuel mixture. Check for conditions that would cause the engine to run rich.
- ★ A low heated oxygen sensor (sensor 1) voltage (0.4 V or less) could be caused by a lean air fuel mixture. Check for conditions that would cause the engine to run lean.

Date :

DIC2H-01

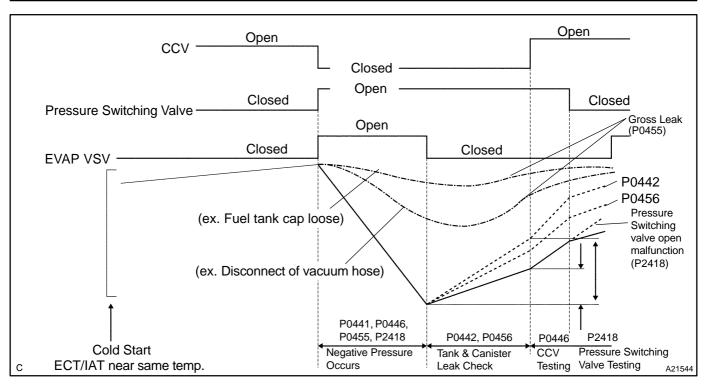
DTC	Evaporative Emission Control System Incor- rect Purge Flow

DTC		Evaporative Emission Control System Vent Control Circuit
-----	--	---


DTC	Evaporative Emission System Valve Control Circuit/Open
	Circuit/Open

CIRCUIT DESCRIPTION

The vapor pressure sensor, canister closed valve (CCV), and pressure switching valve are used to detect abnormalities in the evaporative emission control system.


The ECM decides whether there is an abnormality in the evaporative emission control system based on the vapor pressure sensor signal.

DTCs P0441, P0446 and P2418 are recorded by the ECM when evaporative emissions leak from the components within the dotted line in Fig. 1 below, or when there is a malfunction in either the EVAP VSV, the pressure switching valve, or in the vapor pressure sensor itself.

Date :

DIAGNOSTICS - ENGINE

DTC No.	DTC Detecting Condition	Trouble Area	
	Pressure in charcoal canister and fuel tank does not drop dur- ing purge control (2 trip detection logic)	★Vacuum hose cracks, holed, blocked, damaged or disconnected ((1), (2), (3), (4), (5), (6), (7), (8) and (9) in Fig. 1)	
P0441	During purge cut-off, pressure is very low compared with at- mospheric pressure (2 trip detection logic)	 ★Fuel tank cap incorrectly installed ★Fuel tank cap cracked or damaged 	
P0446	No fuel tank pressure rise when commanding the CCV open after an EVAP leak test	★Open or short in vapor pressure sensor circuit ★Vapor pressure sensor ★Open or short in VSV circuit for EVAP	
	A high negative pressure (vacuum) does not occurs in the system when commanding the EVAP VSV open and CCV closed with the pressure switching valve open	★CPEN or short in VSV circuit for EVAP ★EVAP VSV ★Open or short in VSV circuit for CCV	
P2418	No fuel tank pressure change when commanding the pressure switching valve closed for the check after the EVAP leak test	★Open or short in VSV circuit for pressure switching valve★Pressure switching valve	
	A high negative pressure (vacuum) does not occurs in the system when commanding the EVAP VSV open and CCV closed with the pressure switching valve open	 ★Fuel tank cracked, holed or damaged ★Charcoal canister cracked, holed or damaged ★ECM 	

HINT:

Typical DTC output of each trouble part

Trouble part		Typical DTC output (*1)
Si	Small Leak	
Medium Leak (e	x.: Vacuum hose loose)	P0455
Large Leak (ex.: Fuel tank cap loose)		P0441, P0446, P0455 and P2418
EVAP VSV	Open Malfunction	P0441
	Close Malfunction	P0441, P0446, P0455 and P2418
ccv	Open Malfunction	P0441, P0446, P0455 and P2418
	Close Malfunction	P0446
Pressure Switching Valve	Open Malfunction	P2418
	Close Malfunction	P0441, P0446, P0455 and P2418

*1: ECM may output some other DTC combination.

MONITOR DESCRIPTION

P0441

The ECM checks for a stuck closed malfunction in the EVAP VSV by commanding it to open with the CCV closed. If a high negative pressure does not develop in the fuel tank, the ECM determines that the EVAP VSV remains closed. The ECM turns on the MIL and a DTC is set.

The ECM checks for EVAP VSV "stuck open" fault by commanding both valves (EVAP VSV and CCV) to close at a time when the fuel tank is at atmospheric pressure. If the fuel tank develops a high negative pressure at this early stage of the test, the ECM determines that the EVAP VSV is stuck OPEN.

The ECM will turn on the MIL and a DTC is set.

P0446

The ECM checks the CCV "stuck closed" by commanding the CCV to open after the EVAP leak test. If the fuel tank pressure does not rise (lose vacuum), the ECM determines that the CCV is stuck closed. The ECM will turn on the MIL and a DTC is set.

If the EVAP VSV "stuck closed" is detected, the ECM determines that the CCV is "stuck open". The ECM turns on the MIL and a DTC is set.

P2418

The ECM checks the pressure switching valve (bypass VSV) "stuck open" by commanding the pressure switching valve to close after the EVAP leak test. If the fuel tank pressure does not change, the ECM determines that the pressure switching valve is malfunctioning. The ECM will turn on the MIL and a DTC is set. If the EVAP VSV "stuck closed" is detected, the ECM determines that the CCV is "stuck closed". The ECM turns on the MIL and a DTC is set.

MONITOR STRATEGY

	P0441	EVAP VSV malfunction
Related DTCs	P0446	CCV malfunction
	P2418	Bypass VSV malfunction
Required sensors/components	EVAP VSV, CCV, Bypass VSV and Vapor pressure	e sensor
Frequency of operation	Once per drive cycle	
Duration	P0441 : 90 sec. P0446 : 10 sec. P2418 : 10 sec.	
MIL operation	2 drive cycles	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS

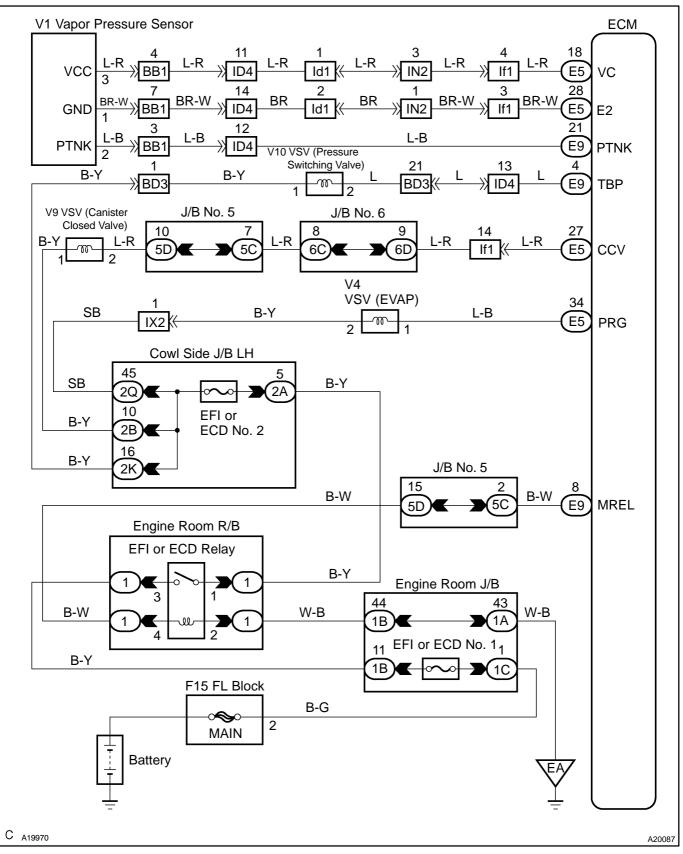
Same as P0442 (see page DI-245).

TYPICAL MALFUNCTION THRESHOLDS

P0441

Detection Criteria	Threshold	
Either the following condition is met:	A or B	
A. Following conditions are met:	(a) and (b)	
(a) Fuel tank pressure at the vacuum introduction start	-1.6 kPa (-12 mmHg, -0.47 in.Hg) or more	
(b) Difference between the fuel tank pressure at the vacuum introduction start and completion	Less than 0.9 kPa (7 mmHg, 0.27 in.Hg)	
B. Following conditions are met:	(a) and (b)	
(a) Difference between "minimum" fuel tank pressure before the leak check and the fuel tank pressure at 14 sec. after the leak check	0.5 kPa or more (3.5 mmHg, 0.15 in.Hg)	
(b) Fuel tank pressure at 14 sec. after the leak check	Less than -3.7 kPa (-28 mmHg, -1.1 in.Hg)	
P0446		
Case 1: CCV stuck closed		
Fuel tank pressure when the CCV is opened after an EVAP leak check	Not changing	
Case 2: CCV stuck open		
Fuel tank pressure after the EVAP VSV is opened and man- ifold vacuum is introduced to the fuel tank	Not changing	
P2418		
Case 1: Bypass VSV stuck open		
Fuel tank pressure when the pressure switching valve is closed after an EVAP leak check	Not changing	
Case 2: Bypass VSV stuck closed		
Fuel tank pressure after the EVAP VSV is opened and man- ifold vacuum is introduced to the fuel tank	Not changing	

MONITOR RESULT


The detailed information is described in "CHECKING MONITOR STATUS" (see page DI-3).

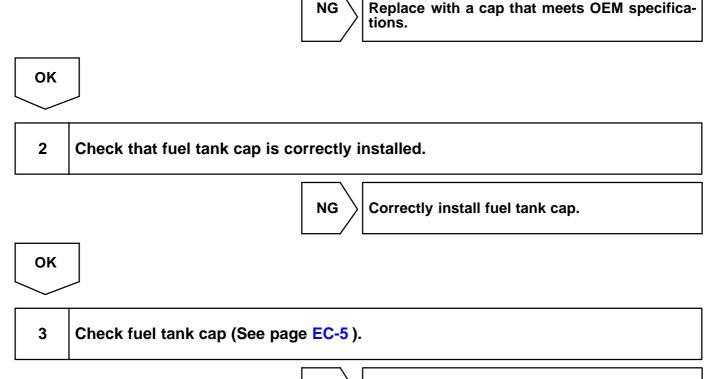
- \star TID (Test Identification) is assigned to each emission-related component.
- ★ TLT (Test Limit Type):
 If TLT is 0, the component is malfunctioning when the test value is higher than the test limit.
 If TLT is 1, the component is malfunctioning when the test value is lower than the test limit.
- \star CID (Component Identification) is assigned to each test value.
- \star Unit Conversion is used to calculate the test value indicated on generic OBD scan tools.

TID \$02: EVAP - Vacuum Monitor

TLT	CID	Unit Conversion	Description of Test Value	Description of Test Limit
1	\$01	Multiply by 0.0916 (mmHg)	Test value of EVAP VSV: Determined by fuel tank pressure change during vacuum introduction	Malfunction criterion
1	\$02	Multiply by 0.0458 and subtract 2.93 (mmHg)	Test value of bypass VSV (pressure switching valve): Determined by fuel tank pressure change at switching over bypass VSV	Malfunction criterion
0	\$03	Multiply by 0.0458 (mmHg)	Test value of 0.04 inch leak: Determined by fuel tank pressure change	Malfunction criterion
0	\$04	Multiply by 0.0458 (mmHg)	Test value of 0.02 inch leak: Determined by fuel tank pressure change	Malfunction criterion
1	\$05	Multiply by 0.0458 and subtract 2.93 (mmHg)	Test value of CCV: Determined by fuel tank pressure change at switching over CCV	Malfunction criterion

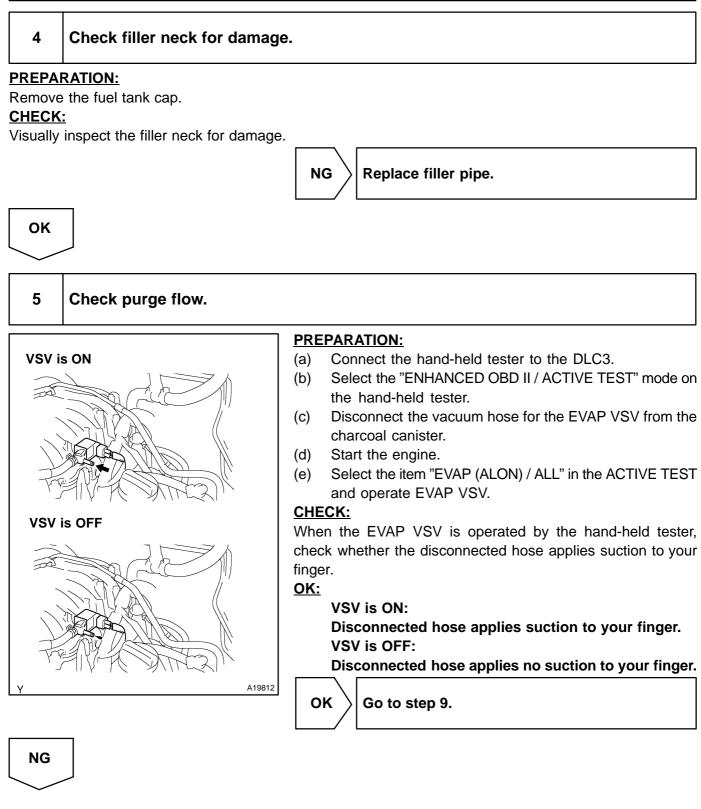
WIRING DIAGRAM

INSPECTION PROCEDURE

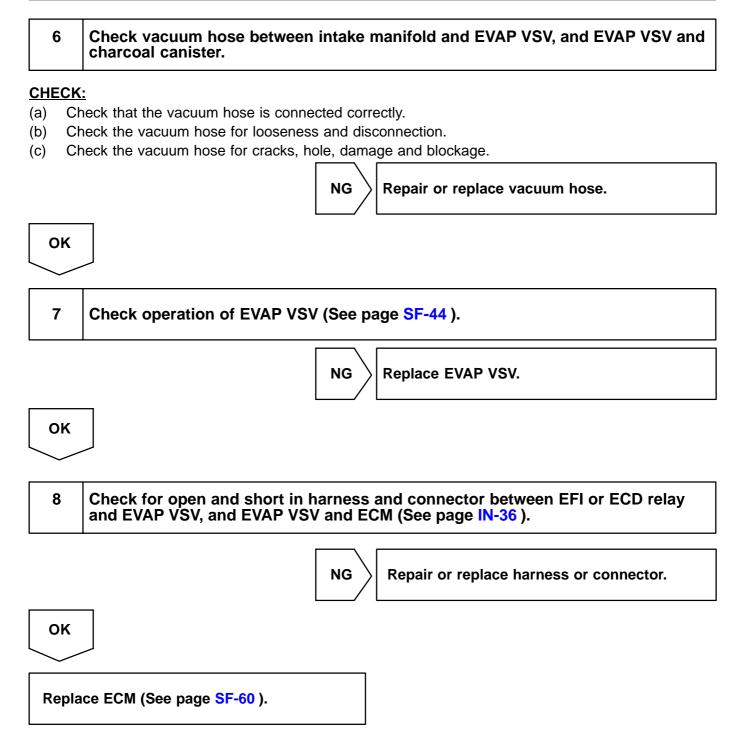

HINT:

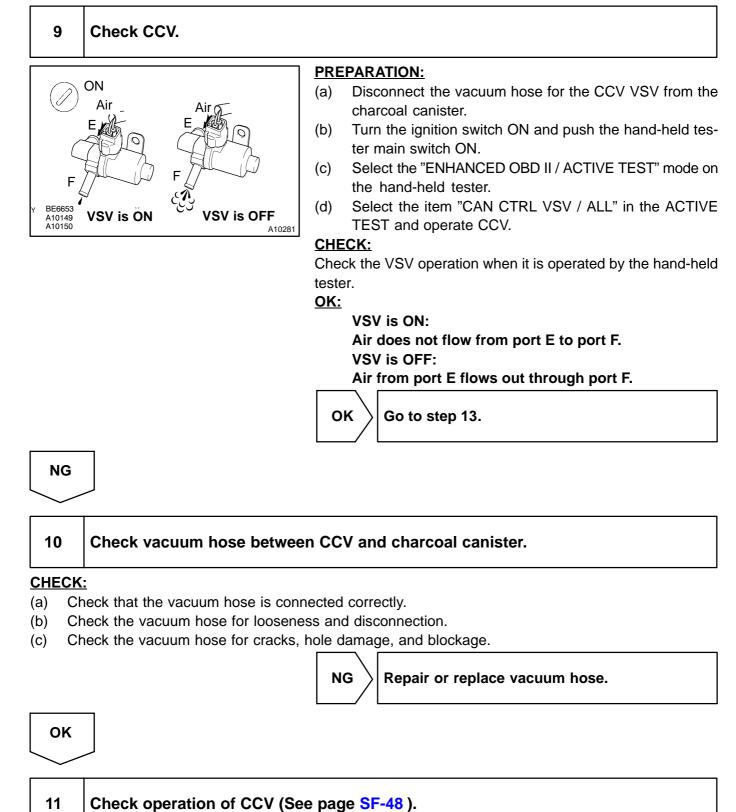
- If DTC P0441 (Purge Flow), P0446 (CCV) or P2418 (Pressure switching valve) or P0451 (Evaporative \star Pressure Sensor) is output with DTC P0442, P0455 or P0456, first troubleshoot DTC P0441, P0446 or P0451. If no malfunction is detected, troubleshoot DTC P0442, P0455 or P0456 next.
- Read freeze frame data using the hand-held tester or the OBD II scan tool. Freeze frame data records \star the engine conditions when a malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.
- When the ENGINE RUN TIME in the freeze frame data is less than 200 seconds, carefully check the \star vapor pressure sensor.

Hand-held tester:

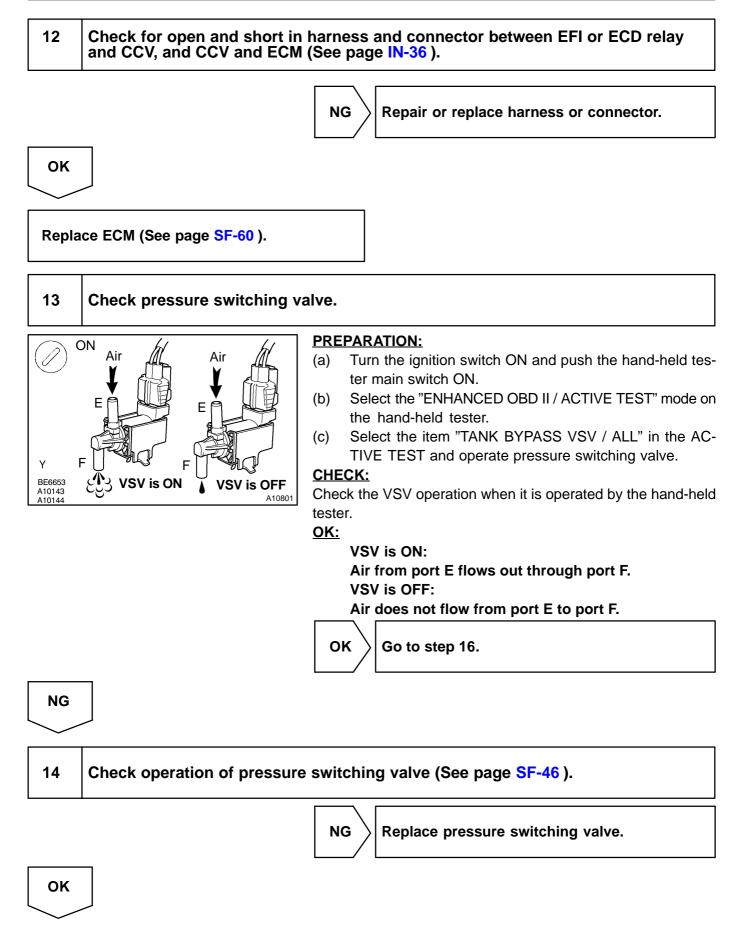

1 Check that fuel tank cap meets OEM specifications.
--

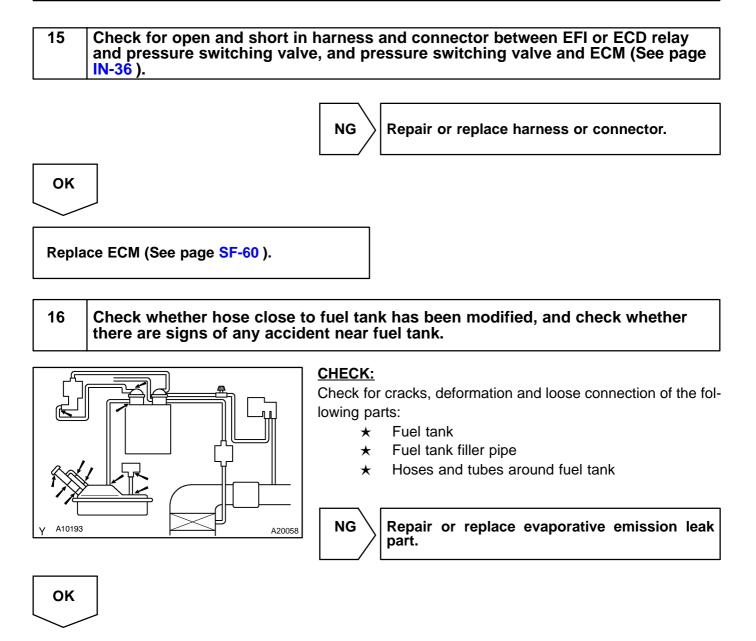
NG




NG Replace fuel tank cap.

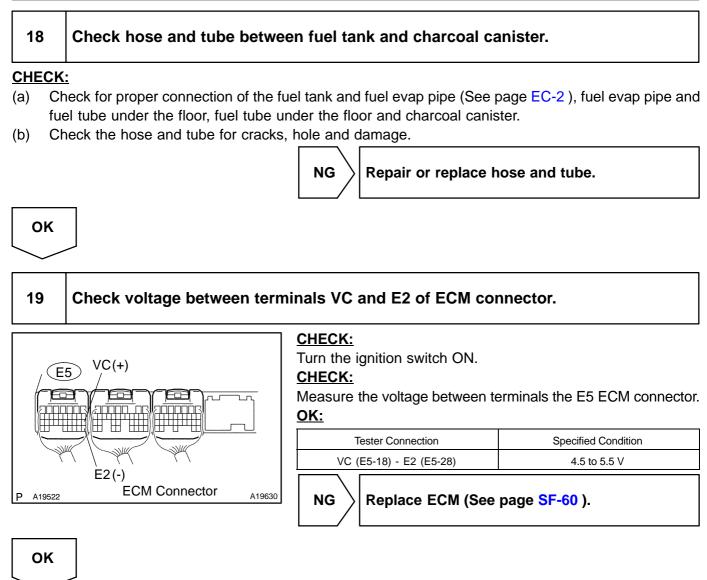
OK


422

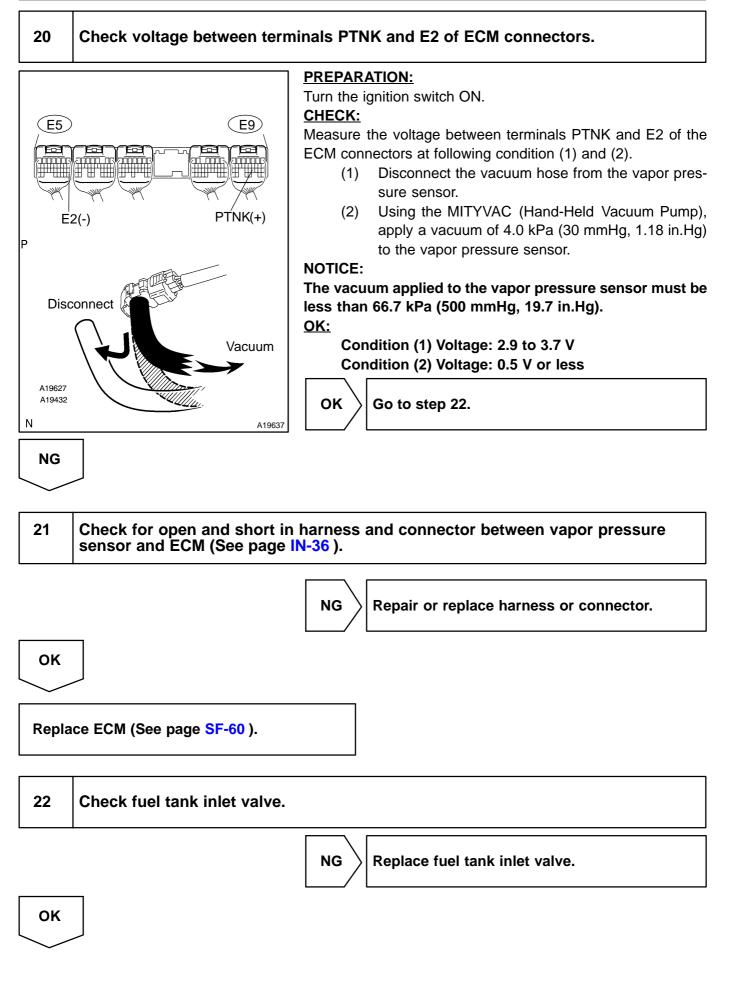


OK




17 Check vacuum hoses between vapor pressure sensor and fuel tank, and charcoal canister and pressure switching valve.

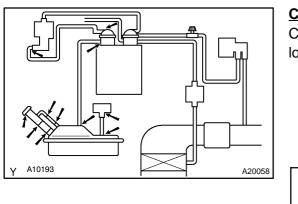
CHECK:


- (a) Check that the vacuum hose is connected correctly.
- (b) Check the vacuum hose for looseness and disconnection.
- (c) Check the vacuum hose for cracks, hole and damage.

23	Check fuel tank.
	NG Replace fuel tank.
ОК	
24	Check charcoal canister for cranks, hole and damage.
	NG Replace charcoal canister.
ОК	
Repla	ace ECM (See page SF-60).

OBD II scan tool (excluding hand-held tester):

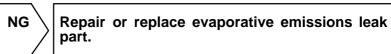
1 Check that fuel tank cap meets OEM specifications.



Replace with a cap that meets OEM specifications.

ОК	
2	Check that fuel tank cap is correctly installed.
	NG Correctly install fuel tank cap.
ОК	
3	Check fuel tank cap (See page EC-5).
	NG Replace fuel tank cap.
ОК	
4	Check filler neck for damage.
Remove CHECK	RATION: the fuel tank cap. inspect the filler neck for damage. NG Replace filler pipe.
ОК	

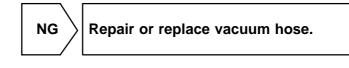
5


Check whether hose close to fuel tank has been modified, and check whether there are signs of any accident near fuel tank or charcoal canister.

CHECK:

Check for cracks, deformation and loose connection of the following parts:

- ★ Fuel tank
- ★ Charcoal canister
- ★ Fuel tank filler pipe
- ★ Hoses and tubes around fuel tank and charcoal canister

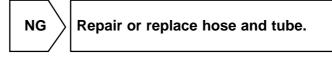


OK

6	Check vacuum hoses between vapor pressure sensor and fuel tank, charcoal
	canister and pressure switching valve.

CHECK:

- (a) Check that the vacuum hose is connected correctly.
- (b) Check the vacuum hose for looseness and disconnection.
- (c) Check the vacuum hose for cracks, hole and damage.

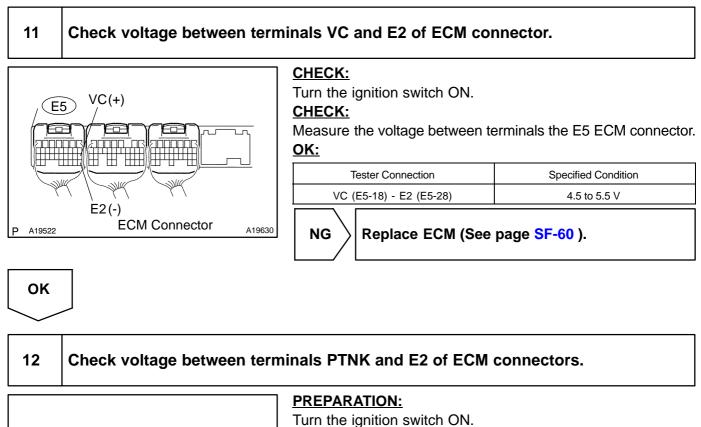

ОК

Check hose and tube between fuel tank and charcoal canister.

CHECK:

7

- (a) Check for proper connection of the fuel tank and fuel evap pipe (See page EC-2), fuel evap pipe and fuel tube under the floor, fuel tube under the floor and charcoal canister.
- (b) Check the hose and tube for cracks, hole and damage.


	OK	
_		

DI-239

8 Check vacuum hoses ((8) and (9) in Fig. 1 in circuit description). **CHECK:** (a) Check that the vacuum hose is connected correctly. (b) Check the vacuum hose for looseness and disconnection. Check the vacuum hose for cracks, hole damage, and blockage. (c) NG Repair or replace vacuum hose. OK Check VSV connector for EVAP, VSV connector for CCV, VSV connector for pres-9 sure switching valve and vapor pressure sensor connector for looseness and disconnection. NG Repair or connect VSV or sensor connector. OK 10 Check charcoal canister for cracks, hole and damage. NG Replace charcoal canister. ΟΚ

Author :

DI-240

CHECK:

E9

For

PTNK(+)

Vacuum

A19637

Measure the voltage between terminals PTNK and E2 of the ECM connectors at following condition (1) and (2).

- (1) Disconnect the vacuum hose from the vapor pressure sensor.
- (2) Using the MITYVAC (Hand-Held Vacuum Pump), apply a vacuum of 4.0 kPa (30 mmHg, 1.18 in.Hg) to the vapor pressure sensor.

NOTICE:

OK

The vacuum applied to the vapor pressure sensor must be less than 66.7 kPa (500 mmHg, 19.7 in.Hg). <u>OK:</u>

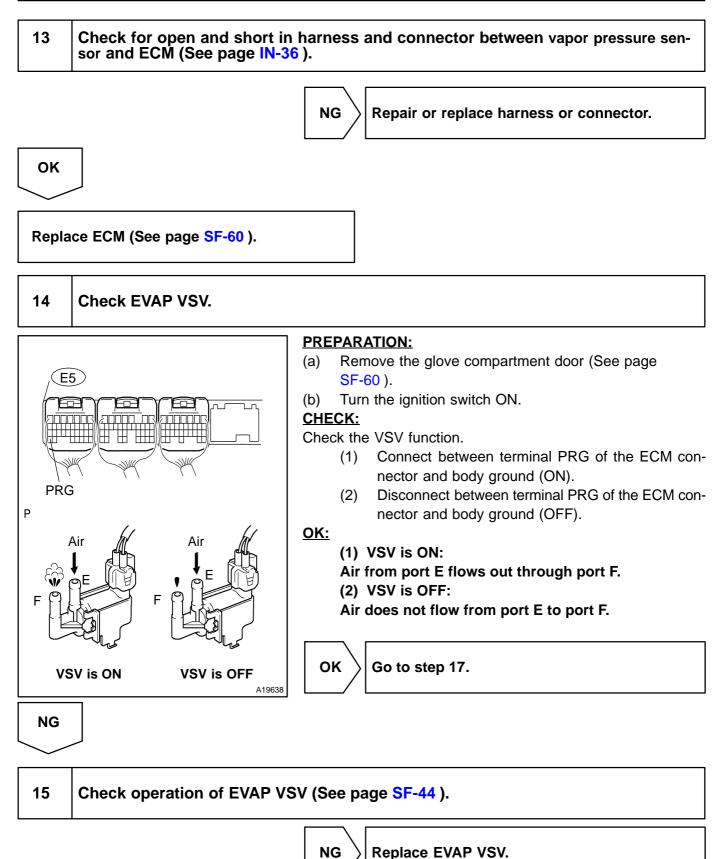
Condition (1) Voltage: 2.9 to 3.7 V Condition (2) Voltage: 0.5 V or less

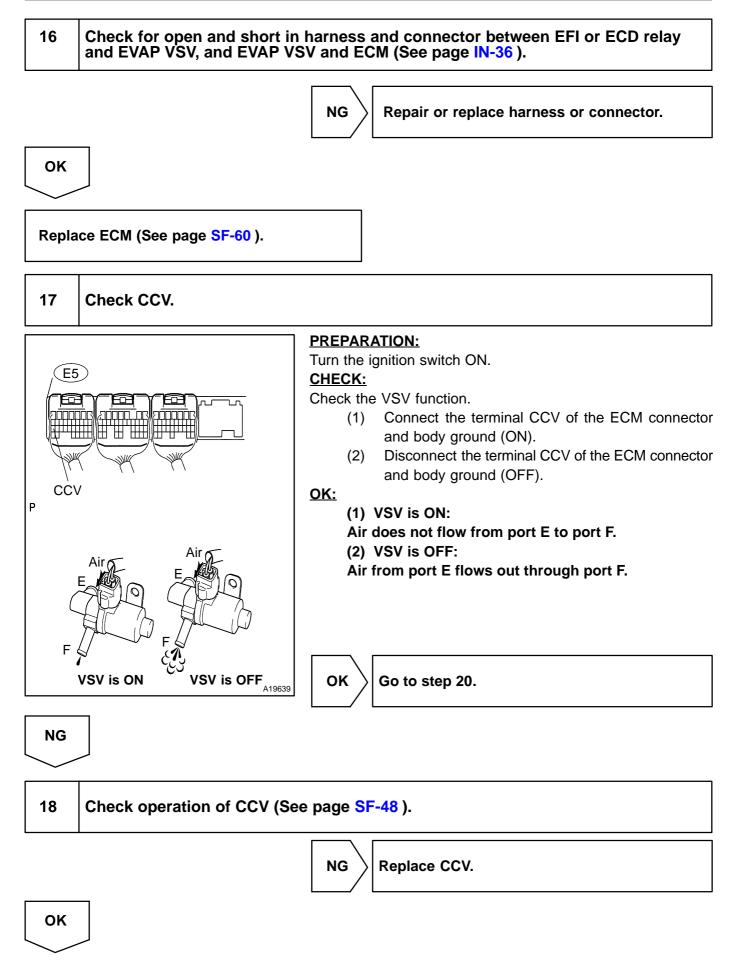
Go to step 14.

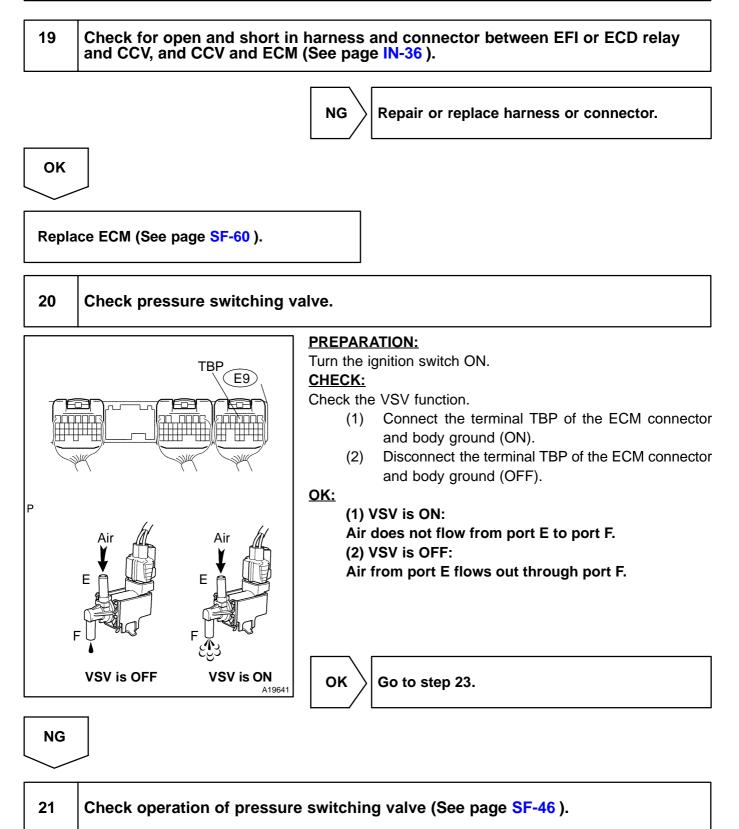
A19627 A19432

N

(E5)

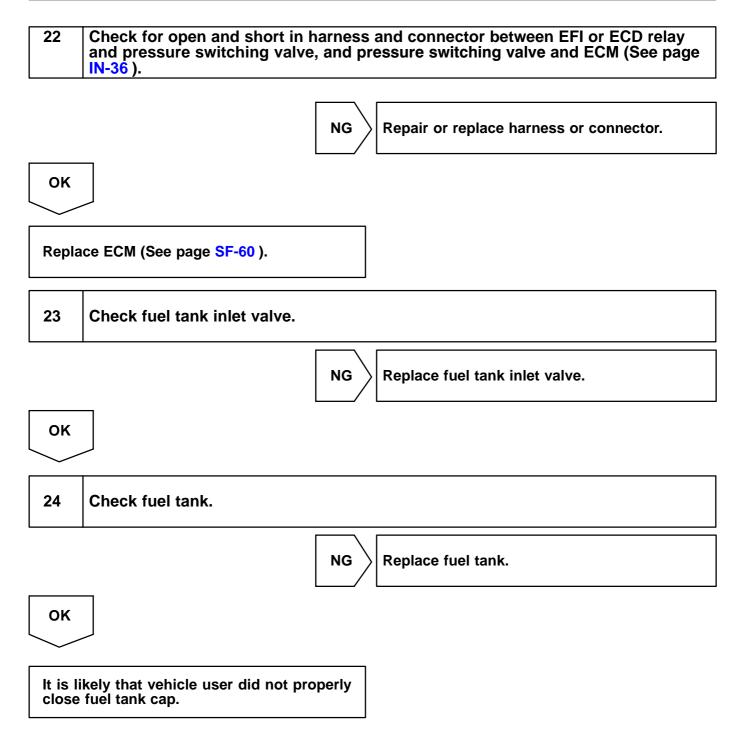

603


E


FOF

E2(-)

Disconnect



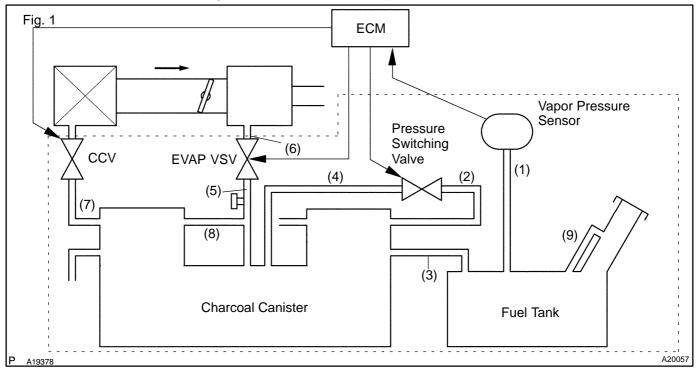
NG

Replace pressure switching valve.

ΟΚ

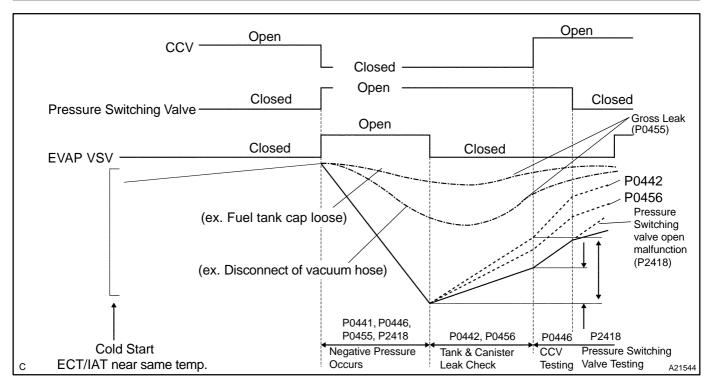
DTC	P0442	Evaporative Emission Control System Leak Detected (Small Leak)
-----	-------	---

DTC	P0455	Evaporative Emission Control System Leak Detected (Gross Leak)
		Detected (Gross Leak)


DTC	Evaporative Emission Control System Leak Detected (Very Small Leak)

CIRCUIT DESCRIPTION

The vapor pressure sensor, canister closed valve (CCV) and pressure switching valve are used to detect abnormalities in the evaporative emission control system.


The ECM decides whether there is an abnormality in the evaporative emission control system based on the vapor pressure sensor signal.

DTC P0442, P0455 or P0456 is recorded by the ECM when evaporative emissions leak from the components within the dotted line in Fig. 1 below, or when the vapor pressure sensor malfunctions.

DIC2I-01

438

MONITOR DESCRIPTION

A leak in the evaporative emission system prompts the ECM to set DTC P0442, P0455 or P0456.

The ECM checks for leaks in the system by introducing a high negative pressure (vacuum) from the intake manifold by commanding the EVAP VSV open while the CCV (vent) is closed and the pressure switching valve is open. After sufficient time has elapsed the fuel tank should have developed a high negative pressure (vacuum) and the EVAP VSV closed. The ECM then monitors the pressure-rise (loss of vacuum) in the fuel tank. If the pressure rises too rapidly, the ECM concludes that there is a leak in the system. The ECM will turn on the MIL and set a DTC.

The ECM has separate DTCs for small and large leaks:

- (1) DTC P0442 is set when the internal fuel tank pressure has a large increase and the EVAP system has a small leak.
- (2) DTC P0455 is set when the EVAP system has various large leaks. Even though the ECM sends a signal to the EVAP VSV (when CCV is closed) to create a vacuum, the internal fuel tank pressure does not decrease beyond a specified level.
- (3) DTC P0456 is set when the internal fuel tank pressure increase slightly and the EVAP system has a small leak.

HINT: Refer to DTCs P0441, P0446 and P2418

DTC No.	DTC Detecting Condition	Trouble Area
P0442	After the negative pressure introduction has been completed, if the pressure in the EVAP system sharply increases.	After the negative pressure introduction has been completed, if the pressure in the EVAP system sharply increases. Hose or tube cracked, holed, damaged or loose seal ((3) in Fig. 1)
P0455	If the vacuum is not strong enough, the ECM assumes the EVAP system has a large hole.	 *Fuel tank cap incorrectly installed *Fuel tank cap cracked or damaged *Vacuum hose cracked, holed, blocked, damaged or disconnected ((1), (2), (4), (5), (6), (7), (8) and (9) in Fig. 1) *Fuel tank cracked, holed or damaged *Charcoal canister cracked, holed or damaged *Open or short in vapor pressure sensor circuit *Vapor pressure sensor *ECM
P0456	If the pressure in the EVAP system slightly increase while the ECM performs a leak check.	

HINT:

Typical DTC output of each trouble part

Trouble part		Typical DTC output (*1)
Si	mall Leak	P0442 and/or P0456
Medium Leak (e	ex: Vacuum hose loose)	P0455
Large Leak (ex	Large Leak (ex: Fuel tank cap loose)	
	Open Malfunction	P0441
EVAP VSV	Close Malfunction	P0441, P0446, P0455 and P2418
2017	Open Malfunction	P0441, P0446, P0455 and P2418
CCV	Close Malfunction	P0446
	Open Malfunction	P2418
Pressure Switching Valve	Close Malfunction	P0441, P0446, P0455 and P2418

*1: ECM may output some other DTC combination.

MONITOR STRATEGY

	P0442	Small leak (0.040 inch or more large hole) is de- tected	
Related DTCs	P0455	Gross leak detected	
	P0456	Very small leak (0.020 inch hole) is detected	
	Main sensors/components	Vapor pressure sensor	
Required sensors/components	Related sensors/components	Mass air flow sensor, Engine coolant temperature sensor EVAP VSV (purge VSV), CCV	
Frequency of operation	Once per drive cycle		
Duration	60 sec.		
MIL operation	2 drive cycles		
Sequence of operation	None		

TYPICAL ENABLING CONDITIONS

	Crite	eria	
Item	Minimum	Maximum	
The monitor will run whenever the follow- ing DTCs are not present	See "List of disable a monitor" (on page DI-3)		
Common pre-conditions for 0.020, 0.040	inch and gross:		
Altitude	-	2,400 m (7,872 ft.)	
Throttle position learning	Comp	oleted	
Vapor pressure sensor	No malf	unction	
Difference between intake air temperature and engine coolant temperature at engine start	-7 ⊡C (-13⊡F)	11.1 ⊡ C (20⊡F)	
Vehicle speed condition	Ao	r B	
A. Time after vehicle stopped (Less than 10 km/h (6 mph))	90 sec.	-	
B. Time after vehicle started (7 km/h (4 mph) or more)	20 sec.	-	
0.020 inch malfunction detection:			
Engine coolant temperature at engine start	10⊑C (50⊑F)	32□℃ (89.6□F)	
Intake air temperature at engine start	10 _℃ (50 _F)	32⊡ᢗ (89.6⊡)	
Intake air temperature	10°C (50°F)	-	
Fuel level condition in fuel tank during leak check	Fuel slosh is small (must not drive on road in bad conditions)		
Time after engine start	-	50 min.	
Fuel tank pressure condition before leak check (Fuel tank condition before closed negative pressure introduction)	Tank inside pressure change is small before negative pressure introduction. (Reference: If fuel in tank is high temperature, vapor volume increase and tank inside pressure changes also increase)		
Vehicle speed and intake air amount condition before and after negative pres- sure introduction	Steady speed and not change greatly of intake air amount		
Fuel level	-	90%	
0.020 inch leak detection	Not con	npleted	
0.040 inch leak detection	Not de	Not detected	
CCV malfunction, bypass VSV malfunc- tion	Not de	tected	
Vehicle speed	-	130 km/h (81 mph)	
EVAP VSV (Evap purge VSV) malfunction	Not de	tected	
0.040 inch and gross malfunction:			
Engine coolant temperature at engine start	10°C (50°F)	35°C (95°F)	
Intake air temperature at engine start	10°C (50°F)	35°C (95°F)	
Intake air temperature	10°C (50°F)	-	
Fuel level condition in fuel tank during leak check	Fuel slosh is small (must not d	rive on road in bad conditions)	
Time after engine start	-	50 min.	
Fuel tank pressure condition before leak Tank inside pressure change is small before negative pressure introduction. Check (Fuel tank condition before closed Tank inside pressure change is small before negative pressure introduction. Reference: If fuel in tank is high temperature, vapor volume increase and ta changes also increase)			

Vehicle speed and intake air amount condition before and after negative pres- sure introduction	Steady speed and not change greatly of intake air amount	
Fuel level	-	90%
0.040 inch leak detection	Not completed	
Fuel tank pressure at vacuum introduction completed	-2.4 kPa (-18 mmHg, -0.71 in.Hg)	-
P0446 VSV check	Not ex	ecuted

TYPICAL MALFUNCTION THRESHOLDS

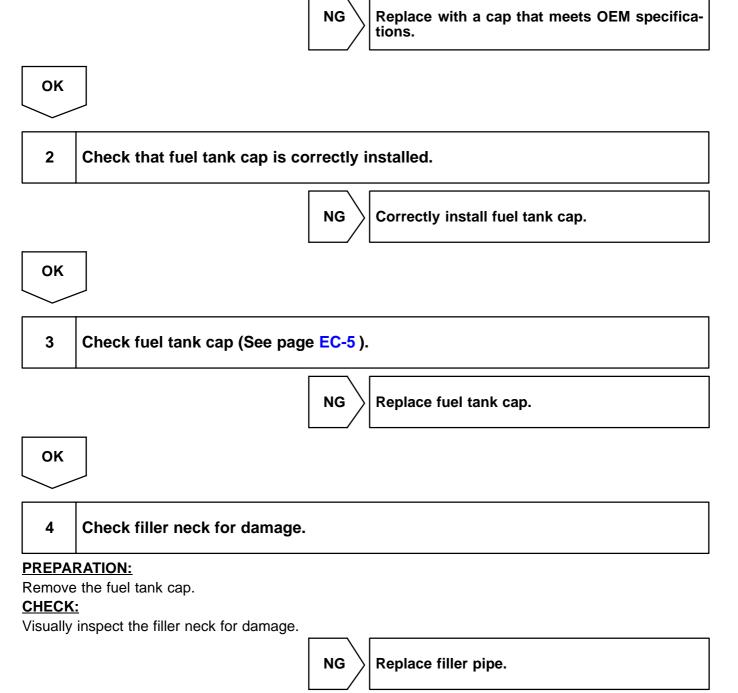
Detection Criteria	Threshold	
0.020 inch malfunction detection:		
Fuel tank pressure changing value for 5 sec. from -2.0 kPa (-15 mmHg, -0.59 in.Hg) point Increase 0.067 kPa (0.5 mmHg, 0.02 in.Hg) or more		
Fuel tank pressure changing value for 5 sec. from -2.7 kPa (-20 mmHg, -0.79 in.Hg) point Increase 0.067 kPa (0.5 mmHg, 0.02 in.Hg) or more		
0.040 inch malfunction detection:		
Fuel tank pressure changing value for 5 sec. from -2.0 kPa (-15 mmHg, -0.59 in.Hg) point Increase 0.16 kPa (1.2 mmHg, 0.05 in.Hg) or more		
Fuel tank pressure changing value for 5 sec. from -2.7 kPa (-20 mmHg, -0.79 in.Hg) point Increase 0.16 kPa (1.2 mmHg, 0.05 in.Hg) or more		
Gross leak detection:		
Fuel tank pressure min. value at vacuum introduction	-2.4 kPa (-18 mmHg, -0.71 in.Hg) or more	

MONITOR RESULT

The detailed information is described in "CHECKING MONITOR STATUS" (see page DI-3).

- ★ TID (Test Identification) is assigned to each emission-related component.
- ★ TLT (Test Limit Type):
 If TLT is 0, the component is malfunctioning when the test value is higher than the test limit.
 - If TLT is 1, the component is malfunctioning when the test value is lower than the test limit.
- \star CID (Component Identification) is assigned to each test value.
- \star Unit Conversion is used to calculate the test value indicated on generic OBD scan tools.

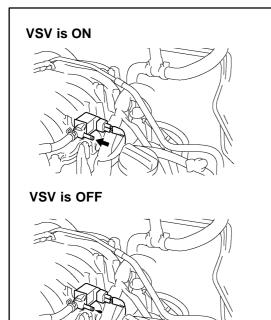
TID \$02: EVAP - Vacuum Monitor


TLT	CID	Unit Conversion	Description of Test Value	Description of Test Limit
1	\$01	Multiply by 0.0916 (mmHg)	Test value of EVAP VSV: Determined by fuel tank pressure change during vacuum introduction	Malfunction criterion
1	\$02	Multiply by 0.0458 and subtract 2.93 (mmHg)	Test value of bypass VSV (pressure switching valve): Determined by fuel tank pressure change at switching over bypass VSV	Malfunction criterion
0	\$03	Multiply by 0.0458 (mmHg)	Test value of 0.04 inch leak: Determined by fuel tank pressure change	Malfunction criterion
0	\$04	Multiply by 0.0458 (mmHg)	Test value of 0.02 inch leak: Determined by fuel tank pressure change	Malfunction criterion
1	\$05	Multiply by 0.0458 and subtract 2.93 (mmHg)	Test value of CCV: Determined by fuel tank pressure change at switching over CCV	Malfunction criterion

WIRING DIAGRAM

Refer to DTC P0441, P0446 and P2418 on page DI-222 .

Hand-held tester:


1	Check that fuel tank cap meets OEM specifications.

ок	
	_

Check purge flow.

5

PREPARATION:

- (a) Connect the hand-held tester to the DLC3.
- (b) Select the "ENHANCED OBD II / ACTIVE TEST" mode on the hand-held tester.
- (c) Disconnect the vacuum hose for the EVAP VSV from the charcoal canister.
- (d) Start the engine.
- (e) Select the item "EVAP (ALON) / ALL" in the ACTIVE TEST and operate EVAP VSV.

CHECK:

When the EVAP VSV is operated by the hand-held tester, check whether the disconnected hose applies suction to your finger.

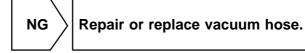
<u>OK:</u>

A19812

VSV is ON:

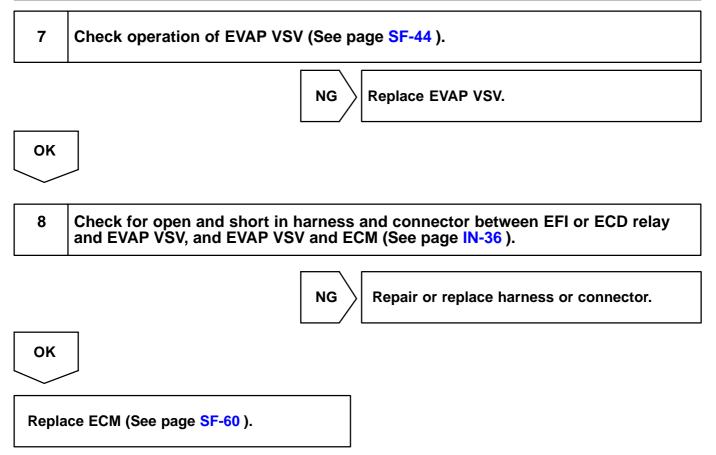
Disconnected hose applies suction to your finger. VSV is OFF:

Disconnected hose applies no suction to your finger.

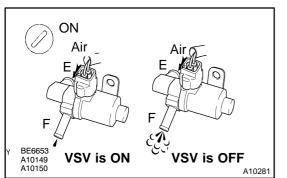

OK Go to step 9.

NG

6 Check vacuum hose between intake manifold and EVAP VSV, and EVAP VSV and charcoal canister.


CHECK:

- (a) Check that the vacuum hose is connected correctly.
- (b) Check the vacuum hose for looseness and disconnection.
- (c) Check the vacuum hose for cracks, hole, damage and blockage.



OK

DI-252

9 Check CCV.

PREPARATION:

- (a) Disconnect the vacuum hose for the CCV from the charcoal canister.
- (b) Turn the ignition switch ON and push the hand-held tester main switch ON.
- (c) Select the "ENHANCED OBD II / ACTIVE TEST" mode on the hand-held tester.
- (d) Select the item "CAN CTRL VSV / ALL" in the ACTIVE TEST and operate CAN CTRL VSV (Press the right or left button).

CHECK:

Check the VSV operation when it is operated by the hand-held tester.

<u>OK:</u>

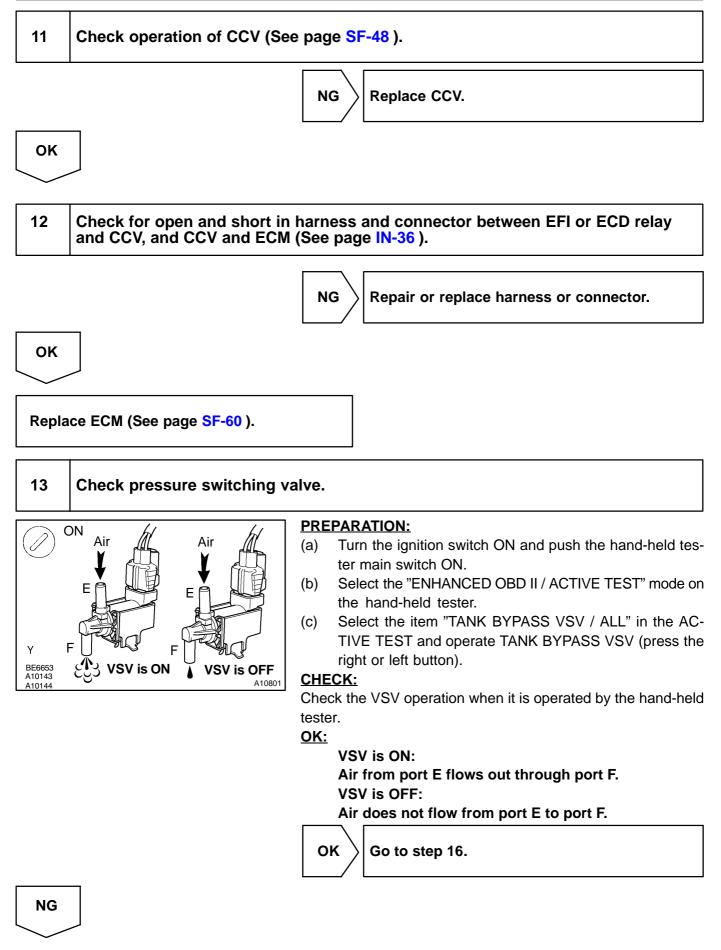
VSV is ON: Air does not flow from port E to port F. VSV is OFF:

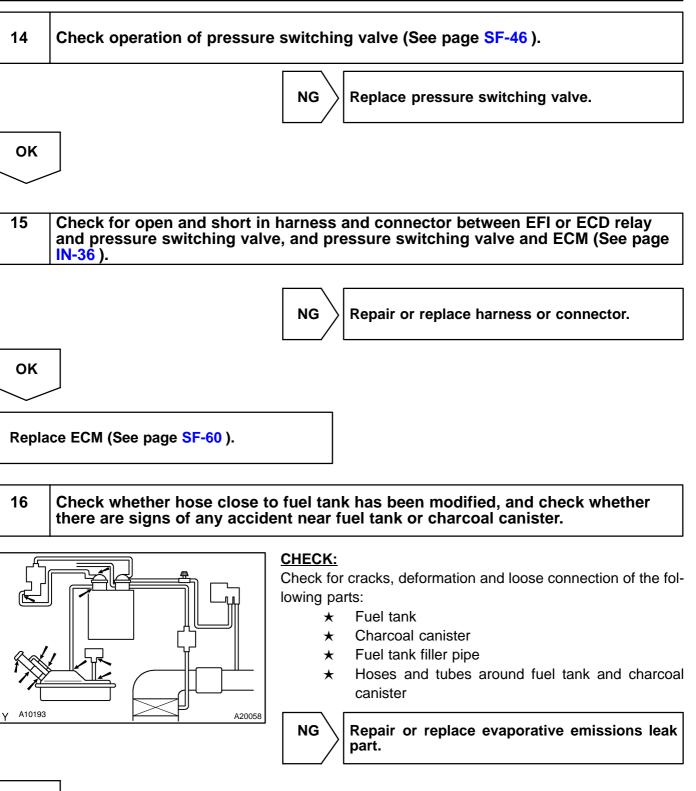
Air from port E flows out through port F.

OK Go to step 13.

NG

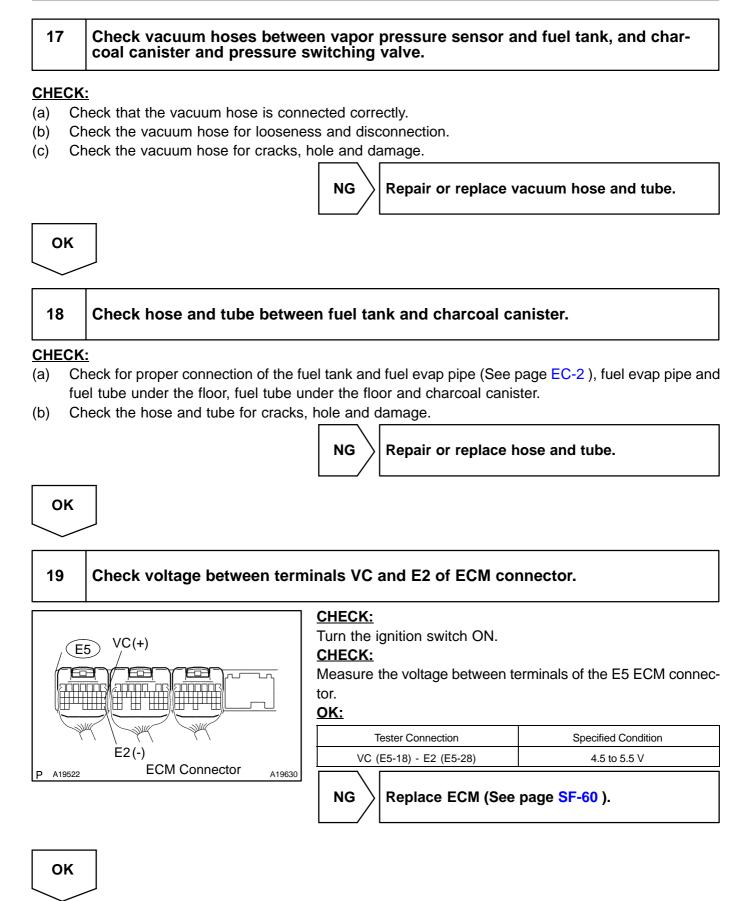
10	0	Check vacuum hose between CCV and charcoal canister.		
CHECK:				
(a)	Check that the vacuum hose is connected correctly.			
(b)	Check the vacuum hose for looseness and disconnection.			

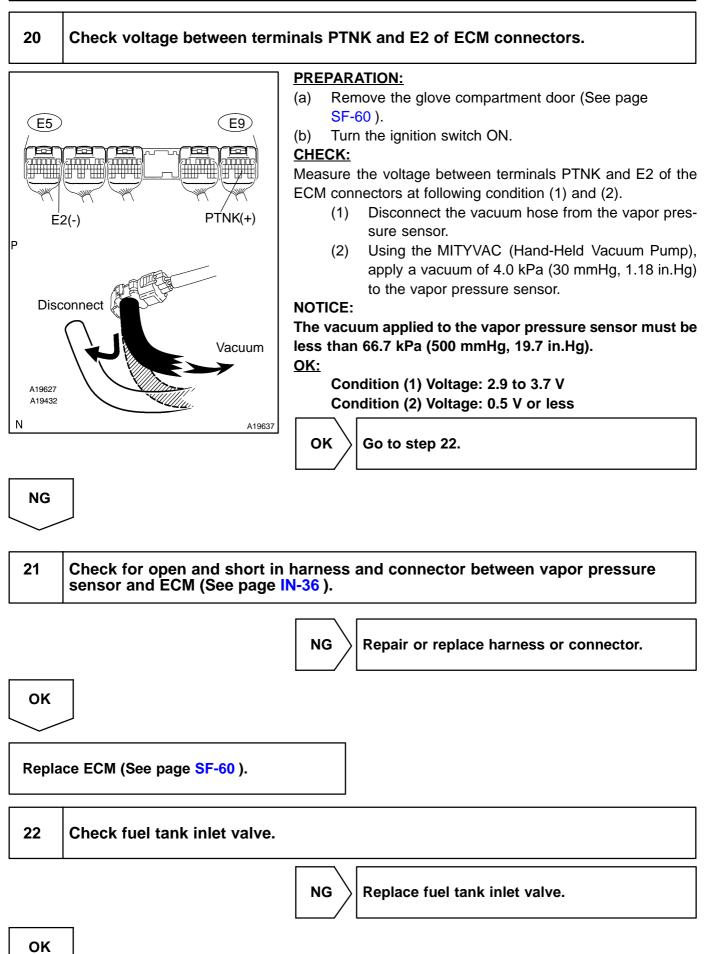

(c) Check the vacuum hose for cracks, hole damage, and blockage.



Repair or replace vacuum hose.

ΟΚ


DI-254



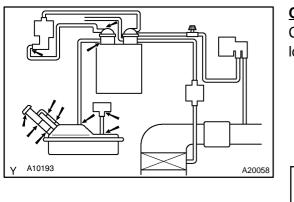
448

DI-255

23	Check fuel tank.	
	NG Replace fuel tank.	
ОК		
24	Check charcoal canister for cranks, hole and damage.	
	NG Replace charcoal canister.	
ОК		
Repla	ace ECM (See page SF-60).	

OBD II scan tool (excluding hand-held tester):

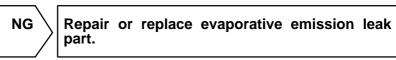
1 Check that fuel tank cap meets OEM specifications.



Replace with a cap that meets OEM specifications.

ок	
\geq	
2	Check that fuel tank cap is correctly installed.
	NG Correctly install fuel tank cap.
ОК	
3	Check fuel tank cap (See page EC-5).
	NG Replace fuel tank cap.
ОК	
4	Check filler neck for damage.
PREPAR	RATION:
	the fuel tank cap.
CHECK Visually	: inspect the filler neck for damage.
· · · · · ·	NG Replace filler pipe.
ОК	

5


Check whether hose close to fuel tank has been modified, and check whether there are signs of any accident near fuel tank or charcoal canister.

CHECK:

Check for cracks, deformation and loose connection of the following parts:

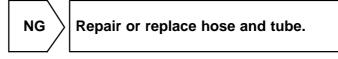
- ★ Fuel tank
- ★ Charcoal canister
- ★ Fuel tank filler pipe
- ★ Hoses and tubes around fuel tank and charcoal canister

OK

6 Check vacuum hoses between vapor pressure sensor and fuel tank, charcoal canister and pressure switching valve, and pressure switching valve and charcoal canister.

CHECK:

- (a) Check that the vacuum hose is connected correctly.
- (b) Check the vacuum hose for looseness and disconnection.
- (c) Check the vacuum hose for cracks, hole and damage.

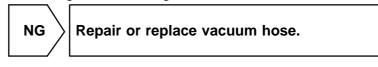

ΟΚ

7

Check hose and tube between fuel tank and charcoal canister.

CHECK:

- (a) Check for proper connection of the fuel tank and fuel evap pipe (See page EC-2), fuel evap pipe and fuel tube under the floor, fuel tube under the floor and charcoal canister.
- (b) Check the hose and tube for cracks, hole and damage.

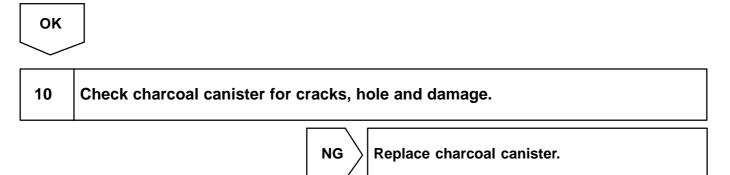


OK

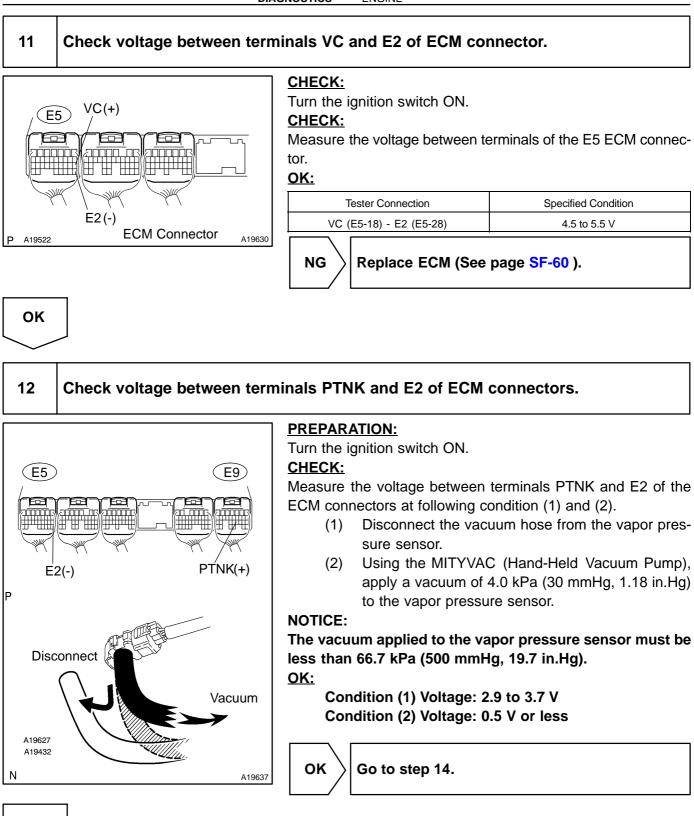
8 Check vacuum hoses ((5), (6), (7), (8) and (9) in Fig. 1 in circuit description).

CHECK:

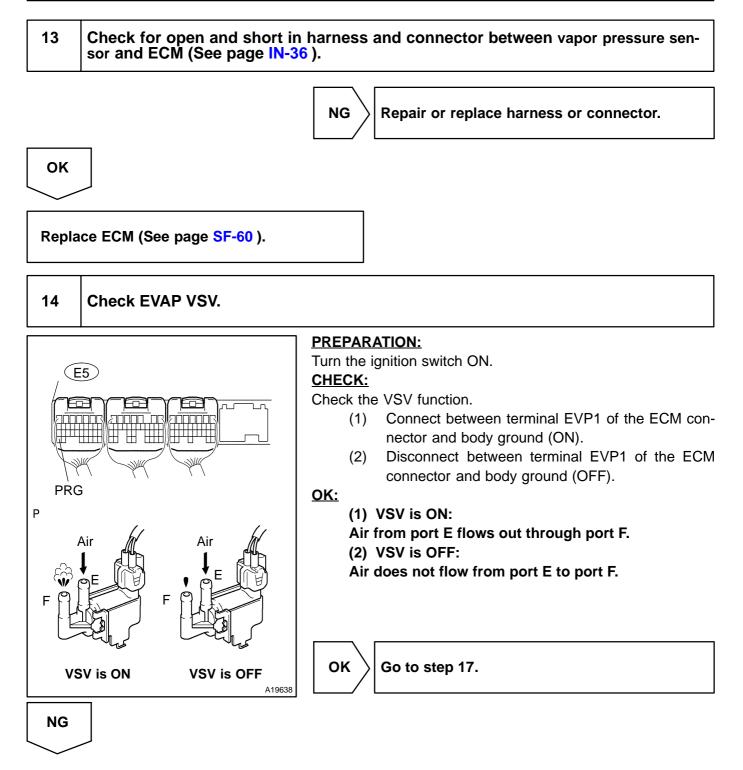
- (a) Check that the vacuum hose is connected correctly.
- (b) Check the vacuum hose for looseness and disconnection.
- (c) Check the vacuum hose for cracks, hole damage, and blockage.

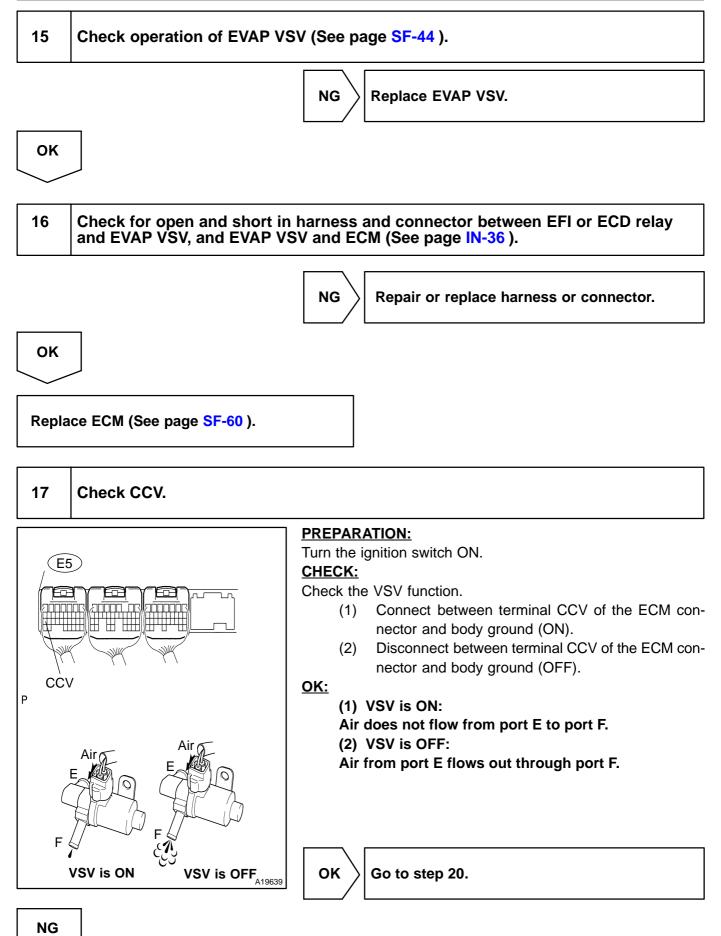


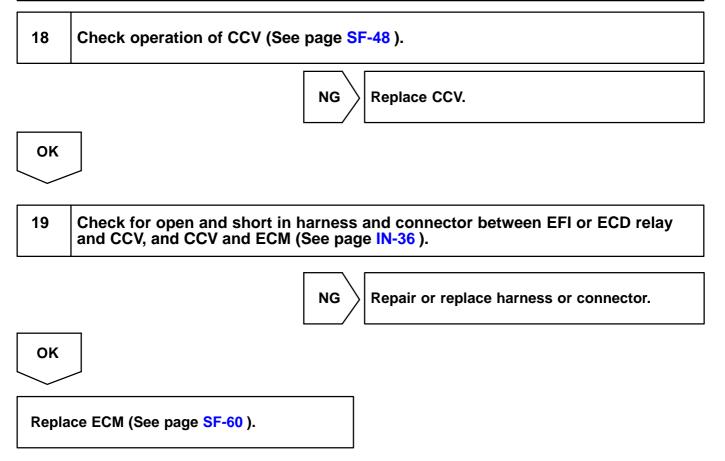
ОК
\searrow

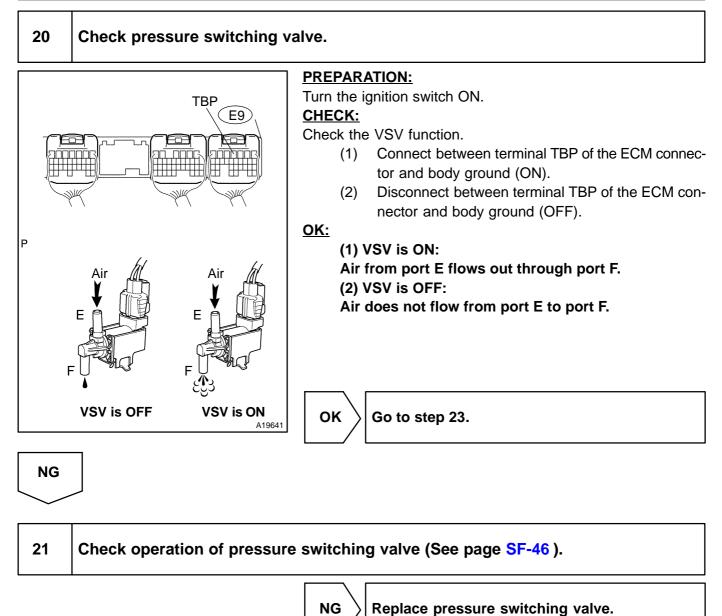

9 Check VSV connector for EVAP, VSV connector for CCV, VSV connector for pressure switching valve and vapor pressure sensor connector for looseness and disconnection.

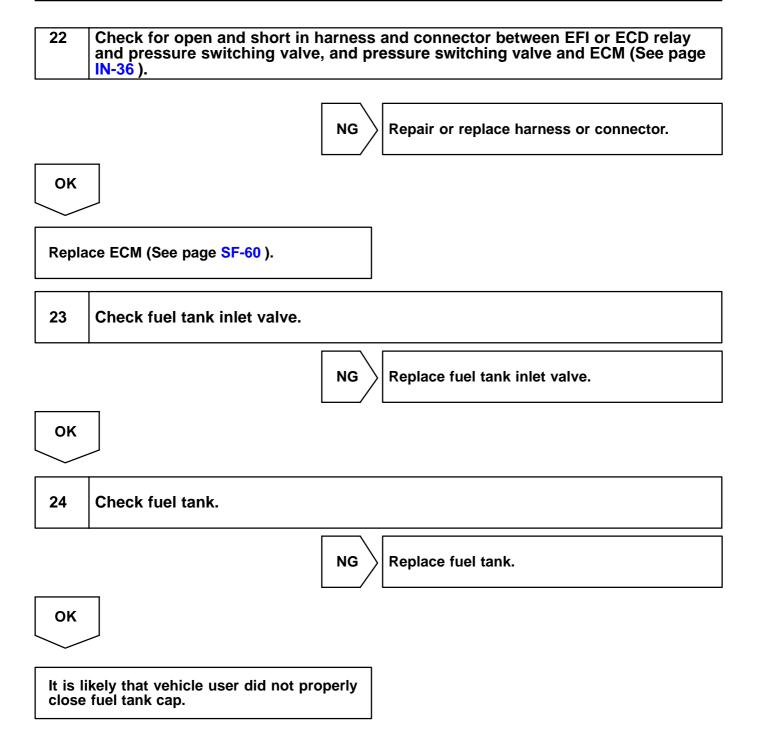
Repair or connect VSV or sensor connector.




ок




NG



OK

DTC		Evaporative Emission Control System Pres- sure Sensor/Switch Range/Performance
-----	--	---

DTC	Evaporative Emission Control System Pres- sure Sensor/Switch Low Input
	sure Sensor/Switch Low Input

DTC		Evaporative Emission Control System Pres- sure Sensor/Switch High Input
-----	--	--

MONITOR DESCRIPTION

DTC "P0451, P0452 or P0453" is recorded by the ECM when the vapor pressure sensor malfunctions.

P0451

The ECM sensor pressure in the fuel tank using the vapor pressure sensor. The ECM supplies the sensor with a regulated 5 V reference voltage and the sensor returns a signal voltage between 0.5 V and 4.5 V according to the pressure level in the fuel tank.

When the pressure in the fuel tank is low, the output voltage of the vapor pressure sensor is low. When it is high, the output voltage is high.

For this DTC P0451, the ECM checks for a "noisy" sensor or a "stuck" sensor.

The ECM checks for a "noisy" sensor by monitoring the fuel tank pressures when the vehicle is stationary and there should be little variation in the tank pressure. If the indicated pressure varies beyond specified limits, the ECM will illuminate the MIL (2-trip detection logic) and a DTC is set.

The ECM checks for a "stuck" sensor by monitoring the fuel tank pressure for an extended time period. If the indicated pressure does not change over this period, the ECM will conclude that the fuel tank pressure sensor is malfunctioning, The ECM will illuminate the MIL and a DTC is set.

P0452 and P0453

The ECM sensor pressure in the fuel tank using the vapor pressure sensor. The ECM supplies the sensor with a regulated 5 V reference voltage and the sensor returns a signal voltage between 0.5 V and 4.5 V according to the pressure level in the fuel tank.

If the output voltage of the vapor pressure sensor is out of normal range, the ECM will determine that there is a malfunction in the sensor or sensor circuit.

When pressure indicated by the vapor pressure sensor deviates below -3.999 kPa (-30 mmHg, -1.18 in.Hg) or above 1.999 kPa (15 mmHg, 0.59 in.Hg), the ECM interprets this as a malfunction in the vapor pressure sensor. The ECM will turn on the MIL and a DTC will be set.

DIC2.I-01

DTC No.	DTC Detecting Condition	Trouble Area
P0451	 Vapor pressure sensor output extremely changes under conditions of (a) and (b): (2 trip detection logic) (a) Vehicle speed: 0 km/h (0mph), Engine speed: Idling and pressure switching valve is OFF (b) Vapor pressure sensor value ≥ opening pressure valve of charcoal canister 	★Open or short in vapor pressure sensor circuit
P0452	10 seconds or less after engine starting condition vapor pres- sure sensor fixed value continues for fixed value or less: (2 trip detection logic)	₩/apor pressure sensor ÆCM
P0453	10 seconds or less after engine starting condition vapor pres- sure sensor fixed value continues for fixed value or more: (2 trip detection logic)	

MONITOR STRATEGY

P0451

Related DTCs	Related DTCs P0451	
	Main sensors/components	Vapor pressure sensor
Required sensors/components	Related sensors/components	Mass air flow meter, Engine coolant temperature sensor
Frequency of operation Once per driving cycle		
Duration	Signal fluctuation (noise) monitoring: 10 sec. No signal change (stuck) monitoring: 20 min.	
MIL operation 2 driving cycles		
Sequence of operation None		

P0452 and P0453

	P0452	Evaporative emission control system pressure sensor/switch low input
Related DTCs	P0453	Evaporative emission control system pressure sensor/switch high input
	Main sensors/components	Vapor pressure sensor
Required sensors/components	Related sensors/components	Mass air flow meter, Engine coolant temperature sensor
Frequency of operation	Once per driving cycle	
Duration	17 sec.	
MIL operation	2 driving cycles	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS

P0451

	Speci	fication
Item	Minimum	Maximum
The monitor will run whenever the follow- ing DTCs are not present	See "List of disable a monitor" (on page DI-3)	
Signal fluctuation (noise) monitoring:		
Altitude	-	2,400 m (7,872 ft)
Difference between intake air temperature and engine coolant temperature at engine start	-7 [C (-12.6[F)	11.1⊡℃ (20⊡₹)
Engine coolant temperature at engine start	4.4 □ C (40 □ F)	35⊡⊄ (95⊡₩)
Intake coolant temperature at engine start	4.4⊡℃ (40⊒₽)	35⊑ᢗ (95⊑₹)
Vehicle stop and idling	5 sec.	15 sec.
Stuck monitoring:		
Altitude	-	2,400 m (7,872 ft)
Vapor pressure sensor	No ma	lfunction
Difference between intake air temperature and engine coolant temperature at engine start	-7 [C (-12.6[F)	11.1⊡℃ (20⊡₹)
Engine coolant temperature at engine start	4.4□C (40□F)	35⊡⊄ (95⊡₩)
Intake air coolant temperature at engine start	4.4 □ C (40□F)	35⊑⊄ (95⊑₩)
Time after engine start	5 sec.	-

P0452 and P0453

	Specification	
Item	Minimum	Maximum
The monitor will run whenever the follow- ing DTCs are not present	See "List of disable a monitor" (on page DI-3)	
Difference between intake air temperature and engine coolant temperature at engine start	-	12⊑© (21.6⊑F)
Engine coolant temperature at engine start	10⊑© (50⊑₩)	35⊡© (95⊡⊮)
Intake air temperature at engine start	10 _ ℃ (50 _F)	35⊡℃ (95⊡₩)
Engine	Run	ning

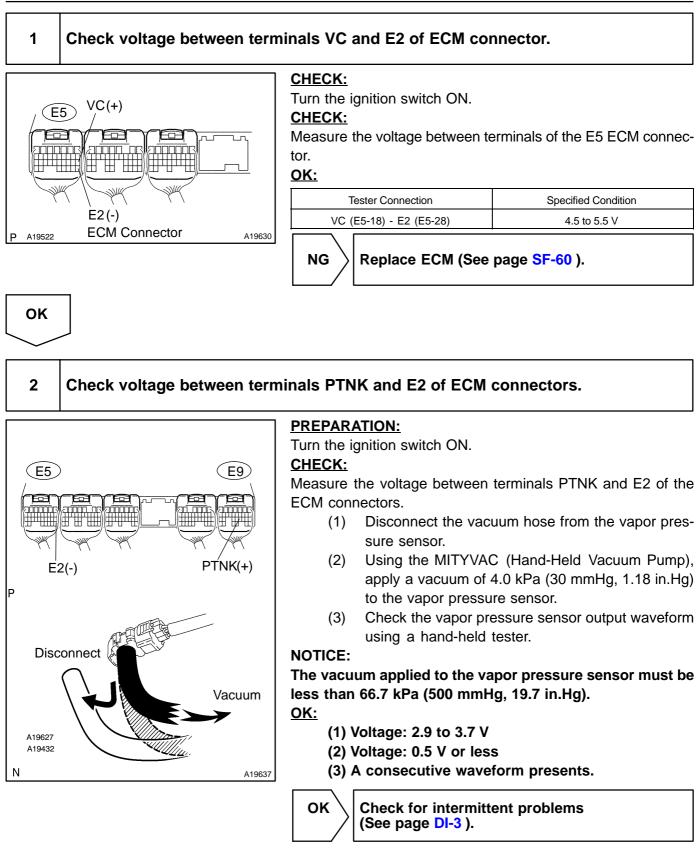
TYPICAL MALFUNCTION THRESHOLDS

P0451

Detection Criteria	Threshold
Signal fluctuation (noise) monitoring:	
The number of times the output changed ± 0.667 kPa (± 5 mmHg, ± 0.02 in.Hg) or more during 5 to 15 sec. after idling and vehicle stop	5 times or more
No signal change (stuck) monitoring:	
Fuel tank pressure "no change" time (less than 0.018 kPa (0.135 mmHg, 0.005 in.Hg) change since engine start)	10 min. or more

P0452 and P0453

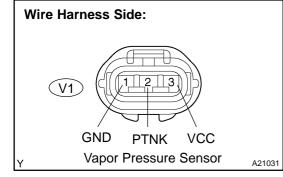
Detection Criteria	Threshold	
P0452:		
Fuel tank pressure	Less than -3.999 kPa (-30 mmHg, -1.18 in.Hg) / when engine running	
P0453:		
Fuel tank pressure	1.999 kPa (15 mmHg, 0.59 in.Hg) or more / when engine running	

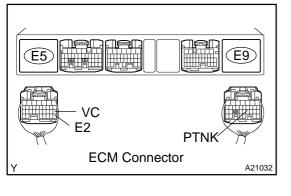

WIRING DIAGRAM

Refer to DTC P0441, P0446 and P2418 on page DI-222.

INSPECTION PROCEDURE

HINT:


- ★ If different DTCs related to different system that have terminal E2 as the ground terminal are output simultaneously, terminal E2 may be open.
- ★ If DTC P0441 (Purge Flow), P0446 (CCV), P0451, P0452 or P0453 (Evaporative Pressure Sensor) is output with DTC P0442 or P0456, troubleshoot DTC P0441, P0446, P0451, P0452 or P0453 first. If no malfunction is detected, troubleshoot DTC P0442 or P0456 next.
- ★ Read freeze frame data using the hand—held tester or the OBD II scan tool. Freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, it is useful for determining whether the vehicle was running or stopped, the engine was warmed up or not, the air-fuel ratio was lean or rich, etc. at the time of the malfunction.
- ★ When the ENGINE RUN TIME in the freeze frame data is less than 200 seconds, carefully check the vapor pressure sensor.



3

Check for open and short in harness and connector between vapor pressure sensor and ECM.

PREPARATION:

- (a) Disconnect the V1 vapor pressure sensor connector.
- (b) Disconnect the E5 and E9 ECM connector.

CHECK:

Measure the resistance between the wire harness side connectors.

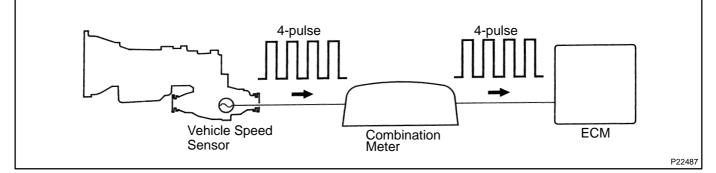
<u>OK:</u>

Tester Connection	Specified Condition
PTNK (V1-2) - PTNK (E9-21)	Below 1 Ω
GND (V1-1) - E2 (E5-28)	Below 1 Ω
VCC (V1-3) - VC (E5-18)	Below 1 Ω
PTNK (V1-2) or PTNK (E9-21) - Body ground	10 k Ω or higher
VCC (V1-3) or VC (E5-18) - Body ground	10 k Ω or higher

NG

Repair or replace harness or connector.

ок


Replace vapor pressure sensor.

DTC P0500 Vehicle Speed Sensor "A"			DI3CQ-13
	DTC	P0500	Vehicle Speed Sensor "A"

DTC	Vehicle Speed Sensor "A" Intermittent/ Erratic/High

CIRCUIT DESCRIPTION

The No.1 vehicle speed sensor outputs a 4-pulse signal for every revolution of the rotor shaft, which is rotated by the transmission output shaft via the driven gear. After this signal is converted into a more precise rectangular waveform by the waveform shaping circuit inside the combination meter, it is then transmitted to the ECM. The ECM determines the vehicle speed based on the frequency of these pulse signals.

DTC No.	Proceed to	DTC Detection Condition	Trouble Area
P0500	Step 1	No vehicle speed sensor sig- nal to ECM under following conditions (a) and (b): (1 trip detection logic) (a) Park/neutral position switch is OFF (b) Vehicle is being driven	★Combination meter ★Open or short in vehicle speed sensor circuit ★Vehicle speed sensor ★ECM
P0503	DI-3	Intermittent problem in the ve- hicle speed sensor circuit	

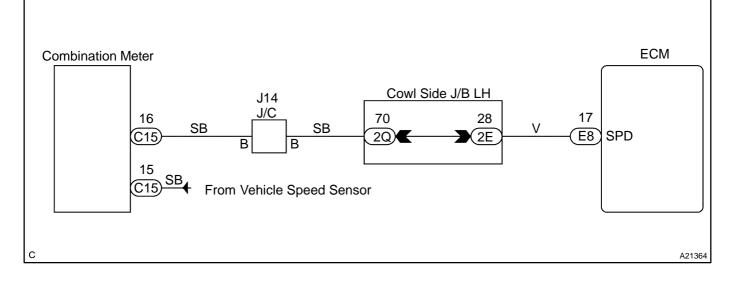
MONITOR DESCRIPTION

The ECM assumes that the vehicle is driven when the park/neutral position switch is OFF and it has been over 4 sec. since the actual vehicle speed was 9 km/h (6 mph) or more.

If there is no signal from the vehicle speed sensor with these conditions satisfied, the ECM concludes that there is a fault in the vehicle speed sensor. The ECM will turn on the MIL and a DTC is set.

MONITOR STRATEGY

Related DTCs	P0500 Vehicle speed sensor "A" pulse input error		
	Main sensors Vehicle speed sensor		
Required sensors/components	Related sensors	Park/Neutral position switch, Engine coolant tem- perature sensor, Combination meter	
Frequency of operation	Continuous		
Duration	500 output X 4 times		
MIL operation	Immediate		
Sequence of operation	None		


TYPICAL ENABLING CONDITIONS

	Specification		
Item	Minimum	Maximum	
The monitor will run whenever the follow- ing DTCs are not present	See "List of disable a n	nonitor" (on page DI-3)	
Vehicle speed is 9 km/h (6 mph) or more	4 sec.	-	
Park/neutral position switch	OI	FF	
Transfer neutral switch	Not "N" position		

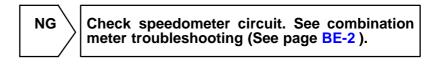
TYPICAL MALFUNCTION THRESHOLDS

Detection Criteria	Threshold
Sensor signal	No pulse input

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:


Read freeze frame data using the hand-held tester or the OBD II scan tool. Freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, as well as other data from the time when a malfunction occurred.

1 Check operation of speedometer.

CHECK:

Drive the vehicle and check if the operation of the speedometer in the combination meter is normal. HINT:

The vehicle speed is operating normally if the speedometer display is normal.

ΟΚ

Check voltage between terminal SPD and E1 of ECM connector.

2

ECM Connector A19629

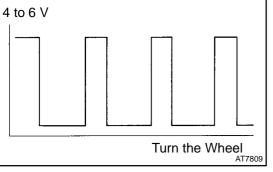
PREPARATION:

(a) Shift the shift lever to neutral.

(b) Jack up the rear wheel on one side.

(c) Turn the ignition switch ON.

CHECK:


Measure the voltage between the specified terminal of the E7 and E8 ECM connector when the wheel is turned slowly.

<u>OK:</u>

Specified Condition
Generated intermittently

HINT:

The output voltage should fluctuate up and down similarly to the diagram on the left when the wheel is turned slowly.

Check and repair harness and connector between combination meter and ECM.

OK

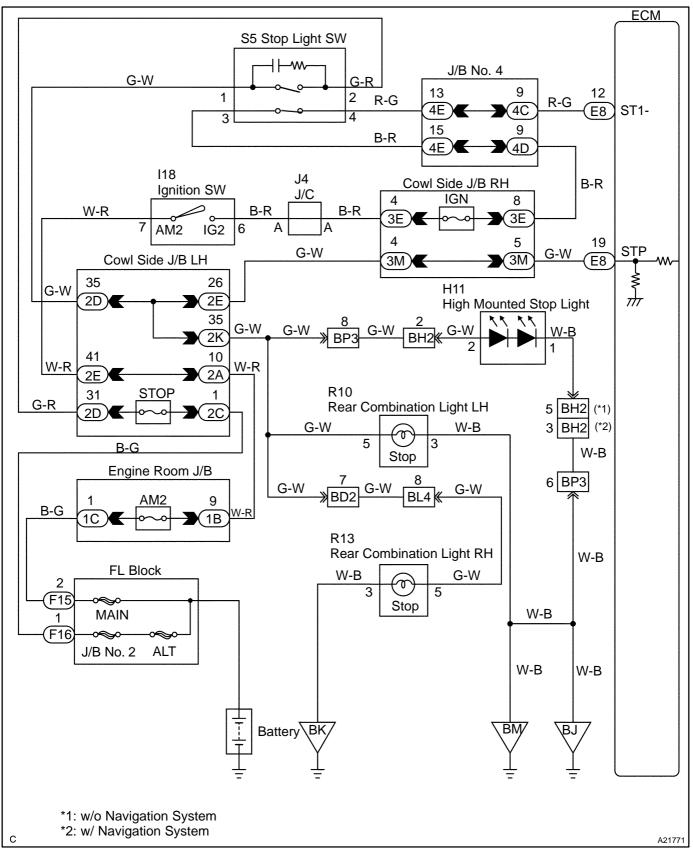
Replace ECM (See page SF-60).

```
DTC
```

P0504

Brake Switch "A"/"B" Correlation

CIRCUIT DESCRIPTION


In addition to turning on the stop lamps, the stop lamp switch signals are used for a variety of engine, transmission, and suspension functions as well as being an input for diagnostic checks. It is important that the switch operates properly, therefore this switch is designed with two complementary signal outputs: STP and ST1-. The ECM analyzes these signal outputs to detect malfunctions in the stop lamp switch. HINT:

Normal condition is as shown in the table.

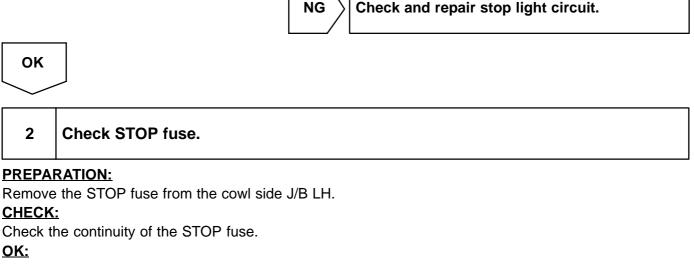
Ş	Signal Brake pedal released		In transition		Brake pedal depressed
	STP OFF			ON	ON
	ST1- ON			ON	OFF
DTC No.	DTC Detection Condition			Trouble Area	
P0504	Conditions (a), (b) and (c) continue for 0.5 sec. or more: (a) Ignition switch ON (b) Brake pedal released (c) STP signal is OFF when the ST1- signal is OFF			★Short in stop lamp switch signal circuit ★Stop lamp fuse ★Stop lamp switch ★ECM	

DIC2K-01

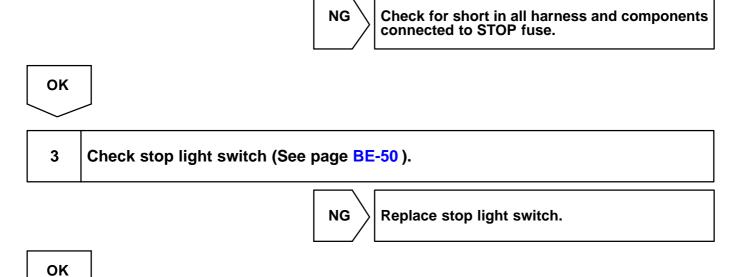
WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

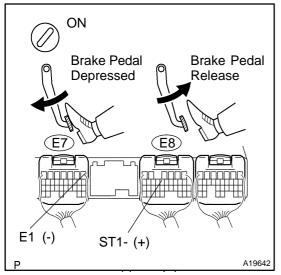

Read freeze frame data using the hand-held tester or the OBD II scan tool. Freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, as well as other data from the time when a malfunction occurred.

Hand-held tester:


1	Check operation of stop light.

CHECK:

Check if the stop lights come on and go off normally when the brake pedal is operated and released.



Continuity

Check STP signal and ST1- voltage.

PREPARATION:

(a) Turn the ignition switch ON.

(b) Select the item "DIAGNOSIS / ENHANCED OBD II / DATA LIST / ALL / STOP LIGHT SW".

CHECK:

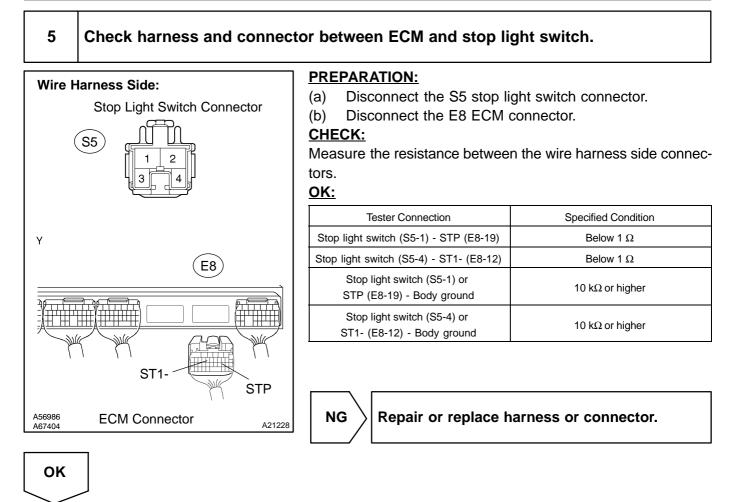
Read the signal displayed on the hand-held tester.

<u>OK:</u>

Brake Pedal	Specified Condition
Depressed	STP Signal ON
Released	STP Signal OFF

CHECK:

Measure the voltage between the specified terminals of the E7 and E8 ECM connectors.


<u>OK:</u>

Tester Connection	Brake Pedal	Specified Condition
ST1- (E8-12) -	Depressed	Below 1.5 V
E1 (E7-1)	Released	7.5 to 14 V

ок

Check for intermittent problems (See page DI-3).

NG

Replace ECM (See page SF-60).

OBD II scan tool (excluding hand-held tester):

1

Check operation of stop light.

CHECK:

Check if the stop lights come on and go off normally when the brake pedal is operated and released.

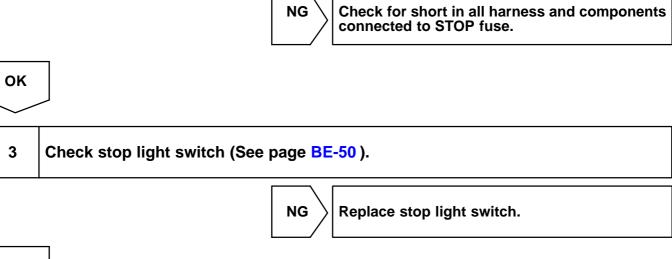
NG

Check and repair stop light circuit.

Check STOP fuse.

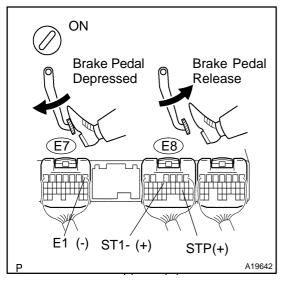
PREPARATION:

Remove the STOP fuse from the cowl side J/B LH.


CHECK:

2

Check the continuity of the STOP fuse.


<u>OK:</u>

Continuity

ОК

4 Check STP signal.

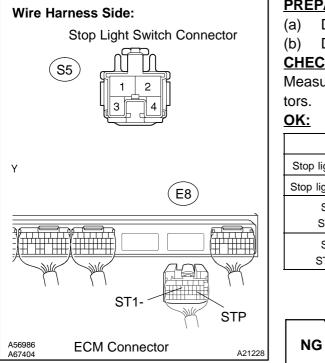
PREPARATION:

Turn the ignition switch ON.

CHECK:

Measure the voltage between the specified terminals of the E7 and E8 ECM connectors.

<u> 0K:</u>


Tester Connection	Brake Pedal Position	Specified Condition
	Depressed	7.5 to 14 V
STP (E8-19) - E1 (E7-1)	Released	Below 1.5 V
ST1- (E8-12) -	Depressed	Below 1.5 V
E1 (E7-1)	Released	7.5 to 14 V

NG

5

Check harness and connector between ECM and stop light switch.

PREPARATION:

Disconnect the S5 stop light switch connector. (a)

Disconnect the E8 ECM connector. (b)

CHECK:

Measure the resistance between the wire harness side connectors.

Tester Connection	Specified Condition
Stop light switch (S5-1) - STP (E8-19)	Below 1 Ω
Stop light switch (S5-4) - ST1- (E8-12)	Below 1 Ω
Stop light switch (S5-1) or STP (E8-19) - Body ground	10 k Ω or higher
Stop light switch (S5-4) or ST1- (E8-12) - Body ground	10 k Ω or higher

Repair or replace harness or connector.

OK

Replace ECM (See page SF-60).

```
DTC
```

P0505

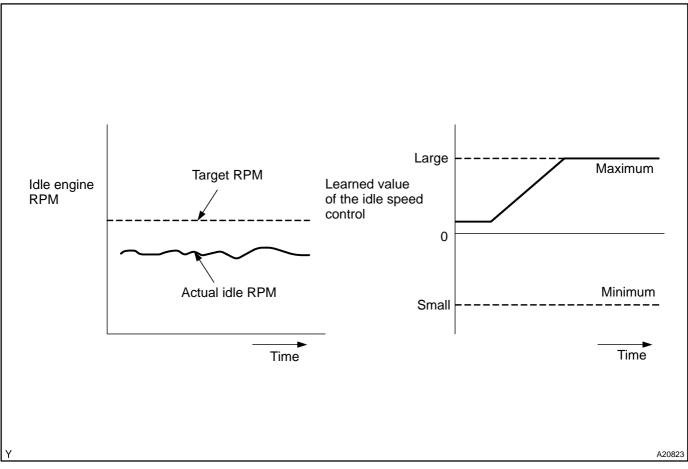
Idle Air Control System

MONITOR DESCRIPTION

The idle speed is controlled by the ETCS (Electronic Throttle Control System).

The ETCS is composed of the throttle motor which operates the throttle valve, and the throttle position sensor, which detects the opening angle of the throttle valve.

The ECM controls the throttle motor to provide the proper throttle valve opening angle to obtain the target idle speed.


The ECM regulates the idle speed by opening and closing the throttle valve using the ETCS. The ECM concludes that the idle speed control ECM function is malfunctioning if: 1) the actual idle RPM varies more than the specified amount, or 2) a learned value of the idle speed control remains at the maximum or minimum five times or more during a drive cycle. The ECM will turn on the MIL and set a DTC.

Example:

If the actual idle RPM varies from the target idle RPM by more than 100 (*1) rpm five times during a drive cycle, the ECM will turn on the MIL and a DTC is set.

HINT:

*1: RPM threshold varies with engine load.

DTC No.	DTC Detecting Condition	Trouble Area
P0505	Idle speed continues to vary greatly from target speed (1 trip detection logic)	

2004 LAND CRUISER (RM1071U)

DIC2I -01

MONITOR STRATEGY

Related DTCs	P0505	Idle air control malfunction
	Main sensors/components	Crankshaft position sensor
Required sensors/components	Related sensors/components	Vehicle speed sensor, Engine coolant tempera- ture sensor
Frequency of operation	Functional check: Once per trip Range check: Continuous	
Duration	Functional check: 10 min. Range check: 10 sec.	
MIL operation	Functional check: 2 driving cycles Range check: Immediate	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS

	Specification	
Item	Minimum	Maximum
The monitor will run whenever the follow- ing DTCs are not present	See "List of disable a monitor" (on page DI-3)	
Functional check:		
Precondition is met when both of the fol- lowing are met	A and B	
A. Intake air flow rate learnings is enabled	3 sec.	-
B. Engine	Running	
Range check:		
Output signal duty	10%	90%
Battery voltage	10 V	-

TYPICAL MALFUNCTION THRESHOLDS

Detection Criteria	Threshold	
Functional check:		
Case 1:		
All of the following conditions are met:	A, B and C	
A. Engine RPM - target engine RPM (History that vehicle had run for 10 km/h (6.2 mph) or more)	Less than -100 rpm or more than 200 rpm (A/C ON or park/neutral position switch ON) or Less than -100 rpm or more than 150 rpm (A/C OFF and park/neutral position switch OFF)	
B. Number of fall judgment	5 times or more	
C. Intake air control flow rate learning value	Value when fail is judged first + 3.31 L/sec. or more or Value when fail is judged first - 3.31 L/sec. or less	
Case 2:		
Both or the following condition are met:	A and B	
A. Engine RPM - target engine RPM (History that vehicle had run for 10 km/h (6.2 mph) or more)	Less than -100 rpm or more than 200 rpm (A/C ON or park/neutral position switch ON) or Less than -100 rpm or more than 150 rpm (A/C OFF and park/neutral position switch OFF)	
B. Intake air control flow rate learning value is for 5 sec.	2.48 L/sec. or less or 11 L/sec. or more	

2004 LAND CRUISER (RM1071U)

Range check:

Missing output duty change

INSPECTION PROCEDURE

HINT:

- ★ When the throttle position is slightly opened (the accelerator pedal is slightly depressed) because a floor carpet is overlapped on the accelerator pedal, or if not fully releasing the accelerator pedal, etc., DTC P0505 will possibly be detected.
- ★ Read freeze frame data using the hand-held tester or the OBD II scan tool. Freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, as well as other data from the time when a malfunction occurred.

1

Are there any other codes (besides P0505) being output?

PREPARATION:

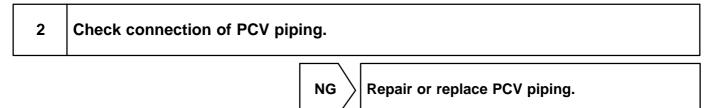
- (a) Connect the hand-held tester or the OBD II scan tool to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester or OBD II scan tool main switch ON.
- (c) When using hand-held tester, enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.

CHECK:

Read the DTC using the hand-held tester or the OBD II scan tool.

RESULT:

Display (DTC Output)	Proceed to
P0505	А
"P0505" and other DTCs	В


HINT:

Α

If any other codes besides P0505 are output, perform the troubleshooting for those DTCs first.

Go to relevant DTC chart (See page DI-36).

OK

3 Check air induction system (See page SF-1).

CHECK:

Check for vacuum leaks in air induction system.

Repair or replace air induction system.

ОК

Check electric throttle control system (See page SF-33).

	тΛ	•
υ	TC	,

P0560 Sy

System Voltage

MONITOR DESCRIPTION

The battery supplies electricity to the ECM even when the ignition switch is OFF. This electricity allows the ECM store data such as DTC history, freeze frame data, fuel trim values, and other data. If the battery voltage falls below a minimum level, the ECM will conclude that there is a fault in the power supply circuit. The next time the engine starts, the ECM will turn on the MIL and a DTC will be set.

DTC No.	DTC Detecting Condition	Trouble Area
P0560	Open in back up power source circuit	₩Open in back-up power source circuit ₩EFI or ECD No.1 fuse
		/E CM

HINT:

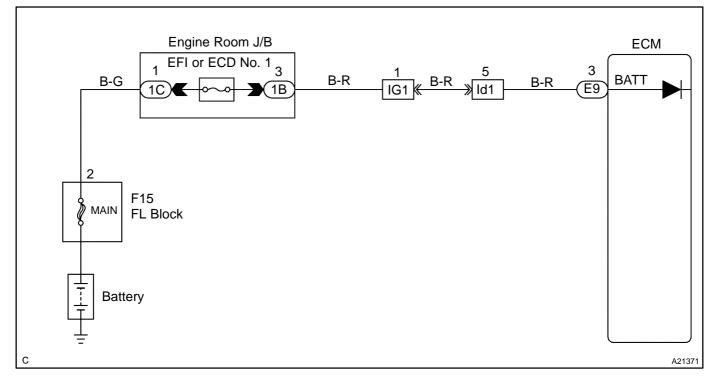
If DTC P0560 present, the ECM will not store another DTC.

MONITOR STRATEGY

Related DTCs	P0560	System voltage malfunction
Required sensors/components	ECM	
Frequency of operation	Continuous	
Duration	3 sec.	
MIL operation	Immediate (*1)	
Sequence of operation	None	

*1: The DTC is set immediate. The MIL will be illuminated after the next engine start.

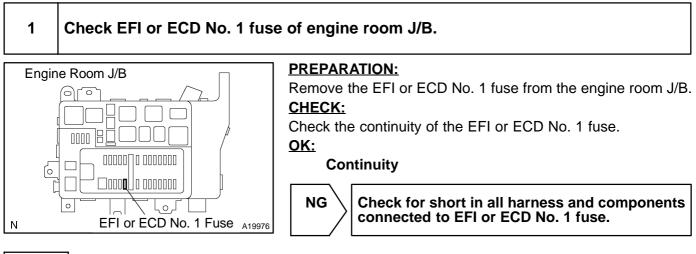
TYPICAL ENABLING CONDITIONS


Item	Specification	
	Minimum	Maximum
The monitor will run whenever the follow- ing DTCs are not present	See "List of disable a monitor" (on page DI-3)	
Stand-by RAM	Initialized	

TYPICAL MALFUNCTION THRESHOLDS

Detection Criteria	Threshold
Battery voltage	Less than 3.5 V

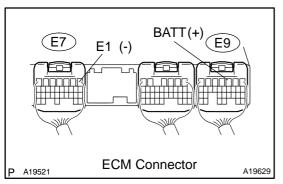
DIC2M-01


WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

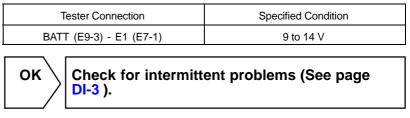
Read freeze frame data using the hand-held tester or the OBD II scan tool. Freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, as well as other data from the time when a malfunction occurred.



ОК

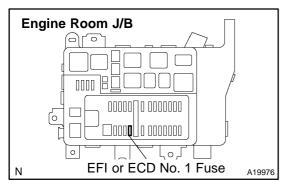
DI-292

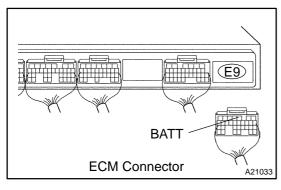
2


Check voltage between terminal BATT and E1 of ECM connector.

CHECK:

Measure the voltage between terminals of the E7 and E9 ECM connector.


<u>OK:</u>



NG

3

Check for open and short in harness and connector between ECM and EFI or ECD No. 1 fuse, EFI or ECD No. 1 fuse and battery.

Check the harness and the connector between the EFI or ECD No. 1 fuse and the ECM: PREPARATION:

- (a) Remove the EFI or ECD No. 1 fuse from the engine room J/B.
- (b) Disconnect the E9 ECM connector.

CHECK:

Measure the resistance between the wire harness side connector.

<u>OK:</u>

Tester Connection	Specified Condition
Engine Room J/B (EFI or ECD No. 1 fuse terminal 2) - BATT (E9-3)	Below 1 Ω
Engine Room J/B (EFI or ECD No. 1 fuse terminal 2) or BATT (E9-3) - Body ground	10 k Ω or higher

Check the harness and connector between the EFI or ECD No. 1 fuse and the battery: <u>PREPARATION:</u>

- (a) Remove the EFI or ECD No. 1 fuse from the engine room J/B.
- (b) Disconnect the battery positive terminal.

CHECK:

NG

Measure the resistance between the wire harness side connector.

<u>OK:</u>

Tester Connection	Specified Condition
Engine Room J/B (EFI or ECD No. 1 fuse terminal 1) - Battery positive terminal	Below 1 Ω
Engine Room J/B (EFI or ECD No. 1 fuse terminal 1) or Battery positive terminal - Body ground	10 k Ω or higher

Repair or replace harness or connector.

οκ

Check and replace engine room J/B.

DTC	P0604	Internal Control Module Random Access Memory (RAM) Error
DTC	P0606	ECM/PCM Processor
DTC	P0607	Control Module Performance

DTC	P0657	Actuator Supply Voltage Circuit / Open

MONITOR DESCRIPTION

The ECM continuously monitors its internal memory status, internal circuits, and output signals to the throttle actuator. This self-check insures that the ECM is functioning properly. If any malfunction is detected, the ECM will set the appropriate DTC and illuminate the MIL.

The ECM memory status is diagnosed by internal "mirroring" of the main CPU and the sub CPU to detect RAM (Random Access Memory) errors. The two CPUs also perform continuous mutual monitoring.

The ECM sets a DTC if: 1) outputs from the 2 CPUs are different and deviate from the standards, 2) the signals to the throttle actuator deviate from the standards, 3) a malfunction is found in the throttle actuator supply voltage, and 4) any other ECM malfunction is found.

DTC No.	DTC Detecting Condition	Trouble Area
P0604		
P0606	ECM malfunction	+ECM
P0607		
P0657		

MONITOR STRATEGY

	P0604	Random access memory (RAM) error range check
Related DTCs	P0606	ECM range check/description
	P0657	Actuator supply voltage circuit range check
Required sensors/components	ECM	
Frequency of operation	Continuous	
Duration	1 sec.	
MIL operation	Immediate	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS

The monitor will run whenever the follow- ing DTCs are not present	See "List of disable a monitor" (on page DI-3)
The typical enabling condition is not avail- able	-

DI1MF-11

TYPICAL MALFUNCTION THRESHOLDS

Detection Criteria	Threshold
P0604:	
RAM mirror check failure	
P0606:	
ECM error	
P0657:	
ECM error	

INSPECTION PROCEDURE

HINT:

Read freeze frame data using the hand-held tester or the OBD II scan tool. Freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, as well as other data from the time when a malfunction occurred.

Replace ECM (See page SF-60).

```
DTC
```

P0617

Starter Relay Circuit High

MONITOR DESCRIPTION

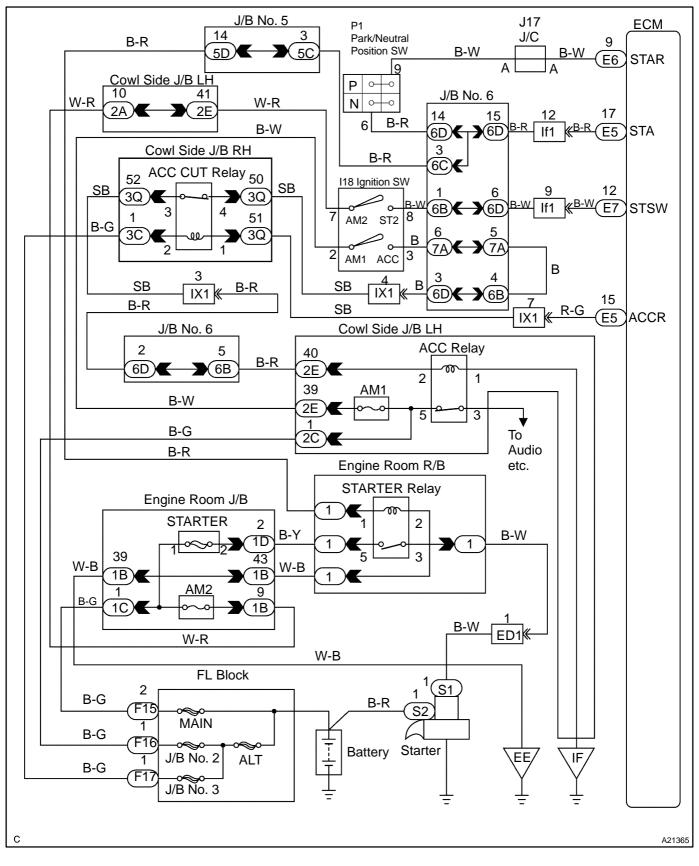
While the engine is being cranked, the battery positive voltage is applied to terminal STA of the ECM. If the vehicle is being driven and the ECM detects the starter control signal (STA), the ECM concludes that the starter control circuit is malfunctioning. The ECM will turn on the MIL and a DTC is set.

DTC No.	DTC Detection Condition	Trouble Area
P0617	 When all conditions (a), (b) and (c) are satisfied for 20 seconds with battery (+B) voltage 10.5 V or more (a) Vehicle speed ± 20 km/h (12.4 mph) (b) Engine revolution ± 1,000 rpm (c) STA signal ON 	₩Park/neutral position switch ★Starter relay circuit ★Ignition switch ★ECM

MONITOR STRATEGY

Related DTCs	P0617	Starter signal error
	Main sensors/components	Starter signal
Required sensors/components	Related sensors/components	Vehicle speed sensor, Engine speed sensor
Frequency of operation	Continuous	
Duration	20 sec.	
MIL operation	Immediate	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS


	Specification	
Item	Minimum Maximum	
The monitor will run whenever the follow- ing DTCs are not present	See "List of disable a monitor" (on page DI-3)	
Battery voltage	10.5 V -	
Vehicle speed	20 km/h (12.4 mph)	-
Engine speed	1,000 rpm	-

TYPICAL MALFUNCTION THRESHOLDS

Detection Criteria	Threshold
Starter signal	ON (at "more than 20 km/h (12.4 mph) and more than 1,000 rpm")

DIC2N-01

WIRING DIAGRAM

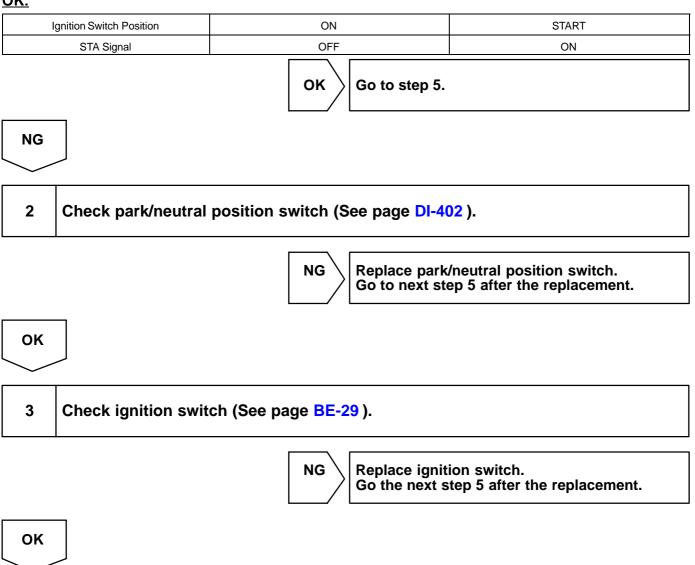
INSPECTION PROCEDURE

HINT:

Read freeze frame data using the hand-held tester or the OBD II scan tool. Freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, as well as other data from the time when a malfunction occurred.

Hand-held tester:

1 Connect hand-held tester, and check STA	A signal.
---	-----------


PREPARATION:

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON, and push the hand-held tester main switch ON.
- Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DATA LIST / ALL / STARTER SIG. (c)

CHECK:

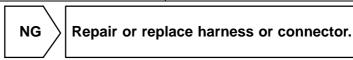
Read the STA signal on the hand-held tester while the starter operates.

OK:

4 Connect hand-held tester, and check STA signal.

PREPARATION:

(a) Connect the hand-held tester to the DLC3.


(b) Turn the ignition switch ON, and push the hand-held tester main switch ON.

Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DATA LIST / ALL / STARTER SIG. (c) **CHECK:**

Read the STA signal on the hand-held tester while the starter operates.

OK:

Ignition Switch Position	ON	START
STA Signal	OFF	ON

OK

Check DTC reoccur. 5

PREPARATION:

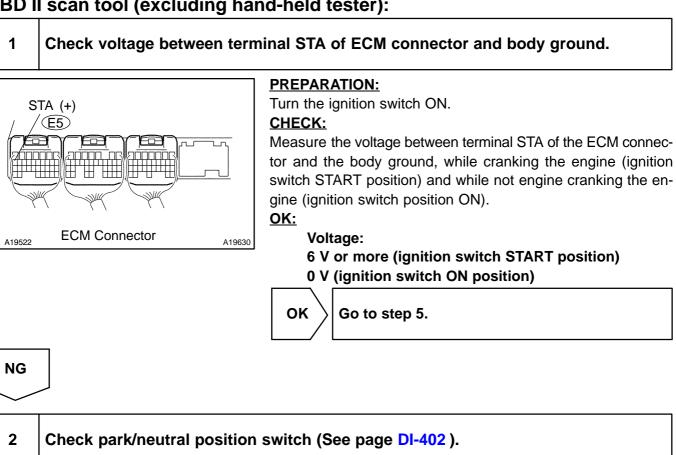

- Connect the hand-held tester to the DLC3. (a)
- Turn the ignition switch ON and hand-held tester main switch ON. (b)
- Clear DTC (See page DI-3). (c)
- (d) Drive the vehicle more than 40 km/h (25 mph) for 20 seconds or more.

CHECK:

Check DTC reoccur.

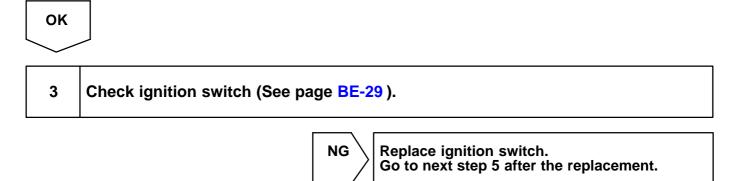
RESULT:

Display (DTC output)	Proceed to
P0617	A
No DTC output	В

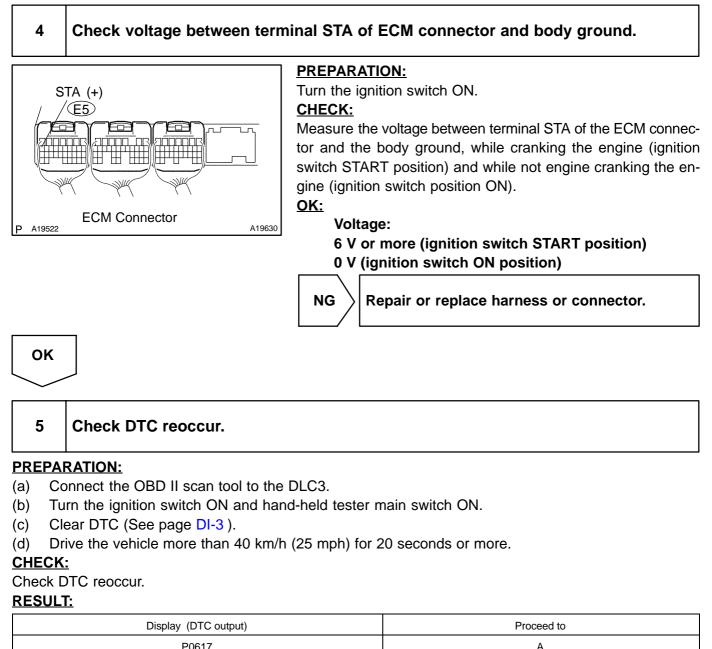

В

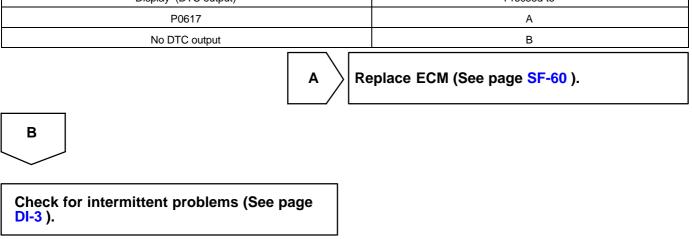
Check for intermittent problems (See page **DI-3**).

OBD II scan tool (excluding hand-held tester):


1

Р





Replace park/neutral position switch. Go to next step 5 after the replacement.

OK

DTC P2102 Throttle Actuator Control Motor Circuit L	ow
---	----

	DTC	P2103	Throttle Actuator Control Motor Circuit High
--	-----	-------	--

CIRCUIT DESCRIPTION

The throttle motor is operated by the ECM and it opens and closes the throttle valve.

The opening angle of the throttle valve is detected by the throttle position sensor which is mounted on the throttle body. The throttle position sensor provides feedback to the ECM. This feedback allows the ECM to control the throttle motor and monitor the throttle opening angle as the ECM responds to driver inputs. HINT:

This Electrical Throttle Control System (ETCS) does not use a throttle cable.

DTC No.	DTC Detection Condition	Trouble Area
P2102	Conditions (a) and (b) continue for 2.0 seconds: (a) Throttle control motor output duty 80 % or more (b) Throttle control motor current 0.5 A or less	★Open in throttle control motor and sensor circuit ★Throttle control motor and sensor ★ECM
P2103	Either of following conditions is met. (a) Throttle control motor current 10 A or more (0.1 sec) (b) Throttle control motor current 7 A or more (0.6 sec.)	 ★Short in throttle control motor and sensor circuit ★Throttle control motor and sensor ★Throttle valve ★Throttle body ★ECM

MONITOR DESCRIPTION

The ECM monitors the current through the electronic throttle motor and detects malfunctions or open circuit in the throttle motor based on the voltage of the current. When the current deviates from the standard, the ECM concludes that there is a fault in the throttle motor.

Or, if the throttle valve is not functioning properly (for example, stuck ON) the ECM concludes that there is a fault and turns on the MIL and a DTC is set.

Example:

When the current is more than 10 A. Or the current is less than 0.5 A when the motor driving duty ratio is exceeding 80%. The ECM concludes that the current is out of range, turns on the MIL and a DTC is set.

FAIL SAFE

If the ETCS (Electronic Throttle Control System) has a malfunction, the ECM cuts off current to the throttle control motor. The throttle control valve returns to a predetermined opening angle (approximately 16°) by the force of the return spring. The ECM then adjusts the engine output by controlling the fuel infection (intermittent fuel-cut) and ignition timing in accordance with the accelerator pedal opening angle to enable the vehicle to continue at a minimum speed.

If the accelerator pedal is depressed firmly and slowly, the vehicle can be driven slowly.

If a "pass" condition is detected and then the ignition switch is turned OFF, the fail-safe operation will stop and the system will return to normal condition.

MONITOR STRATEGY

	P2102	Throttle actuator control motor current (Low current)
Related DTCs	P2103	Throttle actuator control motor current (High current)
Required sensors/components	Throttle actuator motor	
Frequency of operation	Continuous	
Duration	2 sec.	
MIL operation	P2102: Immediate P2103: 1 driving cycle	
Sequence of operation	None	

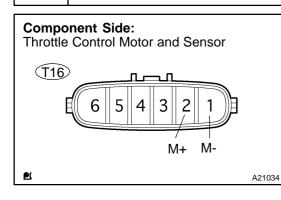
TYPICAL ENABLING CONDITIONS

	Specification		
Item	Minimum	Maximum	
The monitor will run whenever the follow- ing DTCs are not present	See "List of disable a monitor" (on page DI-3)		
P2102:			
Throttle motor	ON		
Duty-cycle ratio to open throttle actuator	80%	-	
Throttle actuator power supply	8 V	-	
Current motor current - Motor current at 0.016 sec. before	- 0.2 A		
P2103:			
Throttle motor	ON		
Either of the following conditions is met:	A or B		
A. Throttle actuator power supply	8 V -		
B. Throttle actuator power	ON		

TYPICAL MALFUNCTION THRESHOLDS

Detection Criteria	Threshold
P2102:	
Throttle motor current	Less than 0.5 A (when motor drive duty 80% or more)
P2103:	
Throttle motor ourrent	More than 10 A (0.1 sec.)
Throttle motor current	More than 7 A (0.6 sec.)

WIRING DIAGRAM


Refer to DTC P0120 on page DI-84 .

INSPECTION PROCEDURE

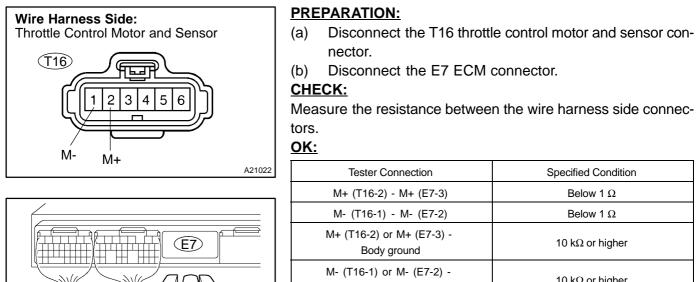
HINT:

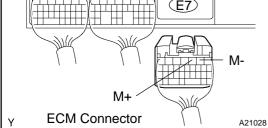
Read freeze frame data using the hand-held tester or the OBD II scan tool. Freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, as well as other data from the time when a malfunction occurred.

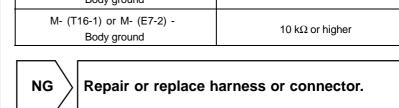
PREPARATION:

Disconnect the throttle control motor and sensor connector. **CHECK:**

Measure the resistance between terminals of the throttle control motor.

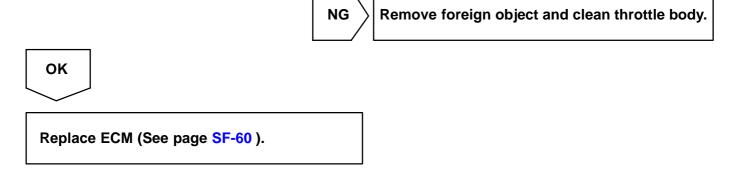

<u> 0K:</u>


Tester Connection	Specified Condition
M+ (T16-2) - M- (T16-1)	0.3 to100 Ω (20°C (68°F))
NG Replace throttle body (See page SF-36).	


OK

2

Check for open and short in harness and connector between throttle control motor and ECM.



OK

3 Visually check throttle valve.

CHECK:

Check between the throttle valve and the housing for foreign objects. Also, check if the valve can open and close smoothly.

DTC	P2111	Throttle Actuator Control System -Stuck Open
-----	-------	---

DTC		Throttle Actuator Control System -Stuck Closed	
-----	--	---	--

CIRCUIT DESCRIPTION

The throttle motor is operated by the ECM and it opens and closes the throttle valve using gears. The opening angle of the throttle valve is detected by the throttle position sensor, which is mounted on the throttle body. The throttle position sensor provides feedback to the ECM to control the throttle motor and set the throttle valve angle in response to driver input.

HINT:

This Electrical Throttle Control System (ETCS) does not use a throttle cable.

DTC No.	DTC Detection Condition	Trouble Area
P2111	Throttle motor locked during ECM order to close.	★Throttle control motor and sensor circuit ★Throttle control motor and sensor
P2112	Throttle motor locked during ECM order to open.	★Throttle body ★Throttle valve

MONITOR DESCRIPTION

The ECM concludes that there is a malfunction of the ETCS (Electronic Throttle Control System) when the throttle valve remains at a fixed angle despite high drive current from the ECM. The ECM will turn on the MIL and a DTC is set.

FAIL SAFE

If the ETCS (Electronic Throttle Control System) has a malfunction, the ECM cuts off current to the throttle control motor. The throttle control valve returns to a predetermined opening angle (approximately 16°) by the force of the return spring. The ECM then adjusts the engine output by controlling the fuel infection (intermittent fuel-cut) and ignition timing in accordance with the accelerator pedal opening angle to enable the vehicle to continue at a minimum speed.

If the accelerator pedal is depressed firmly and slowly, the vehicle can be driven slowly.

If a "pass" condition is detected and then the ignition switch is turned OFF, the fail-safe operation will stop and the system will return to normal condition.

DIC2P-01

MONITOR STRATEGY

	P2111	Throttle motor actuator lock (Open)
Related DTCs	P2112	Throttle motor actuator lock (Closed)
	Main sensors/components	Throttle actuator motor
Required sensors/components	Related sensors/components	Throttle position sensor
Frequency of operation	Continuous	
Duration	0.5 sec.	
MIL operation	Immediate	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS

	Specification		
Item	Minimum	Maximum	
The monitor will run whenever the follow- ing DTCs are not present	See "List of disable a n	nonitor" (on page DI-3)	
P2111:			
Throttle motor current	2 A	-	
Throttle motor duty to close side	80%	-	
P2112:			
Throttle motor current	2 A	-	
Throttle motor duty to open side	80%	-	

TYPICAL MALFUNCTION THRESHOLDS

Detection Criteria	Threshold
Current throttle position sensor voltage at this time - throttle position sensor voltage 0.016 sec. earlier	Less than 0.1 V when throttle motor open (or close) duty 80% or more

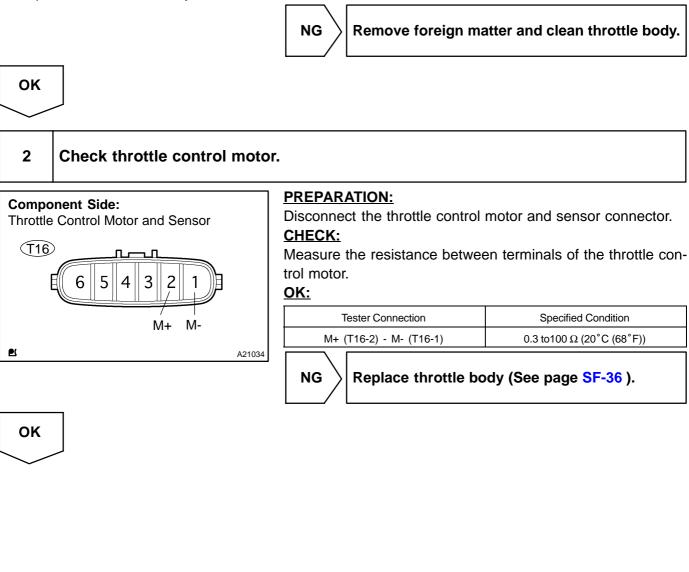
WIRING DIAGRAM

Refer to DTC P0120 on page DI-84.

INSPECTION PROCEDURE

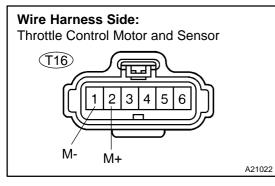
HINT:

Read freeze frame data using the hand-held tester or the OBD II scan tool. Freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, as well as other data from the time when a malfunction occurred.



PREPARATION:

Remove the intake air connector.


CHECK:

Check whether or not a foreign matter is caught between the throttle valve and housing. Also, if the valve can open and close smoothly.

3

Check for open and short in harness and connector between ECM and throttle control motor.

PREPARATION:

- (a) Disconnect the T16 throttle control motor and sensor connector.
- (b) Disconnect the E7 ECM connector.

CHECK:

NG

Measure the resistance between the wire harness side connectors.

<u>OK:</u>

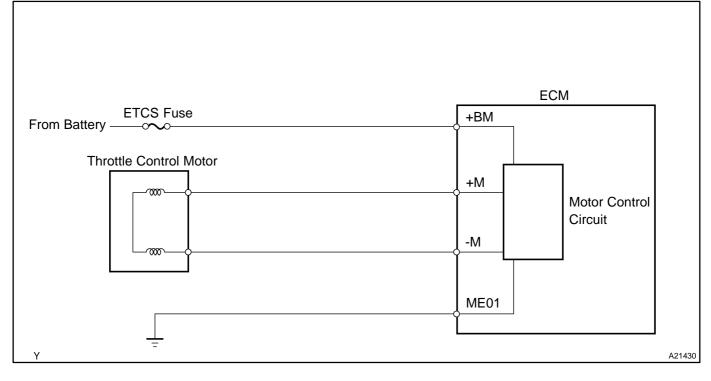
		Ē	
	Mr Mr		M-
	M+		
Y	ECM Connector		A21028

Tester Connection	Specified Condition
M+ (T16-2) - M+ (E7-3)	Below 1 Ω
M- (T16-1) - M- (E7-2)	Below 1 Ω
M+ (T16-2) or M+ (E7-3) - Body ground	10 k Ω or higher
M- (T16-1) or M- (E7-2) - Body ground	10 k Ω or higher

Repair or replace harness or connector.

ок

Check for intermittent problems (See page DI-3).


DTC	P2118	Throttle Actuator Control Motor Current Range/Performance
-----	-------	--

CIRCUIT DESCRIPTION

The Electronic Throttle Control System (ETCS) has a dedicated power supply circuit. The voltage (+BM) is monitored and when the voltage is low (less than 4V), the ECM concludes that the ETCS has a fault and current to the throttle control motor is cut.

When the voltage becomes unstable, the ETCS itself becomes unstable. For this reason, when the voltage is low, the current to the motor is cut. If repairs are made and the system has returned to normal, turn the ignition switch to OFF. The ECM then allows current to flow to the motor and the motor can be restarted. HINT:

This Electrical Throttle Control System (ETCS) does not use a throttle cable.

l	DTC No.	DTC Detection Condition	Trouble Area
	P2118	Open in ETCS power source circuit	★Open in ETCS power source circuit ★ETCS fuse ★ECM

MONITOR DESCRIPTION

The ECM monitors the battery supply voltage applied to the electronic throttle motor. When the power supply voltage drops below the threshold, the ECM concludes that the power supply has an open circuit. A DTC is set and the MIL is turned on.

DIC2Q-01

FAIL SAFE

If the ETCS (Electronic Throttle Control System) has a malfunction, the ECM cuts off current to the throttle control motor. The throttle control valve returns to a predetermined opening angle (approximately 16°) by the force of the return spring. The ECM then adjusts the engine output by controlling the fuel infection (intermittent fuel-cut) and ignition timing in accordance with the accelerator pedal opening angle to enable the vehicle to continue at a minimum speed.

If the accelerator pedal is depressed firmly and slowly, the vehicle can be driven slowly.

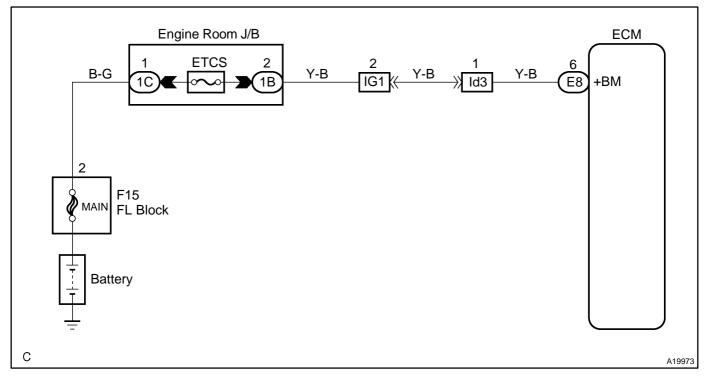
If a "pass" condition is detected and then the ignition switch is turned OFF, the fail-safe operation will stop and the system will return to normal condition.

MONITOR STRATEGY

Related DTCs	P2118	Throttle actuator motor power supply line range check (Low voltage)
Required sensors/components	Throttle actuator motor	
Frequency of operation	Continuous	
Duration	0.8 sec.	
MIL operation	Immediate	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS

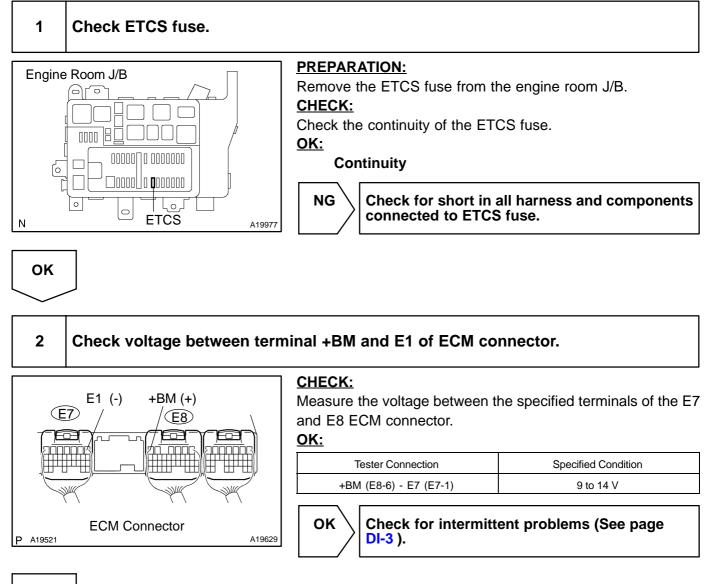
	Specification	
Item	Minimum	Maximum
The monitor will run whenever the follow- ing DTCs are not present	See "List of disable a monitor" (on page DI-3)	
Actuator power	0	N
Battery voltage	8 V	-


TYPICAL MALFUNCTION THRESHOLDS

Detection Criteria	Threshold
Throttle actuator motor power supply voltage	Less than 4 V

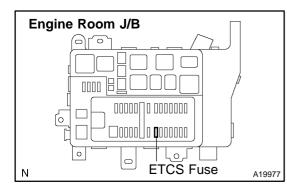
COMPONENT OPERATING RANGE

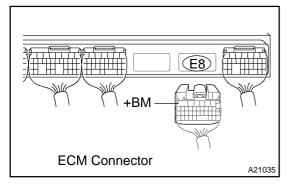
Parameter	Standard Value
Throttle actuator motor power supply voltage	9 to 14 V


WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:


Read freeze frame data using the hand-held tester or the OBD II scan tool. Freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, as well as other data from the time when a malfunction occurred.



NG

3

Check for open or short in harness or connector between battery and ETCS fuse, ETCS fuse and ECM.

Check the harness and the connector between the ETCS fuse and the ECM: PREPARATION:

(a) Remove the ETCS fuse from the engine room J/B.

(b) Disconnect the E8 ECM connector.

CHECK:

Measure the resistance between the wire harness side connector.

OK:

Tester Connection	Specified Condition
Engine Room J/B (ETCS fuse terminal 2) - +BM (E8-6)	Below 1 Ω
Engine Room J/B (ETCS fuse terminal 2) or +BM (E8-6) - Body ground	10 k Ω or higher

Check the harness and connector between the ETCS fuse and the battery: PREPARATION:

- (a) Remove the ETCS fuse from the engine room J/B.
- (b) Disconnect the battery positive terminal.

CHECK:

Measure the resistance between the wire harness side connector.

<u> 0K:</u>

Tester Connection	Specified Condition
Engine Room J/B (ETCS fuse terminal 1) - Battery positive terminal	Below 1 Ω
Engine Room J/B (ETCS fuse terminal 1) or Battery positive terminal - Body ground	10 k Ω or higher
	1

NG

Repair or replace harness or connector.

οк

Check engine room J/B.

DTC	P2119	Throttle Actuator Control Throttle Body Range/Performance
-----	-------	--

CIRCUIT DESCRIPTION

The Electric Throttle Control System (ETCS) is composed of a throttle motor that operates the throttle valve, a throttle position sensor that detects the opening angle of the throttle valve, an accelerator pedal position sensor that detects the accelerator pedal position, and the ECM that controls the ETCS system.

The ECM operates the throttle motor to position the throttle valve for proper response to driver inputs. The throttle position sensor, mounted on the throttle body, detects the opening angle of the throttle valve and provides this signal to the ECM so that the ECM can regulate the throttle motor.

DTC No.	DTC Detection Condition	Trouble Area	
P2119	Throttle opening angle continues to vary greatly from target throttle opening angle	₩Electric throttle control system ★Throttle body	

MONITOR DESCRIPTION

The ECM determines the "actual" throttle angle based on the throttle position sensor signal. The "actual" throttle position is compared to the "target" throttle position commanded by the ECM. If the difference of these two values exceeds a specified limit, the ECM interprets this as a fault in the ETCS (Electronic Throttle Control System). The ECM turns on the MIL and a DTC is set.

FAIL SAFE

If the ETCS (Electronic Throttle Control System) has a malfunction, the ECM cuts off current to the throttle control motor. The throttle control valve returns to a predetermined opening angle (approximately 16°) by the force of the return spring. The ECM then adjusts the engine output by controlling the fuel infection (intermittent fuel-cut) and ignition timing in accordance with the accelerator pedal opening angle to enable the vehicle to continue at a minimum speed.

If the accelerator pedal is depressed firmly and slowly, the vehicle can be driven slowly.

If a "pass" condition is detected and then the ignition switch is turned OFF, the fail-safe operation will stop and the system will return to normal condition.

MONITOR STRATEGY

Related DTCs	P2119	Electronic throttle control system failure
	Main sensors	Throttle actuator motor
Required sensors/components	Related sensors	Throttle position sensor
Frequency of operation	Continuous	
Duration	1 sec.	
MIL operation	Immediate	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS

The monitor will run whenever the follow- ing DTCs are not present	See "List of disable a monitor" (on page DI-3)
The typical enabling condition is not available	-

DIC2R-01

TYPICAL MALFUNCTION THRESHOLDS

Detection Criteria Difference between "target throttle position" and "actual throttle position" Threshold

0.3 V or more

COMPONENT OPERATING RANGE

Standard Value

Commanded throttle position and current throttle position are nearly same

WIRING DIAGRAM

Refer to DTC P2102 and P2103 on page DI-302 .

INSPECTION PROCEDURE

HINT:

Read freeze frame data using the hand-held tester or the OBD II scan tool. Freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, as well as other data from the time when a malfunction occurred.

4	Are there en	v other codec	(headdae DTC	D0440)	haing autout?
•	Are there any	y other codes	(besides DIC	FZ119)	being output?

PREPARATION:

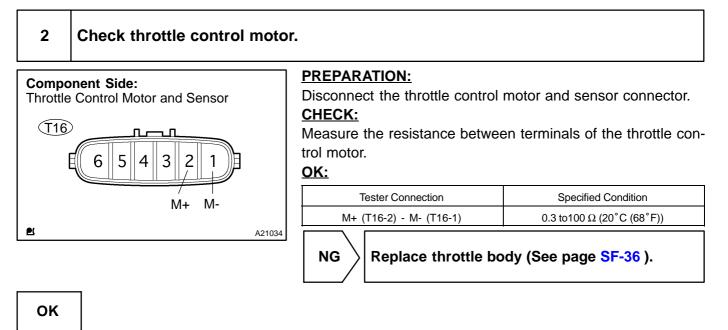
- (a) Connect the hand-held tester or the OBD II scan tool to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester or OBD II scan tool main switch ON.
- (c) When using hand-held tester, enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.

CHECK:

Read the DTC using the hand-held tester or the OBD II scan tool.

RESULT:

Display (DTC Output)	Proceed to
P2119	А
"P2119" and other DTC	В


HINT:

If any other codes besides P2119 are output, perform the troubleshooting for those DTCs first.

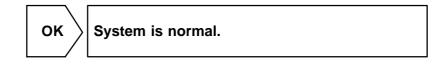
	· /
P	`
D	
	_ /

angle Go to relevant DTC chart (See page DI-36).

Α

3 Replace ECM and clear DTC (Check if DTC outputs reoccur).

PREPARATION:


- (a) Replace ECM.
- (b) Clear the DTC (See page DI-3).
- (c) Start and warm up the engine.
- (d) Run the engine at idle for 15 seconds or more.

CHECK:

Read the DTC using the hand-held tester or the OBD II scan tool.

<u> 0K:</u>

No DTC output.

NG

Replace throttle body.

DIC2S-01

DTC	P2120	Throttle/Pedal Position Sensor/Switch "D" Circuit
-----	-------	--

DTC	P2122	Throttle/Pedal Position Sensor/Switch "D" Circuit Low Input
		Circuit Low Input

DTC P2123 Throttle/Pedal Position Sensor/Sw Circuit High Input	vitch "D"
---	-----------

DTC	P2125	Throttle/Pedal Position Sensor/Switch "E" Circuit
-----	-------	--

DTC	Throttle/Pedal Position Sensor/Switch "E" Circuit Low Input

DTC	P2128	Throttle/Pedal Position Sensor/Switch "E" Circuit High Input
-----	-------	---

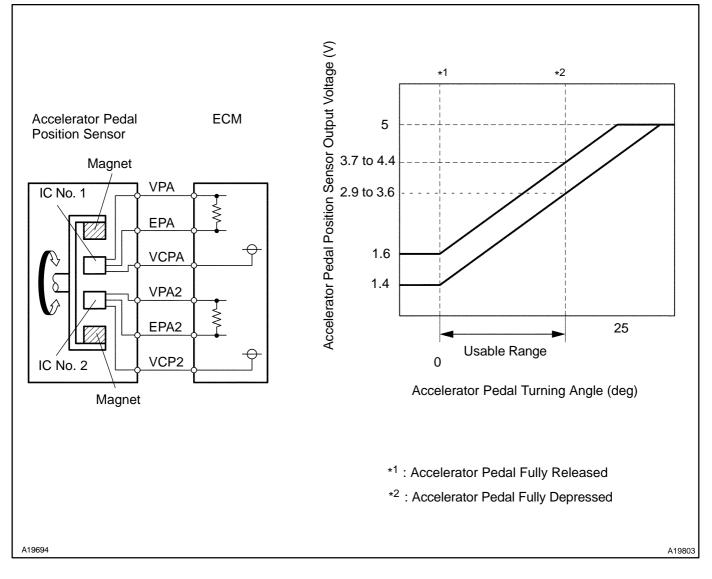
DTC P2138 Throttle/Pedal Position Sensor/Switch "D"/"E" Voltage Correlation		Throttle/Pedal Position Sensor/ "D"/"E" Voltage Correlation	witch
--	--	--	-------

HINT:

This is the repair procedure for the "accelerator pedal position sensor".

CIRCUIT DESCRIPTION

HINT:


 \star This electrical throttle system does not use a throttle cable.

 \star This accelerator pedal position sensor is a non-contact type.

The accelerator pedal position sensor is mounted in the accelerator pedal to detect the angle of the accelerator pedal. This sensor is electronically controlled and uses Hall-effect elements.

In the accelerator pedal position sensor, the voltage applied to terminals VPA and VPA2 of the ECM changes between 0 V and 5 V in proportion to the angle of the accelerator pedal. The VPA is a signal to indicate the actual accelerator pedal angle and is used for the engine control. VPA2 is used to detect malfunctions of the sensor itself.

The ECM judges the current angle of the accelerator pedal from these signals input from terminals VPA and VPA2, and the ECM controls the throttle motor based on these signals.

DTC No.	DTC Detection Condition (Open or short in accelerator pedal position sensor circuit)	Main trouble Area
P2120	Condition (a) continues for 0.5 seconds or more: (a) VPA \pm 0.2 V and VPA2 \geq 0.97 deg, or VPA \geq 4.8 V	Accelerator pedal position sensor ÆCM
P2122	Condition (a) and (b) continues for 0.5 seconds or more: (a) VPA \pm 0.2 V (b) VPA2 \geq 0.97 deg	★Accelerator pedal position sensor ★/CPA circuit open ★/PA circuit open or ground short ★CM
P2123	Condition (a) continues for 2.0 seconds or more: (a) VPA \geq 4.8 V	 ★Accelerator pedal position sensor ★EPA circuit open ★ECM
P2125	Condition (a) continues for 0.5 seconds or more: (a) VPA2 \pm 0.5 V and VPA \geq 0.97 deg, or VPA2 \geq 4.8 V and 0.2 V \pm VPA \pm 3.45 V	★Accelerator pedal position sensor ★ECM
P2127	Condition (a) and (b) continues for 0.5 seconds or more: (a) VPA2 \pm 0.5 V (b) VPA \geq 0.97 deg	 ★Accelerator pedal position sensor ★VCP2 circuit open ★VPA2 circuit open or ground short ★ECM
P2128	Condition (a) and (b) continues for 2.0 seconds or more: (a) VPA2 \geq 4.8 V (a) 0.2 V \pm VPA \pm 3.45 V	 ★Accelerator pedal position sensor ★EPA circuit open ★ECM
P2138	Condition (a) or (b) continues for 2.0 seconds or more: (a) $ VPA - VPA2 \pm 0.02 V$ (b) $VPA \pm 0.2 V$ and $VPA2 \pm 0.5 V$	★VPA and VPA2 circuit are short circuited★Accelerator pedal position sensor★CM

HINT:

After confirming DTC P2120, P2122, P2123, P2125, P2127, P2128 and P2138 use the OBD II scan tool or the hand-held tester to confirm the accelerator pedal opening percentage.

	Accelerator pedal position expressed as voltage			
Trouble area	Accelerator pedal completely released		Accelerator pedal fully depressed	
	ACCEL POS #1	ACCEL POS #2	ACCEL POS #1	ACCEL POS #2
VC circuit open	0 to 0.2 V	0 to 0.2 V	0 to 0.2 V	0 to 0.2 V
VPA circuit open or ground short	0 to 0.2 V	1.2 to 2.0 V	0 to 0.2 V	3.4 to 5.3 V
VPA2 circuit open or ground short	0.5 to 1.1 V	0 to 0.2 V	2.6 to 4.5 V	0 to 0.2 V
E2 circuit open	4.5 to 5.5 V	4.5 to 5.5 V	4.5 to 5.5 V	4.5 to 5.5 V

MONITOR DESCRIPTION

When VPA or VPA2, deviates from the standard, or the difference between the voltage outputs of the two sensors is less than threshold, the ECM concludes that there is a defect in the accelerator pedal position sensor. The ECM turns on the MIL and a DTC is set.

Example:

When the voltage output of the VPA below 0.2 V or exceeds 4.8 V.

FAIL SAFE

The accelerator pedal position sensor has two (main and sub) sensor circuits. If a malfunction occurs in either of the sensor circuits, the ECM detects the abnormal signal voltage difference between the two sensor circuits and switches to limp mode. In limp mode, the remaining circuit is used to calculate the accelerator pedal opening to allow the vehicle to continue driving.

If both circuits malfunction, the ECM regards the opening angle of the accelerator pedal to be fully closed. In this case, the throttle valve will remain closed as if the engine is idling.

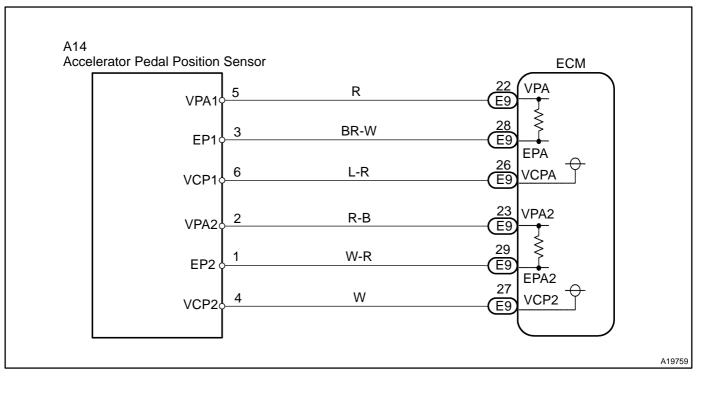
If a "pass" condition is detected and then the ignition switch is turned OFF, the fail-safe operation will stop and the system will return to normal condition.

MONITOR STRATEGY

	P2120	Accelerator position sensor 1 (VPA) range check (Fluttering)
	P2122	Accelerator position sensor 1 (VPA) range check (Low voltage)
	P2123	Accelerator position sensor 1 (VPA) range check (High voltage)
Related DTCs	P2125	Accelerator position sensor 2 (VPA2) range check (Fluttering)
	P2127	Accelerator position sensor 2 (VPA2) range check (Low voltage)
	P2128	Accelerator position sensor 2 (VPA2) range check (High voltage)
	P2138	Accelerator position sensor correlation range check
Required sensors/components	Accelerator position sensor	
Frequency of operation	Continuous	
Duration	2 sec.	
MIL operation	Immediate	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS

	Specification	
Item	Minimum	Maximum
The monitor will run whenever the follow- ing DTCs are not present	See "List of disable a monitor" (on page DI-3)	
Ignition switch	ON	
Throttle control motor power	ON	

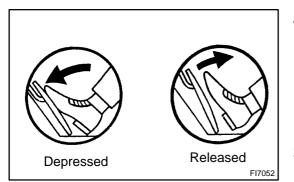

TYPICAL MALFUNCTION THRESHOLDS

Detection Criteria	Threshold	
P2120:		
VPA voltage	0.2 V or less or 4.8 V or more fluttering	
P2122:		
VPA voltage	0.2 V or less (When VPA2 angle 1 deg or more)	
P2123:		
VPA voltage	4.8 V or more	
P2125:		
VPA2 voltage	0.5 V or less or 4.8 V or more fluttering	
P2127:		
VPA2 voltage	0.5 V or less (When VPA angle 1 deg or more)	
P2128:		
Following conditions are met:	A and B	
A. VPA voltage	0.2 V or more and 3.45 V or less	
B. VPA2 voltage	4.8 V or more	
P2138:		
Following condition is met for	A or B	
A. Difference between VPA and VPA2 voltages	0.02 V or less	
B. Both following conditions are met:	(a) and (b)	
(a) VPA voltage	0.2 V or less	
(b) VPA2 voltage	0.5 V or less	

COMPONENT OPERATING RANGE

Parameter	Standard Value	
VPA voltage	More than 0.2 V and less than 4.8 V	
VPA2 voltage	More than 0.5 V and Less than 4.8 V	
Difference between VPA and VPA2 voltages	More than 0.02 V	

WIRING DIAGRAM


INSPECTION PROCEDURE

HINT:

Read freeze frame data using the hand-held tester or the OBD II scan tool. Freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, as well as other data from the time when a malfunction occurred.

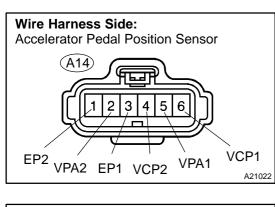
Hand-held tester:

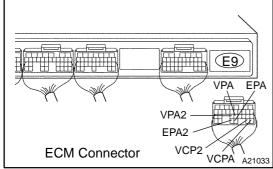
1 Connect hand-held tester, and read the voltage for accelerator pedal position sensor data.

PREPARATION:

- (a) Connect the hand-held tester to the DLC3.
- (b) Turn the ignition switch ON and push the hand-held tester main switch ON.
- (c) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DATA LIST / ETCS / ACCEL POS #1 and ACCEL POS #2.

CHECK:


Read the voltage for the accelerator pedal position sensor data. **OK:**


Accelerator pedal	ACCEL POS #1	ACCEL POS #2
Released	0.5 to 1.1 V	1.2 to 2.0 V
Depressed	2.6 to 4.5 V	3.4 to 5.3 V

OK \rangle Go to step 5.

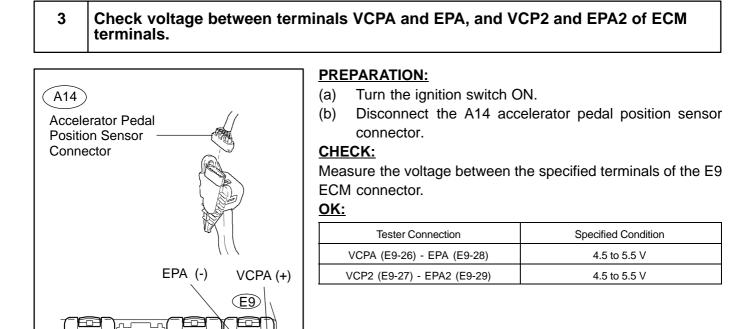
NG

2

PREPARATION:

Check for open and short in harness and connector in VCPA, VCP2, VPA, VPA2 EPA and EPA2 circuit between ECM and accelerator pedal position sensor.

- (a) Disconnect the A14 accelerator pedal position sensor connector.
- (b) Disconnect the E9 ECM connector.


CHECK:

Measure the resistance between the wire harness side connectors.

<u> 0K:</u>

Г	
Tester Connection	Specified Condition
VPA1 (A14-5) - VPA (E9-22)	Below 1 Ω
EP1 (A14-3) - EPA (E9-28)	Below 1 Ω
VCP1 (A14-6) - VCPA (E9-26)	Below 1 Ω
VPA2 (A14-2) - VPA2 (E9-23)	Below 1 Ω
EP2 (A14-1) - EPA2 (E9-29)	Below 1 Ω
VCP2 (A14-4) - VCP2 (E9-27)	Below 1 Ω
VPA1 (A14-5) or VPA (E9-22) - Body ground	10 k Ω or higher
EP1 (A14-3) or EPA (E9-28) - Body ground	10 k Ω or higher
VCP1 (A14-6) or VCPA (E9-26) - Body ground	10 k Ω or higher
VPA2 (A14-2) or VPA2 (E9-23) - Body ground	10 k Ω or higher
EP2 (A14-1) or EPA2 (E9-29) - Body ground	10 k Ω or higher
VCP2 (A14-4) or VCP2 (E9-27) - Body ground	10 k Ω or higher
NG Repair or replace harness or connector.	

ок

Replace ECM (See page SF-60).

ΟΚ

A19521

4 Replace accelerator pedal assembly (See page SF-58).

VCP2 (+)

A19757

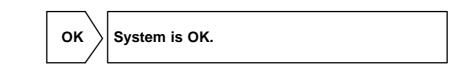
Π

EPA2 (-)

Go

5 Check if DTC output recur?

PREPARATION:

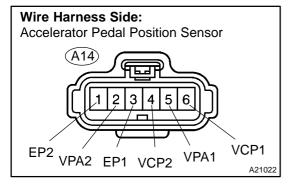

- (a) Connect the hand-held tester to the DLC3.
- (b) Disconnect the battery terminals or remove the EFI or ECD No. 1 fuse and ETCS fuse (Clear DTCs).
- (c) Start the engine.
- (d) Drive the engine at idle for 15 seconds or more.

CHECK:

Read the DTC output.

<u>OK:</u>

No DTC output.

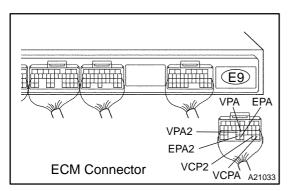

NG

Replace ECM (See page SF-60).

OBD II scan tool (excluding hand-held tester):

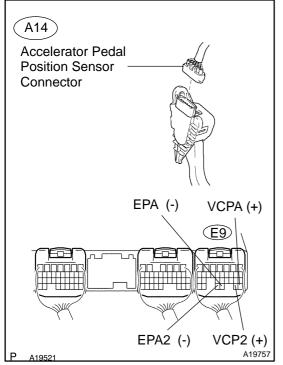
1

Check for open and short in harness and connector in VCPA, VCP2, VPA, VPA2 EPA and EPA2 circuit between ECM and accelerator pedal position sensor.



- (a) Disconnect the A14 accelerator pedal position sensor connector.
- (b) Disconnect the E9 ECM connector.
- **CHECK:**

Measure the resistance between the wire harness side connectors.


<u>OK:</u>

t			
Tester Connection	Specified Condition		
VPA1 (A14-5) - VPA (E9-22)	Below 1 Ω		
EP1 (A14-3) - EPA (E9-28)	Below 1 Ω		
VCP1 (A14-6) - VCPA (E9-26)	Below 1 Ω		
VPA2 (A14-2) - VPA2 (E9-23)	Below 1 Ω		
EP2 (A14-1) - EPA2 (E9-29)	Below 1 Ω		
VCP2 (A14-4) - VCP2 (E9-27)	Below 1 Ω		
VPA1 (A14-5) or VPA (E9-22) - Body ground	10 k Ω or higher		
EP1 (A14-3) or EPA (E9-28) - Body ground	10 k Ω or higher		
VCP1 (A14-6) or VCPA (E9-26) - Body ground	10 k Ω or higher		
VPA2 (A14-2) or VPA2 (E9-23) - Body ground	10 k Ω or higher		
EP2 (A14-1) or EPA2 (E9-29) - Body ground	10 k Ω or higher		
VCP2 (A14-4) or VCP2 (E9-27) - Body ground	10 k Ω or higher		
NG Repair or replace harness or connector.			

OK

2 Check voltage between terminals VCPA and EPA, and VCP2 and EPA2 of ECM terminals.

PREPARATIO	N:

- (a) Turn the ignition switch ON.
- (b) Disconnect the A14 accelerator pedal position sensor connector.

CHECK:

NG

Measure the voltage between the specified terminals of the E9 ECM connector.

<u> 0K:</u>

Tester Connection	Specified Condition
VCPA (E9-26) - EPA (E9-28)	4.5 to 5.5 V
VCP2 (E9-27) - EPA2 (E9-29)	4.5 to 5.5 V

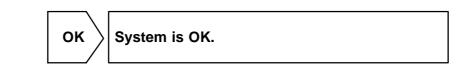
Replace ECM (See page SF-60).

OK

3 Replace accelerator pedal assembly (See page SF-58).

4 Check if DTC output recur?

PREPARATION:


- (a) Connect the OBD II scan tool to the DLC3.
- (b) Disconnect the battery terminals or remove the EFI or ECD No. 1 fuse and ETCS fuse (Clear DTCs).
- (c) Start the engine.
- (d) Drive the engine at idle for 15 seconds or more.

CHECK:

Read the DTC output.

<u>OK:</u>

No DTC output.

NG

Replace ECM (See page SF-60).

DTC	P2121	Throttle/Pedal Position Sensor/Switch "D"
		Circuit Range/Performance

HINT:

This is repair procedure for the "accelerator pedal position sensor".

CIRCUIT DESCRIPTION

Refer to DTC P2120 on page DI-318.

DTC No.	DTC Detecting Condition	Trouble Area
P2121	Conditions (a) and (b) continue for 0.5 seconds: (a) Difference between VPA and VPA2 exceeds the threshold (b) IDL is OFF	 ★Accelerator pedal position sensor circuit ★Accelerator pedal position sensor ★ECM

MONITOR DESCRIPTION

The accelerator pedal position sensor is mounted on the accelerator pedal bracket. The accelerator pedal position sensor has 2 sensor elements/signal outputs: VPA1 and VPA2. VPA1 is used to detect the actual accelerator pedal angle (used for engine control) and VPA2 is used to detect malfunctions in VPA1. When the difference between the voltage outputs of VPA1 and VPA2 deviate from the standard, the ECM concludes the accelerator pedal position sensor has a malfunction. The ECM turns on the MIL and a DTC is set.

FAIL SAFE

The accelerator pedal position sensor has two (main and sub) sensor circuits. If a malfunction occurs in either of the sensor circuits, the ECM detects the abnormal signal voltage difference between the two sensor circuits and switches to limp mode. In limp mode, the remaining circuit is used to calculate the accelerator pedal opening to allow the vehicle to continue driving.

If both circuits malfunction, the ECM regards the opening angle of the accelerator pedal to be fully closed. In this case, the throttle valve will remain closed as if the engine is idling.

If a "pass" condition is detected and then the ignition switch is turned OFF, the fail-safe operation will stop and the system will return to normal condition.

MONITOR STRATEGY

Related DTCs	P2121	Accelerator position sensor (rationality)	
Required sensors/components	Accelerator position sensor		
Frequency of operation	Continuous		
Duration	0.5 sec.		
MIL operation	Immediate		
Sequence of operation	None		

TYPICAL ENABLING CONDITIONS

	Specification			
Item	Minimum	Maximum		
The monitor will run whenever the follow- ing DTCs are not present	See "List of disable a monitor" (on page DI-3)			
Either of the following conditions is met	A or B			
A. Ignition switch	ON			
B. Throttle control motor power	ON			
System is not under limp home mode due to accelerator pedal position sensor malfunction				

TYPICAL MALFUNCTION THRESHOLDS

Detection Criteria	Threshold
VPA - (VPA2 - 0.8) * *Corrected by learning value	More than 0.4 V

WIRING DIAGRAM

Refer to DTC P2120 on page DI-318.

INSPECTION PROCEDURE

HINT:

Read freeze frame data using the hand-held tester or the OBD II scan tool. Freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, as well as other data from the time when a malfunction occurred.

Hand-held tester:

Depressed

1	Connect hand-held tester, and read the voltage for accelerator pedal position sensor data.			
] <u>PR</u>	EPARATION:
			(a)	Connect the hand-held tester to the DLC3.
	\frown		(b)	Turn the ignition switch ON and push the hand-held tes-
	\sim			ter main switch ON.
Ì∕∕	ミムト		(c)	Enter the following menus: DIAGNOSIS / ENHANCED

D OBD II / DATA LIST / ETCS / ACCEL POS #1 and ACCEL POS #2.

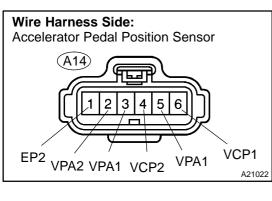
CHECK:

Released

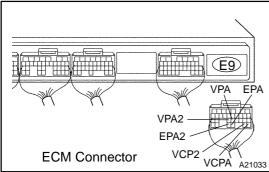
FI7052

Read the voltage for the accelerator pedal position sensor data. OK:

Accelerator pedal	ACCEL POS #1	ACCEL POS #2
Released	0.5 to 1.1 V	1.2 to 2.0 V
Depressed	2.6 to 4.5 V	3.4 to 5.3 V


OK

Replace ECM (See page SF-60).


2004 LAND CRUISER (RM1071U)

NG

2

position sensor and ECM.

PREPARATION:

Check for open and short in harness and connector between accelerator pedal

- (a) Disconnect the A14 accelerator pedal position sensor connector.
- (b) Disconnect the E9 ECM connector.

CHECK:

Measure the resistance between the wire harness side connectors.

<u> 0K:</u>

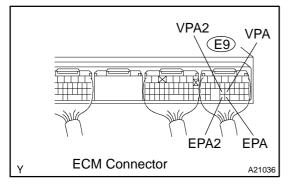
Standard (Check for open):

Tester Connection	Specified Condition
VPA1 (A14-5) - VPA (E9-22)	Below 1 Ω
EP1 (A14-3) - EPA (E9-28)	Below 1 Ω
VCP1 (A14-6) - VCPA (E9-26)	Below 1 Ω
VPA2 (A14-2) - VPA2 (E9-23)	Below 1 Ω
EP2 (A14-1) - EPA2 (E9-29)	Below 1 Ω
VCP2 (A14-4) - VCP2 (E9-27)	Below 1 Ω

Standard (Check for short):

Tester Connection	Specified Condition
VPA1 (A14-5) or VPA (E9-22) - Body ground	10 k Ω or higher
EP1 (A14-3) or EPA (E9-28) - Body ground	10 k Ω or higher
VCP1 (A14-6) or VCPA (E9-26) - Body ground	10 k Ω or higher
VPA2 (A14-2) or VPA2 (E9-23) - Body ground	10 k Ω or higher
EP2 (A14-1) or EPA2 (E9-29) - Body ground	10 k Ω or higher
VCP2 (A14-4) or VCP2 (E9-27) - Body ground	10 k Ω or higher

NG


Repair or replace harness or connector.

Replace accelerator pedal pedal assembly.

OK

OBD II scan tool (excluding hand-held tester):

1 Check voltage between terminals VPA and EPA, VPA2 and EPA2 of ECM connector.

PREPARATION:

Turn the ignition switch ON. CHECK:

Measure the voltage between the specified terminals of the E9 ECM connector.

<u>OK:</u>

OK

	Tester Connection	Tester Connection
Accelerator Pedal Position	VPA (E9-22) -	VPA2 (E9-23) -
	EPA (E9-28)	EPA2 (E9-29)
Released	0.5 to 1.1 V	1.2 to 2.0 V
Depressed	2.6 to 4.5 V	3.4 to 5.3 V

Replace ECM (See page SF-60).

NG

2

A14 Accelerator Pedal Position Sensor Connector EPA (-) VCPA (+) EPA2 (-) VCP2 (+) A19521

position sensor and ECM.

PREPARATION:

Check for open and short in harness and connector between accelerator pedal

- (a) Turn the ignition switch ON.
- (b) Disconnect the A14 accelerator pedal position sensor connector.

CHECK:

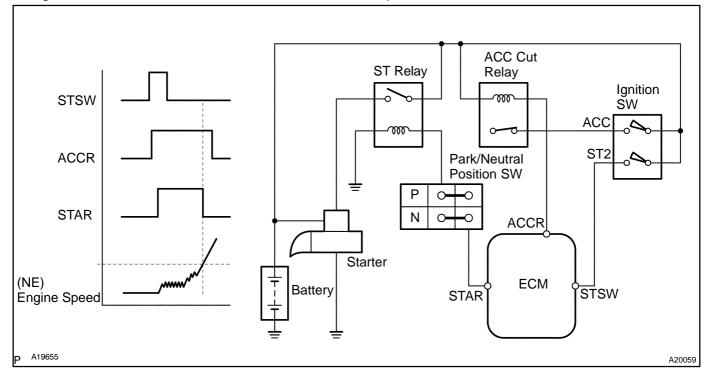
NG

Measure the voltage between the specified terminals of the E9 ECM connector.

<u> 0K:</u>

Tester Connection	Specified Condition
VCPA (E9-26) - EPA (E9-28)	4.5 to 5.5 V
VCP2 (E9-27) - EPA2 (E9-29)	4.5 to 5.5 V

Replace ECM (See page SF-60).


ΟΚ

Replace accelerator pedal assembly.

Cranking Hold Function Circuit

CIRCUIT DESCRIPTION

The starter is controlled by the ECM, when the ECM detects a start signal (STSW) from the ignition switch, this system monitors the engine speed (NE) and continues to operate the starter until it has determined that the engine has started (engine speed reaches approximately 500 rpm). If the engine is already running and the ignition switch is turned to START, the ECM will not operate the starter.

WIRING DIAGRAM

Refer to DTC P0617 on page DI-296.

INSPECTION PROCEDURE

Hand-held tester:

1 Check operation of engine cranking.

CHECK:

When turning the ignition switch to the START position, check whether the starter motor starts. **OK:**

Starter motor starts.

Check for intermittent problems (See page

NG

2004 LAND CRUISER (RM1071U)

DIC2U-01

2 Connect hand-held tester, and check STA signal.

PREPARATION:

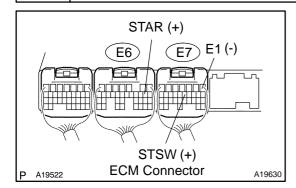
(a) Connect the hand-held tester to the DLC3.

(b) Turn the ignition switch ON, and push the hand-held tester main switch ON.

Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DATA LIST / ALL / STARTER SIG. (c) **CHECK:**

Read the STA signal on the hand-held tester while the starter operates.

OK:


Ignition Switch Position	ON	START
STA Signal	OFF	ON

NG

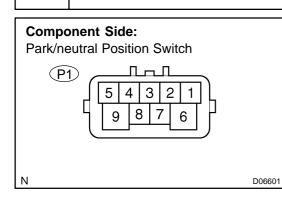
Go to step 5.

3 Check voltage between terminal STAR, STSW and E1 of ECM connector.

CHECK:

Measure the voltage between the terminals of the E6 and E7 ECM connectors, while cranking the engine (ignition switch START position).

<u>OK:</u>


Tester Connection	Specified Condition
STAR (E6-9) - E1 (E7-1)	9 to 14 V
STSW (E7-12) - E1 (E7-1)	9 to 14 V

RESULT:

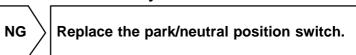
Terminal STAR	Terminal STSW	Proceed to
9 to 14 V	9 to 14 V	А
0 V	9 to 14 V	В
0 V	0 V	С
B Replace	ECM (See page <mark>SF-6</mark>	60).

Α	
	/

4 Check park/neutral position switch.

PREPARATION:

Remove the P1 park/neutral position switch connector.


CHECK:

Check continuity between each terminal shown below when the shift lever is moved to each range.

	Terminal No. to continuity	
1 - 3	6 - 9	
2 - 3	-	
3 - 5	6 - 9	
3 - 7	-	
3 - 4	-	
3 - 8	-	
	2 - 3 3 - 5 3 - 7 3 - 4	

<u>OK:</u>

There is continuity.

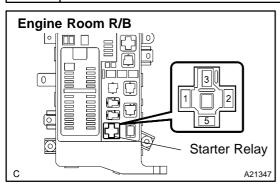
OK

Check and repair harness and connector between park/neutral position switch and ECM (See page IN-36).

5	Check starter relay (See page ST-18).		
	NG Replace starter relay.		
ОК			

6 Check for open and short in harness and connector between park/neutral position switch and starter relay, starter relay and body ground (See page IN-36).

NG


Repair or replace harness or connector.

ΟΚ

2004 LAND CRUISER (RM1071U)

7

Check engine room R/B (Starter relay voltage).

PREPARATION:

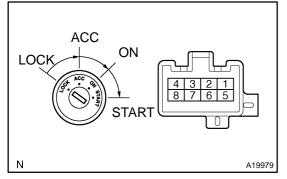
Remove the starter relay from the engine room R/B.

CHECK:

Measure the voltage between the terminal of the engine room R/B and body ground.

<u>OK:</u>

Tester Connection	Specified Condition
Starter relay (5) - Body ground	9 to 14 V


Check and repair harness and connector between starter relay and battery.

ок

8	Check starter (See page ST-16).	
	NG Repair or replace starter.	

ΟΚ

Check ignition switch. 9

PREPARATION:

Remove the lower finish panel. (a)

Disconnect the ignition switch connector. (b)

CHECK:

Check continuity between terminals shown below. OK

J	κ	
-		-

Switch Position	Terminal No. to continuity	
LOCK	-	-
ACC	2-3	-
ON	2-3-4	6-7
START	1-2-4	6-7-8

NG

Replace ignition switch.

ΟΚ

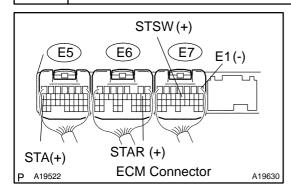
Check for open in harness and connector between ECM and ignition switch, ignition switch and battery (See page IN-36).

OBD II scan tool (excluding hand-held tester):

1

Check operation of engine cranking.

CHECK:


When turning the ignition switch to the ST position, check whether the starter motor starts.

NG

2

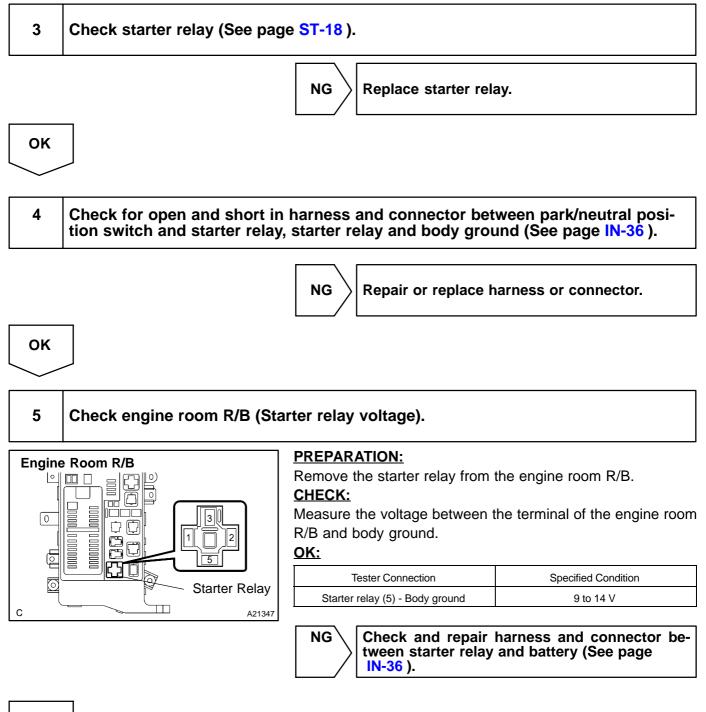
Check voltage between terminal STSW, STAR, STA and E1 of ECM connector.

CHECK:

Measure the voltage between the terminals of E5, E6 and E7 ECM connectors, while cranking the engine (ignition switch START position).

<u> 0K:</u>

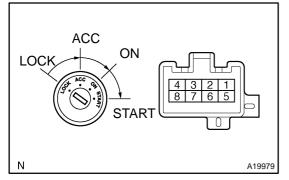
Tester Connection	Specified Condition
STA (E5-17) - E1 (E7-1)	9 to 14 V
STAR (E6-9) - E1 (E7-1)	9 to 14 V
STSW (E7-12) - E1 (E7-1)	9 to 14 V


RESULT:

Terminal STA	Terminal STAR	Terminal STSW	Proceed to
9 to 14 V	9 to 14 V	9 to 14 V	А
0 V	9 to 14 V	9 to 14 V	В
0 V	0 V	9 to 14 V	С
0 V	0 V	0 V	D

3	Go to step 7.
\sim	Replace ECM (See page SF-60).
	Go to step 8.

A


DI-342

ОК

6 Check starter (See page ST-16). NG Repair or replace starter. OK Check and repair harness and connector between starter relay and starter, starter and battery (See page IN-36). 7 Check park/neutral position switch. **PREPARATION: Component Side** Remove the P1 park/neutral position switch connector. Park/neutral Position Switch **CHECK:** (P1) $\Pi \neg \Pi$ Check continuity between each terminal shown below when the З 2 5 4 1 shift lever is moved to each range. 8 7 6 9 Terminal No. to continuity Shift range Ρ 1 - 3 6 - 9 R 2 - 3 -D06601 Ν Ν 3 - 5 6 - 9 3 - 7 -D 3 - 4 2 -L 3 - 8 -OK: There is continuity. NG Replace the park/neutral position switch. OK Check and repair harness and connector between park/neutral position switch and ECM (See page IN-36).

8 Check ignition switch.

PREPARATION:

(a) Remove the lower finish panel.

(b) Disconnect the ignition switch connector.

CHECK:

Check continuity between terminals shown below. **OK:**

1		-
-	1	
		_

NG

Switch Position	Terminal No. to continuity	
LOCK	-	-
ACC	2-3	-
ON	2-3-4	6-7
START	1-2-4	6-7-8

ight
angle Replace ignition switch.

ОΚ

Check and replace harness and connector between ECM and ignition switch, ignition switch and battery (See page IN-36).

CUSTOMER PROBLEM ANALYSIS CHECK

ENG	ENGINE CONTROL SYSTEM Check Sheet Inspector's Name					
Cus	tomer's Name			VIN		
Driv	er's Name			Production Date		
	vehicle ught in			Licence Plate No.		
Engi	ine model			Odometer Reading		km miles
	Engine does not Start	Engine does not crai	nk 🗆 No	o initial combustion	□ No complete combus	tion
	Difficult to Start	Engine cranks slowly Other				
ptoms	Poor Idling	□ Incorrect first idle	□ Idling rpm is a	bnormal 🛛 High (rpm)
Problem Symptoms	Poor Driveability	□ Hesitation □ E	Back fire		er-fire) 🛛 Surging	
Proble	Engine Stall	Soon after starting				
	□ Others					
	es Problem urred					
Prot	blem Frequency		□ Sometimes (times per day/mo	onth) 🗌 Once only	
	Weather				l Various/Other	
len urs	Outdoor Temperature	□ Hot □ V	Varm 🗆 Coo	ol 🛛 Cold (approx.	°C/°F)	
Condition When Problem Occurs	Place	☐ Highway ☐ Rough road		□ Inner city □	l Uphill 🛛 🗆 Downhill	
Condi Proble	Engine Temp.			After warming up	Any temp.	
Engine Operation Starting Just after starting (min.) Engine Operation Driving Constant speed Accel A/C switch ON/OFF Other		d 🛛 Accelerat	□ Idling □ Racing ion □ Deceleration			
Con (MIL		ion indicator light	□ Remains on	□ Sometimes lig	ht up 🛛 Does not lig	ht up
		Normal Mode (Pre-check)	Normal	☐ Malfunction co	.,.	
	Inspection	Check Mode	Normal	☐ Malfunction co ☐ Freezed frame		

DI079-18

DIAGNOSTIC TROUBLE CODE CHART

HINT:

Parameters listed in the chart may not be exactly the same as your reading due to the type of instrument or other factors.

If a malfunction code is displayed during the DTC check in check mode, check the circuit for the codes listed in the table below. For details of each code, refer to the "See page" under the respective "DTC No." in the DTC chart.

DTC No. (See page)	Detection Item	Trouble Area	MIL ^{*1}	Memory
P0031 (DI-49)	Oxygen Sensor Heater Control Circuit Low (Bank 1 Sensor 1)	★Open in heater circuit of heated oxygen sensor ★Heated oxygen sensor heater ★EFI or ECD relay ★ECM		
P0032 (DI-49)	Oxygen Sensor Heater Control Circuit High (Bank 1 Sensor 1)	 ★Short in heater circuit of heated oxygen sensor ★Heated oxygen sensor heater ★EFI or ECD relay ★ECM 		
P0037 (DI-49)	Oxygen Sensor Heater Control Circuit Low (Bank 1 Sensor 2)	★Open in heater circuit of heated oxygen sensor ★Heated oxygen sensor heater ★EFI or ECD relay ★ECM		
P0038 (DI-49)	Oxygen Sensor Heater Control Circuit High (Bank 1 Sensor 2)	 ★Short in heater circuit of heated oxygen sensor ★Heated oxygen sensor heater ★EFI or ECD relay ★ECM 		
P0051 (DI-49)	Oxygen Sensor Heater Control Circuit Low (Bank 2 Sensor 1)	★Open in heater circuit of heated oxygen sensor ★leated oxygen sensor heater ★EFI or ECD relay ★ECM		
P0052 (DI-49)	Oxygen Sensor Heater Control Circuit High (Bank 2 Sensor 1)	 ★Short in heater circuit of heated oxygen sensor ★Heated oxygen sensor heater ★EFI or ECD relay ★ECM 		
P0057 (DI-49)	Oxygen Sensor Heater Control Circuit Low (Bank 2 Sensor 2)	 ★Open in heater circuit of heated oxygen sensor ★Heated oxygen sensor heater ★EFI or ECD relay ★ECM 		
P0058 (DI-49)	Oxygen Sensor Heater Control Circuit High (Bank 2 Sensor 2)	 ★Short in heater circuit of heated oxygen sensor ★Heated oxygen sensor heater ★EFI or ECD relay ★ECM 		
P0100 (DI-57)	Mass or Volume Air Flow Circuit	★Open or short in mass air flow meter circuit ★Mass air flow meter ★ECM		
P0101 (DI-65)	Mass or Volume Air Flow Circuit Range/Performance Problem	★Mass air flow meter		
P0102 (DI-57)	Mass or Volume Air Flow Circuit Low Input	★Open or short in mass air flow meter circuit ★Mass air flow meter ★ECM		
P0103 (DI-57)	Mass or Volume Air Flow Circuit High Input	 ★Open or short in mass air flow meter circuit (+B circuit) ★Mass air flow meter ★ECM 		

P0110 (DI-68)	Intake Air Temperature Circuit	★Open or short in intake air temperature sensor circuit ★Intake air temperature sensor (built in mass air flow meter) ★ECM		
P0112 (DI-68)	Intake Air Temperature Circuit Low Input	★Open or short in intake air temperature sensor circuit ★Intake air temperature sensor (built in mass air flow meter) ★ECM		
P0113 (DI-68)	Intake Air Temperature Circuit High Input	 ★Open or short in intake air temperature sensor circuit ★Intake air temperature sensor (built in mass air flow meter) ★ECM 		
P0115 (DI-75)	Engine Coolant Temperature Cir- cuit	★Open or short in engine coolant temperature sensor circuit ★Engine coolant temperature sensor ★ECM		
P0116 (DI-82)	Engine Coolant Temperature Cir- cuit Range/Performance Prob- lem	★Engine coolant temperature sensor		
P0117 (DI-75)	Engine Coolant Temperature Cir- cuit Low Input	★Open or short in engine coolant temperature sensor circuit ★Engine coolant temperature sensor ★ECM		
P0118 (DI-75)	Engine Coolant Temperature Cir- cuit High Input	★Open or short in engine coolant temperature sensor circuit ★Engine coolant temperature sensor ★ECM		
P0120 (DI-84)	Throttle Pedal Position Sensor/ Switch "A" Circuit	★Throttle control motor and sensor ★ECM		
P0121 (DI-97)	Throttle/Pedal Position Sensor/ Switch "A" Circuit Range/Perfor- mance Problem	★Throttle control motor and sensor		
P0122 (DI-84)	Throttle/Pedal Position Sensor/ Switch "A" Circuit Low Input	 ★Throttle control motor and sensor ★Short in VTA1 circuit ★Open in VC circuit ★ECM 		
P0123 (DI-84)	Throttle/Pedal Position Sensor/ Switch "A" Circuit High Input	 ★Throttle control motor and sensor ★Open in VTA1 circuit ★Open in E2 circuit ★VC and VTA1 circuit are short-circuited ★ECM 		
P0125 (DI-99)	Insufficient Coolant Temperature for Closed Loop Fuel Control	★Cooling system ★Engine coolant temperature sensor ★Thermostat		
P0128 (DI-102)	Coolant Thermostat (Coolant Temperature Below Thermostat Regulating Temperature)	 ★Thermostat ★Cooling system ★Engine coolant temperature sensor ★ECM 	Z	IJ
P0130 (DI-106)	Oxygen Sensor Circuit (Bank 1 Sensor 1)	 ★Open or short in heated oxygen sensor circuit ★Heated oxygen sensor ★Heated oxygen sensor heater ★EFI or ECD relay ★Air induction system ★Fuel pressure ★Injector ★ECM 		

DIAGNOSTICS - ENGINE

P0133 (DI-1 17)	Oxygen Sensor Circuit Slow Re- sponse (Bank 1 Sensor 1)	 ★Open or short in heated oxygen sensor circuit ★Heated oxygen sensor ★Heated oxygen sensor heater ★EFI or ECD relay ★Air induction system ★Fuel pressure ★Injector ★ECM 	
P0134 (DI-129)	Oxygen Sensor Circuit No Activ- ity Detected (Bank 1 Sensor 1)	 ★Open or short in heated oxygen sensor circuit ★Heated oxygen sensor ★Heated oxygen sensor heater ★EFI or ECD relay ★Air induction system ★Fuel pressure ★PCV hose connection ★PCV valve and hose ★Injector ★Gas leakage on exhaust system ★PCV piping ★ECM 	
P0136 (DI-138)	Oxygen Sensor Circuit Malfunc- tion (Bank 1 Sensor 2)	★Open or short in heated oxygen sensor circuit ★Heated oxygen sensor ★Heated oxygen sensor heater ★EFI or ECD relay	
P0150 (DI-106)	Oxygen Sensor Circuit (Bank 2 Sensor 1)	 ★Open or short in heated oxygen sensor circuit ★Heated oxygen sensor ★Heated oxygen sensor heater ★EFI or ECD relay ★Air induction system ★Fuel pressure ★Injector ★ECM 	
P0153 (DI-1 17)	Oxygen Sensor Circuit Slow Re- sponse (Bank 2 Sensor 1)	 ★Open or short in heated oxygen sensor circuit ★Heated oxygen sensor ★Heated oxygen sensor heater ★EFI or ECD relay ★Air induction system ★Fuel pressure ★Injector ★ECM 	
P0154 (DI-129)	Oxygen Sensor Circuit No Activ- ity Detected (Bank 2 Sensor 1)	 ★Open or short in heated oxygen sensor circuit ★Heated oxygen sensor ★Heated oxygen sensor heater ★EFI or ECD relay ★Air induction system ★Fuel pressure ★PCV hose connection ★PCV valve and hose ★Injector ★Gas leakage on exhaust system ★PCV piping ★ECM 	
P0156 (DI-138)	Oxygen Sensor Circuit Malfunc- tion (Bank 2 Sensor 2)	 ★Open or short in heated oxygen sensor circuit ★Heated oxygen sensor ★Heated oxygen sensor heater ★EFI or ECD relay 	

DIAGNOSTICS - ENGINE

P0171 (DI-147)	System too Lean (Bank 1)	 *Air induction system *Injector blockage *Mass air flow meter *Engine coolant temperature sensor *Fuel pressure *Gas leakage on exhaust system *Open or short in heated oxygen sensor (bank 1 sensor 1) circuit *Heated oxygen sensor (bank 1 sensor 1) *Heated oxygen sensor heater *EFI or ECD relay *PCV piping *ECM 	
P0172 (DI-147)	System too Rich (Bank 1)	 Injector leak, blockage Mass air flow meter Engine coolant temperature sensor Ignition system Fuel pressure Gas leakage in exhaust system Open or short in heated oxygen sensor (bank 1 sensor 1) circuit Heated oxygen sensor (bank 1 sensor 1) ECM 	
P0174 (DI-147)	System too Lean (Bank 2)	 *Air induction system *Injector blockage *Mass air flow meter *Engine coolant temperature sensor *Fuel pressure *Gas leakage on exhaust system *Open or short in heated oxygen sensor (bank 2 sensor 1) circuit *Heated oxygen sensor (bank 2 sensor 1) *Heated oxygen sensor heater *EFI or ECD relay *PCV piping *ECM 	
P0175 (DI-147)	System too Rich (Bank 2)	 Injector leak, blockage Mass air flow meter Engine coolant temperature sensor Ignition system Fuel pressure Gas leakage in exhaust system Open or short in heated oxygen sensor (bank 2 sensor 1) circuit Heated oxygen sensor (bank 2 sensor 1) ECM 	
P0220 (DI-84)	Throttle/Pedal Position Sensor/ Switch "B" Circuit	★Throttle control motor and sensor ★ECM	
P0222 (DI-84)	Throttle/Pedal Position Sensor/ Switch "B" Circuit Low Input	 ★Throttle control motor and sensor ★Short in VTA2 circuit ★Open in VC circuit ★ECM 	
P0223 (DI-84)	Throttle/Pedal Position Sensor/ Switch "B" Circuit High Input	 ★Throttle control motor and sensor ★Open in VTA2 circuit ★Open in E2 circuit ★VC and VTA2 circuit are short-circuited ★ECM 	

232

DI-40

DIAGNOSTICS -	ENGINE
---------------	--------

P0230 (DI-162)	Fuel Pump Primary Circuit	★Open or short in fuel pump relay circuit ★Fuel pump relay ★Circuit opening relay ★Fuel pump ★ECM	-	
P0300 (DI-167)	Random/Multiple Cylinder Misfire Detected		_*2	
P0301 (<mark>DI-167</mark>)	Cylinder 1 Misfire Detected	★Open or short in engine wire	_*2	
P0302 (<mark>DI-167</mark>)	Cylinder 2 Misfire Detected	★Connector connection ★Vacuum hose connection	_*2	
P0303 (DI-167)	Cylinder 3 Misfire Detected	Hgnition system Hnjector	□ *2	
P0304 (<mark>DI-167</mark>)	Cylinder 4 Misfire Detected	Huel pressure #Mass air flow meter Ængine coolant temperature sensor	_*2	
P0305 (<mark>DI-167</mark>)	Cylinder 5 Misfire Detected	★Compression pressure ★Valve clearance	_*2	
P0306 (DI-167)	Cylinder 6 Misfire Detected	★Valve timing ★PCV piping	_*2	
P0307 (<mark>DI-167</mark>)	Cylinder 7 Misfire Detected	₩ECM	□ *2	
P0308 (<mark>DI-167</mark>)	Cylinder 8 Misfire Detected		□*2	
P0325 (DI-186)	Knock Sensor 1 Circuit (Bank 1 or Single Sensor)	★Open or short in knock sensor 1 circuit ★Knock sensor 1 (looseness) ★ECM		
P0330 (DI-186)	Knock Sensor 2 Circuit (Bank 2)	★Open or short in knock sensor 2 circuit ★Knock sensor 2 (looseness) ★ECM		
P0335 (DI-191)	Crankshaft Position Sensor "A" Circuit	★Open or short in crankshaft position sensor circuit ★Crankshaft position sensor ★Signal plate ★ECM		
P0339 (DI-191)	Crankshaft Position Sensor "A" Circuit Intermittent	 ★Open or short in crankshaft position sensor circuit ★Crankshaft position sensor ★Signal plate ★ECM 	-	
P0340 (DI-197)	Camshaft Position Sensor "A" Circuit (Bank 1 or Single Sensor)	★Open or short in camshaft position sensor circuit ★Camshaft position sensor		
P0341 (DI-197)	Camshaft Position Sensor "A" Circuit Range/Performance (Bank 1 or Single Sensor)	H camshaft timing pulley ★Jumping teeth of timing belt ★ECM		
P0351 (DI-202)	Ignition Coil "A" Primary/Second- ary Circuit	 ★Open or short in IGF 1 and IGT 1 circuit from No. 1 ignition coil with igniter to ECM ★No. 1 ignition coil with igniter ★Ignition system ★ECM 		
P0352 (DI-202)	Ignition Coil "B" Primary/Second- ary Circuit	 ★Open or short in IGF 2 and IGT 2 circuit from No. 2 ignition coil with igniter to ECM ★No. 2 ignition coil with igniter ★Ignition system ★ECM 		

P0353 (DI-202)	Ignition Coil "C" Primary/Second- ary Circuit	 ★Open or short in IGF 2 and IGT 3 circuit from No. 3 ignition coil with igniter to ECM ★No. 3 ignition coil with igniter ★Ignition system ★ECM 	
P0354 (DI-202)	Ignition Coil "D" Primary/Second- ary Circuit	 ★Open or short in IGF 1 and IGT 4 circuit from No. 4 ignition coil with igniter to ECM ★No. 4 ignition coil with igniter ★gnition system ★ECM 	
P0355 (DI-202)	Ignition Coil "E" Primary/Second- ary Circuit	 ★Open or short in IGF 2 and IGT 5 circuit from No. 5 ignition coil with igniter to ECM ★No. 5 ignition coil with igniter ★Ignition system ★ECM 	
P0356 (DI-202)	Ignition Coil "F" Primary/Second- ary Circuit	 ★Open or short in IGF 1 and IGT 6 circuit from No. 6 ignition coil with igniter to ECM ★No. 6 ignition coil with igniter ★Ignition system ★ECM 	
P0357 (DI-202)	Ignition Coil "G" Primary/Second- ary Circuit	 ★Open or short in IGF 1 and IGT 7 circuit from No. 7 ignition coil with igniter to ECM ★No. 7 ignition coil with igniter ★Ignition system ★ECM 	
P0358 (DI-202)	Ignition Coil "H" Primary/Second- ary Circuit	 ★Open or short in IGF 2 and IGT 8 circuit from No. 8 ignition coil with igniter to ECM ★No. 8 ignition coil with igniter ★Ignition system ★ECM 	
P0420 (DI-215)	Catalyst System Efficiency Be- low Threshold (Bank 1)	★Gas leakage on exhaust system ★Heated oxygen sensor (bank 1 sensor 1, 2) ★Three-way catalytic converter	
P0430 (DI-215)	Catalyst System Efficiency Be- low Threshold (Bank 2)	★Gas leakage on exhaust system ★Heated oxygen sensor (bank 2 sensor 1, 2) ★Three-way catalytic converter	
P0441 (DI-222)	Evaporative Emission Control System Incorrect Purge Flow	 *Vacuum hose cracks, holed, blocked, damaged or disconnected ((1), (2), (3), (4), (5), (6), (7), (8) and (9) in Fig. 1) *Fuel tank cap incorrectly installed *Fuel tank cap cracked or damaged *Open or short in vapor pressure sensor circuit *Vapor pressure sensor *Open or short in VSV circuit for EVAP *EVAP VSV *Open or short in VSV circuit for CCV *CCV *Open or short in VSV circuit for pressure switching valve *Pressure switching valve *Fuel tank cracked, holed or damaged *CM 	

 After the negative pressure introduction has been completed, if

 the pressure in the EVAP system sharply increases.

 Hose or tube cracked, holed, damaged or loose seal ((3) in

 Fig. 1)

 Fuel tank cap incorrectly installed

 Fuel tank cap cracked or damaged

 System Leak Detected (Small

 Leak)

 Kulton

 Hose or tube cracked, holed, damaged or disconnected ((1), (2), (4), (5), (6), (7), (8) and (9) in Fig. 1)

 Fuel tank cracked, holed or damaged

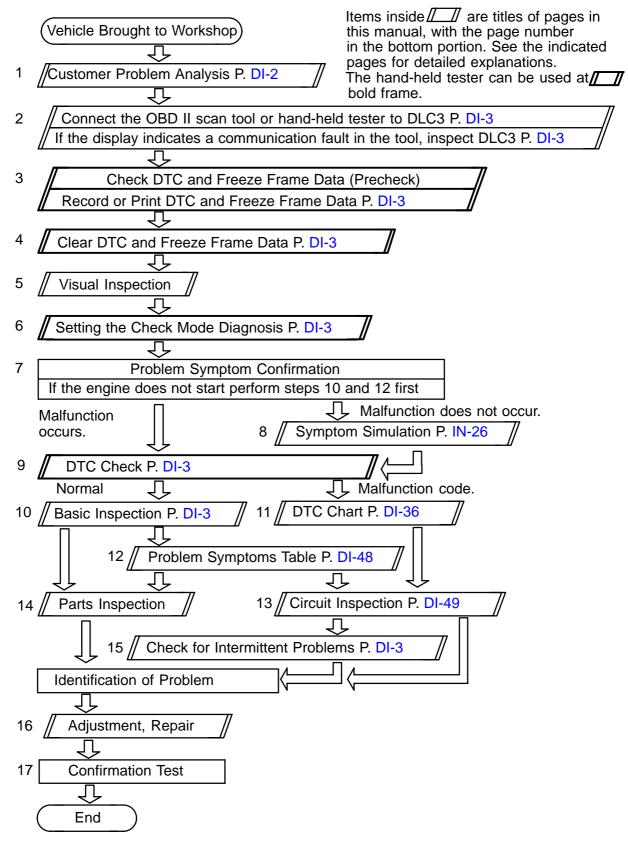
DIAGNOSTICS - ENGINE

P0442 (DI-245)	Evaporative Emission Control System Leak Detected (Small Leak)	 *Vacuum hose cracked, holed, blocked, damaged or disconnected ((1), (2), (4), (5), (6), (7), (8) and (9) in Fig. 1) *Fuel tank cracked, holed or damaged *Charcoal canister cracked, holed or damaged *Open or short in vapor pressure sensor circuit *Vapor pressure sensor *ECM 		
P0446 (DI-222)	Evaporative Emission Control System Vent Control Circuit	★Same as DTC No. P0441		
P0451 (DI-268)	Evaporative Emission Control System Pressure Sensor/Switch Range/Performance	★Open or short in vapor pressure sensor circuit ★Vapor pressure sensor ★ECM		
P0452 (DI-268)	Evaporative Emission Control System Pressure Sensor/Switch Low Input	★Open in vapor pressure sensor circuit ★Vapor pressure sensor ★ECM		
P0453 (DI-268)	Evaporative Emission Control System Pressure Sensor/Switch High Input	★Short in vapor pressure sensor circuit ★Vapor pressure sensor ★ECM		
P0455 (DI-245)	Evaporative Emission Control System Leak Detected (Gross Leak)	★Same as DTC No. P0442		
P0456 (DI-245)	Evaporative Emission Control System Leak Detected (Very Small Leak)	★Same as DTC No. P0442		
P0500 (DI-274)	Vehicle Speed Sensor "A"	★Combination meter ★Open or short in vehicle speed sensor circuit		
P0503 (DI-274)	Vehicle Speed Sensor "A" Inter- mittent/Erratic/High	★Vehicle speed sensor ★ECM	-	
P0504 (DI-278)	Brake Switch "A"/"B" Correlation	★Short in stop lamp switch signal circuit ★STOP fuse ★Stop lamp switch ★ECM	-	
P0505 (DI-286)	Idle Air Control System			
P0560 (DI-290)	System Voltage	HBack-up power source circuit HEFI or ECD No. 1 fuse HECM		
P0571 (DI-993)	Brake Switch "A" Circuit	★Stop light switch signal circuit ★Stop light switch ★ECM	-	
P0604 (DI-294)	Internal Control Module Random Access Memory (RAM) Error	★ECM		
P0606 (DI-294)	ECM/PCM Processor	★ ECM		
P0607 (DI-294)	Control Module Performance	★ ECM		

P0617 (DI-296)	Starter Relay Circuit High	₩Park/neutral position switch ★Starter relay circuit ★gnition switch ★ECM	
P0657 (DI-294)	Actuator Supply Voltage Circuit / Open	≠E CM	
P0724 (DI-424)	Brake Switch "B" Circuit High	★Short in stop light switch signal circuit ★Stop light switch ★ECM	
P2102 (DI-302)	Throttle Actuator Control Motor Circuit Low	 ★Open in throttle control motor and sensor circuit ★Throttle control motor and sensor ★ECM 	
P2103 (DI-302)	Throttle Actuator Control Motor Circuit High	★Short in throttle control motor and sensor circuit ★Throttle control motor and sensor ★Throttle valve ★Throttle body ★ECM	
P2111 (DI-306)	Throttle Actuator Control System - Stuck Open	 ★Throttle control motor and sensor circuit ★Throttle control motor and sensor ★Throttle valve ★Throttle body 	
P2112 (DI-306)	Throttle Actuator Control System - Stuck Closed	 ★Throttle control motor and sensor circuit ★Throttle control motor and sensor ★Throttle valve ★Throttle body 	
P2118 (DI-310)	Throttle Actuator Control Motor Current Range/Performance	★Open in throttle control motor and sensor power source circuit ★ETCS fuse ★ECM	
P2119 (DI-315)	Throttle Actuator Control Throttle Body Range/Performance	★Electric throttle control system ★Throttle body	
P2120 (DI-318)	Throttle/Pedal Position Sensor/ Switch "D" Circuit	★Accelerator pedal position sensor ★ECM	
P2121 (DI-331)	Throttle/Pedal Position Sensor/ Switch "D" Circuit Range/Perfor- mance	★Accelerator pedal position sensor	
P2122 (DI-318)	Throttle/Pedal Position Sensor/ Switch "D" Circuit Low Input		
P2123 (DI-318)	Throttle/Pedal Position Sensor/ Switch "D" Circuit High Input	Accelerator pedal position sensor ÆPA circuit open ÆCM	
P2125 (DI-318)	Throttle/Pedal Position Sensor/ Switch "E" Circuit	★Accelerator pedal position sensor ★ECM	
P2127 (DI-318)	Throttle/Pedal Position Sensor/ Switch "E" Circuit Low Input	 ★Accelerator pedal position sensor ★VCP2 circuit open ★VPA2 circuit open or ground short ★ECM 	
P2128 (DI-318)	Throttle/Pedal Position Sensor/ Switch "E" Circuit High Input	Accelerator pedal position sensor ÆPA circuit open ÆCM	
P2135 (DI-84)	Throttle Pedal Position Sensor/ Switch "A" / "B" Voltage Correla- tion	★VTA1 and VTA2 circuit are short-circuited ★Throttle control motor and sensor ★ECM	

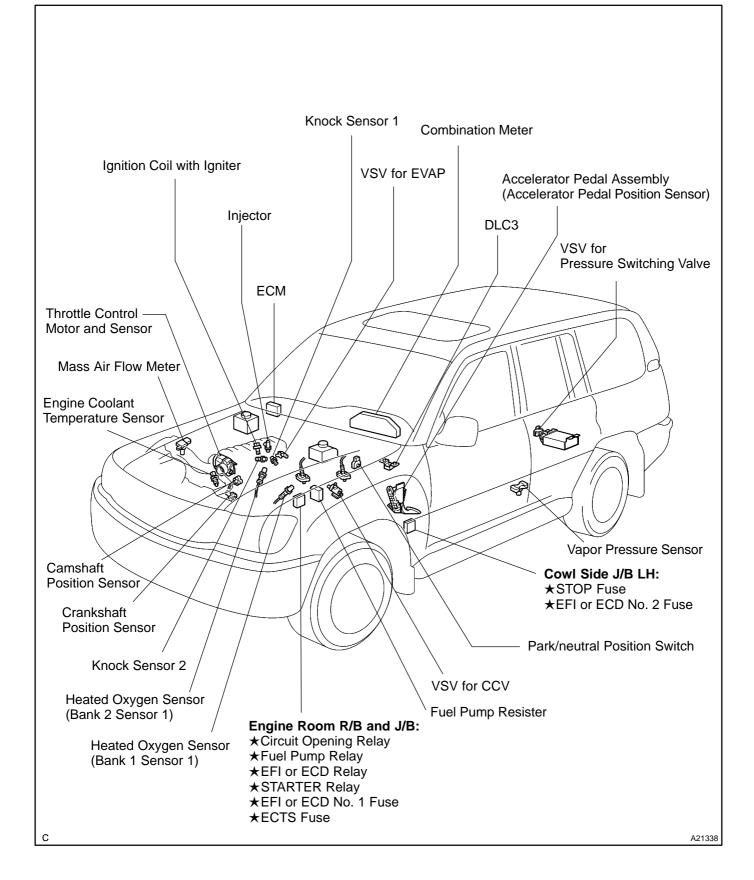
2004 LAND CRUISER (RM1071U)

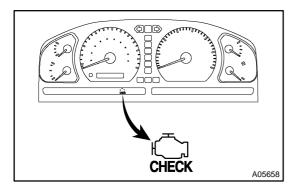
Г


DIAGNOSTICS - ENGINE

P2138 (DI-318)	Throttle Pedal Position Sensor/ Switch "D" / "E" Voltage Correla- tion	 ★VPA and VPA2 circuit are short circuited ★Accelerator pedal position sensor ★ECM 	
P2195 (<mark>DI-106</mark>)	Oxygen Sensor Signal Stuck Lean (Bank 1 Sensor 1)	★Open or short in heated oxygen sensor circuit ★Heated oxygen sensor	
P2196 (<mark>DI-106</mark>)	Oxygen Sensor Signal Stuck Rich (Bank 1 Sensor 1)	Heated oxygen sensor Heated oxygen sensor heater Heater	
P2197 (<mark>DI-106</mark>)	Oxygen Sensor Signal Stuck Lean (Bank 2 Sensor 1)		
P2198 (DI-106)	Oxygen Sensor Signal Stuck Rich (Bank 2 Sensor 1)		
P2418 (DI-222)	Evaporative Emission System Valve Control Circuit/Open	★Same as DTC No. P0441	

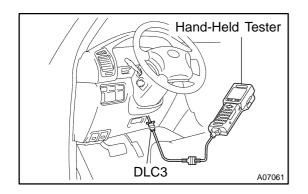
*1: - MIL does not light up. □ MIL lights up.
 *2: MIL lights up or blinks.


ENGINE HOW TO PROCEED WITH TROUBLESHOOTING


Troubleshoot in accordance with the procedure on the following page.

DI078-23

PARTS LOCATION



PRE-CHECK

1. DIAGNOSIS SYSTEM

- (a) Description
 - ★ When troubleshooting On-Board Diagnostic (OBD II) vehicles, the vehicle must be connected to the OBD II scan tool (in compliance with SAE J1978) or the hand-held tester. Various data output from the vehicle's ECM can then be read.
 - ★ OBD II regulations require that the vehicle's onboard computer illuminates the Malfunction Indicator Light (MIL) on the instrument panel when the computer detects a malfunction in: 1) the emission control system/components, or 2) the powertrain control components (which affect vehicle emissions), or 3) the computer. In addition, the applicable Diagnostic Trouble Codes (DTCs) prescribed by SAE J2012 are recorded in the ECM memory (See page DI-36).

If the malfunction does not reoccur in 3 consecutive trips, the MIL goes off automatically but the DTCs remain recorded in the ECM memory.

★ To check the DTC, connect the hand-held tester or OBD II scan tool to the Data Link Connector 3 (DLC3) of the vehicle. The hand-held tester or OBD II scan tool also enables you to erase the DTC and check the freeze frame data and various forms of engine data (See the instruction manual for the OBD II scan tool or the hand-held tester). The DTC includes SAE controlled codes and manufacturer controlled codes. SAE controlled codes must be set according to the SAE, while manufacturer with certrolled codes can be set by a manufacturer with certain restrictions (See the DTC chart on page DI-36).

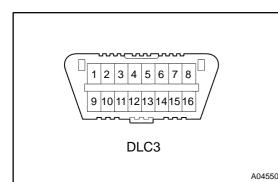
DIC20-01

★ The diagnosis system operates in "normal mode" during normal vehicle use. In "normal mode", 2 trip detection logic* is used to ensure accurate detection of malfunctions. A "check mode" is also available to technicians as an option. In "check mode", 1 trip detection logic is used for simulating malfunction symptoms and increasing the system's ability to detect malfunctions, including intermittent malfunctions (hand-held tester only) (See step 3).

★ *2 trip detection logic:

When a malfunction is first detected, the malfunction is temporarily stored in the ECM memory. This is known as 1st trip detection. If the ignition switch is turned OFF and then ON again, and the same malfunction is detected again, the MIL will illuminate. This is known as 2nd trip detection.

★ Freeze frame data:


The freeze frame data records the engine conditions (fuel system, calculated load, engine coolant temperature, fuel trim, engine speed, vehicle speed, etc.) when a malfunction is detected. When troubleshooting, freeze frame data can help determining if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.

Priorities for troubleshooting:

When multiple DTCs occur, find out the order in which the DTCs should be inspected by checking the component's DTC chart. If no instructions are written in the DTC chart, check DTCs in the following order of priority:

- DTCs other than fuel trim malfunction DTCs (P0171, P0172, P0174 and P0175) and misfire DTCs (P0300 to P0308).
- (2) Fuel trim malfunction DTCs (P0171, P0172, P0174 and P0175).
- (3) Misfire DTCs (P0300 to P0308).

(b)

Check the DLC3.

The vehicle's ECM uses the ISO 9141-2 for communication protocol. The terminal arrangement of the DLC3 complies with SAE J1962 and matches the ISO 9141-2 format.

Symbol	Name	Result
(Terminal No.)	(Reference terminal)	(Condition)
SIL	Bus "+" line	Pulse generation
(7)	(5 - Signal ground)	(During transmission)
CG	Chassis ground	1 Ω or less
(4)	(Body ground)	(Always)
SG	Signal ground	1 Ω or less
(5)	(Body ground)	(Always)
BAT	Battery positive	9 to 14 V
(16)	(Body ground)	(Always)

HINT:

Connect the cable of the hand-held tester to the DLC3, turn the ignition switch ON and attempt to use the hand-held tester. If the screen displays UNABLE TO CONNECT TO VEHICLE, a problem exists in the vehicle side or the tester side.

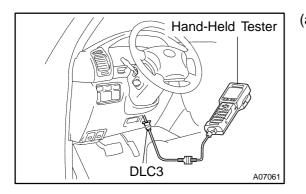
- ★ If the communication is normal when the tool is connected to another vehicle, inspect the DLC3 on the original vehicle.
- ★ If the communication is still impossible when the tool is connected to another vehicle, the problem is probably in the tool itself, so consult the Service Department listed in the tool's instruction manual.
- (c) Inspect the battery voltage.

Battery Voltage: 11 to 14 V

If voltage is below 11 V, recharge the battery before proceeding. (d) Check the MIL.

(1) The MIL comes on when the ignition switch is turned ON and the engine is not running.

HINT:


If the MIL is not illuminated, troubleshoot the MIL circuit (See page DI-355).

(2) When the engine is started, the MIL should not illuminate. If the lamp remains on, the diagnosis system has detected a malfunction or abnormality in the system.

2. DTC CHECK (Normal Mode)

NOTICE:

- ★ If no DTC appears in normal mode: On the OBD II scan tool or the hand-held tester check the pending fault code using the Continuous Test Results function (Mode 7 for SAE J1979).
- ★ When the diagnosis system is changed from normal mode to check mode or vice-versa, all DTCs and freeze frame data recorded in normal mode will be erased. Before changing modes, always check and make a note of DTCs and freeze frame data.

- (a) Checking DTCs using the OBD II scan tool or hand-held tester.
 - (1) Connect the OBD II scan tool or the hand-held tester to DLC3.
 - (2) Turn the ignition switch ON.
 - (3) Use the OBD II scan tool or the hand-held tester to check the DTCs and freeze frame data and then write them down.

For the hand-held tester, enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODEDS. For the OBD II scan tool, see its instruction manual.

(4) See page DI-36 to confirm the details of the DTCs.

NOTICE:

When simulating a symptom with the OBD II scan tool (excluding hand-held tester) to check the DTCs, use the normal mode. For DTCs chart subject to "2 trip detection logic", perform either of the following actions.

- \star Check the pending fault code:
 - For the hand-held tester, enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / PEND-ING CODES.
- ★ Turn the ignition switch OFF after the symptom is simulated once. Then repeat the simulation process again. When the problem has been simulated twice, the MIL comes on and the DTCs are recorded in the ECM.

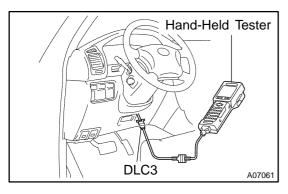
- ★ Check the pending fault code using the Continuous Test Results function (Mode 7 for SAE J1979) on the OBD II scan tool.
- (b) Clearing the DTCs using the OBD II scan tool or the hand-held tester.
 - (1) Connect the OBD II scan tool or the hand-held tester to the DLC3.
 - (2) Turn the ignition switch ON.
 - (3) Erase DTCs and freeze frame data with the OBD II scan tool (complying with SAE J1978) or the hand-held tester. For the hand-held tester: 1) enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CLEAR CODES; and 2) press YES. For the OBD II scan tool, see its instruction manual.
- (c) Clearing the DTCs not using the OBD II scan tool or the hand-held tester.

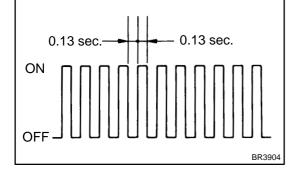
Remove the EFI or ECD No. 1 and ETCS fuses from the engine room J/B for more than 60 seconds, or disconnect the battery terminal for more than 60 seconds.

After disconnecting the battery terminal, perform the "INI-TIALIZE procedure.

3. DTC CHECK (Check Mode)

HINT:


Hand-held tester only:


Check mode has a higher sensitivity to detect malfunctions and can detect malfunctions that normal mode cannot detect. Check mode can also detect all the malfunctions that normal mode can detect.

- (a) Follow these steps when preparing to use the hand-held tester check mode.
 - (1) Make sure that the items below are true:
 - ★ Battery positive voltage 11 V or more
 - ★ Throttle valve fully closed
 - ★ Transmission in the P or N position
 - ★ A/C switched OFF
 - (2) Turn the ignition switch OFF.
 - (3) Connect the hand-held tester to the DLC3.
 - (4) Turn the ignition switch ON.
 - (5) Change the ECM to check mode with the handheld tester. Enter the following menus: DIAGNOSIS
 / ENHANCED OBD II / CHECK MODE. Make sure the MIL flashes as shown in the illustration.

NOTICE:

All DTCs and freeze frame data recorded will be erased if: 1) the hand-held tester is used to change the ECM from normal mode to check mode or vice-versa; or 2) during check mode, the ignition switch is turned from ON to ACC or OFF.

- (7) Simulate the conditions of the malfunction described by the customer.
- (8) After simulating the malfunction conditions, use the hand-held tester diagnosis selector to check the DTC, freeze frame data and other data.
- (9) After checking the DTC, inspect the applicable circuit.
- (b) Clearing DTCs using the OBD II scan tool or the handheld tester.
 - (1) Connect the OBD II scan tool or the hand-held tester to the DLC3.
 - (2) Turn the ignition switch ON.
 - (3) Erase DTCs and freeze frame data with the OBD II scan tool (complying with SAE J1978) or the handheld tester. For the hand-held tester: 1) enter the following menus: DIAGNOSIS ENHANCED OBD II
 / DTC INFO / CLEAR CODES; and 2) press YES. For the OBD II scan tool, see its instruction manual.
- (c) Clearing the DTCs without using the OBD II scan tool or the hand-held tester.
 Remove the EFI or ECD No. 1 and ETCS fuses from the engine room J/B for more than 60 seconds, or disconnect the battery terminal for more than 60 seconds.
 After disconnecting the battery terminal, perform the "INI-TIALIZE" procedure.

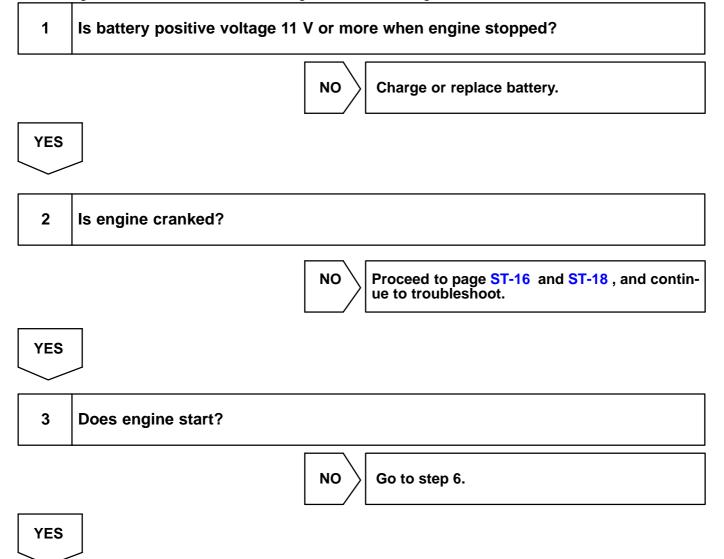
4. FAIL-SAFE CHART

If any of the following code is recorded, the ECM enters fail-safe mode.

DTC No.	Fail-Safe Operation	Fail-Safe Deactivation Conditions
P0031		
P0032		
P0037		
P0038	The heater circuit in which an abnormality is detected is	
P0051	turned off	Ignition switch OFF
P0052		
P0057		
P0058		
P0100		
P0102	Ignition timing is calculated from engine speed and throttle	"Pass" condition detected
P0103	angle	
P0110		
P0112	Intake air temperature is fixed at 20°C (68°F)	"Pass" condition detected
P0113		
P0115		
P0117	Engine coolant temperature is fixed at 80°C (176°F)	"Pass" condition detected
P0118		

P0120		
P0121		
P0122	If the Electronic Throttle Control System (ETCS) has a mal	
P0123	If the Electronic Throttle Control System (ETCS) has a mal- function, the ECM cuts off current to the throttle control	
P0220	motor. The throttle control valve returns to a predetermined	
P0222	opening angle (approximately 16) by the force of the return	
P0223	spring. The ECM then adjusts the engine output by control-	
P0607	ling the fuel injection (intermittent fuel-cut) and ignition tim-	"Pass" condition is detected and then the ignition switch is
P0657	ing in accordance with the accelerator pedal opening angle	turned OFF.
P2102	to enable the vehicle to continue at a minimal speed.	
P2103	If the accelerator pedal is depressed firmly and slowly, the	
P2111	vehicle can be driven slowly. If the accelerator pedal is	
P2112	depressed quickly, the vehicle may speed up and slow	
P2118	down erratically.	
P2119		
P2135		
P0325		
P0330	Max. timing retardation	Ignition switch OFF
P0351		
P0352		
P0353		
P0354		
P0355	Fuel cut	"Pass" condition detected
P0356		
P0357		
P0358		
P2120 P2121 P2122 P2123 P2125 P2125 P2127 P2128 P2138	The accelerator pedal position sensor has two (main and sub) sensor circuits. If a malfunction occurs in either of the sensor circuits, the ECM detects the abnormal signal voltage difference between the two sensor circuits and switches to limp mode. In limp mode, the remaining circuit is used to calculate the accelerator pedal opening to allow the vehicle to continue driving. If both circuits malfunction, the ECM regards the opening angle of the accelerator pedal to be fully closed. In this case, the throttle valve will remain closed as if the engine is idling.	"Pass" condition is detected and the ignition switch is turned OFF.

5. CHECK FOR INTERMITTENT PROBLEMS

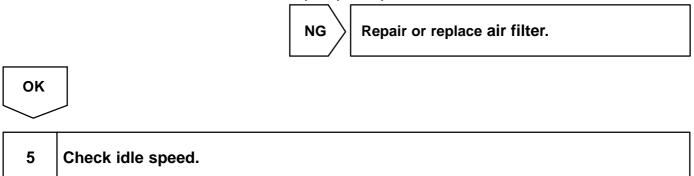

Hand-held tester only:

Inspect the vehicle's ECM using check mode. Intermittent problems are easier to detect when the ECM is in check mode with hand-held tester. In check mode, the ECM uses 1 trip detection logic, which has a higher sensitivity to malfunctions than normal mode (default), which uses 2 trip detection logic.

- (a) Clear the DTCs. (See step 2)
- (b) Set the check mode. (See step 3)
- (c) Perform a simulation test (See page IN-26).
- (d) Check the connector and terminal (See page IN-36).
- (e) Wiggle the harness and connector (See page IN-36).

6. BASIC INSPECTION

When the malfunction is not confirmed in the DTC check, troubleshooting should be carried out in all the possible circuits considered as causes of the problem. In many cases, by carrying out the basic engine check shown in the following flowchart, the location causing the problem can be found quickly and efficiently. Therefore, using this check is essential in the engine troubleshooting.


4 Check air filter.

PREPARATION:

Remove the air filter.

CHECK:

Visual check that the air filter is not excessively dirty or oily.

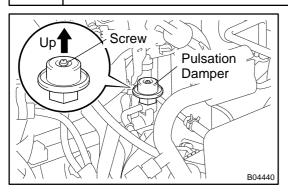
PREPARATION:

- (a) Warm up the engine to the normal operating temperature.
- (b) Switch off all the accessories.
- (c) Switch off the A/C.
- (d) Shift the transmission into the N position.
- (e) Connect the OBD II scan tool or hand-held tester to the DLC3 of the vehicle.

CHECK:

Use CURRENT DATA to check the idle speed.

<u>OK:</u>


Idle speed: 650 to 750 rpm

Proceed to problem symptoms table on page DI-48.

OK

6 Check fuel pressure.

PREPARATION:

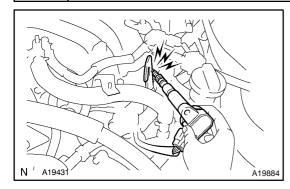
(a) Be sure that enough fuel is in the tank.

(b) Connect the hand-held tester to the DLC3.

- (c) Turn the ignition switch ON and push the hand-held tester main switch ON.
- (d) Use the ACTIVE TEST mode to operate the fuel pump.
- (e) Please refer to the hand-held tester operator's manual for further details.
- (f) If you have no hand-held tester, connect the positive (+) and negative (-) leads from the battery to the fuel pump connector (See page SF-7).

CHECK:

Check that the pulsation damper screw rises up when the fuel pump operation (See page SF-7).


HINT:

At this time, you will hear a fuel flowing noise.

OK

Check for spark.

PREPARATION:

(a) Disconnect the ignition coil.

- (b) Remove the spark plug.
- (c) Install the spark plug to the ignition coil.
- (d) Disconnect the injector connector.
- (e) Ground the spark plug.

CHECK:

Check if spark occurs while the engine is being cranked. **NOTICE:**

To prevent excess fuel from being injected from the injectors during this test, don't crank the engine for more than 5 to 10 seconds at a time.

Proceed to page IG-1 and continue to troubleshoot.

OK

7

Proceed to problem symptoms table on page DI-48 .

7. DATA LIST

HINT:

Using the hand-held tester DATA LIST allows switch, sensor, actuator and other item values to be read without removing any parts. Reading the DATA LIST early in troubleshooting is one way to shorten labor time. **NOTICE:**

In the table below, the values listed under "Normal Condition" are reference values. Do not depend solely on these reference values when deciding whether a part is faulty or not.

- (a) Warm up the engine.
- (b) Turn the ignition switch OFF.
- (c) Connect the hand-held tester or the OBD II scan tool to the DLC3.
- (d) Turn the ignition switch ON.
- (e) Push the "ON" button of the hand-held tester.
- (f) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DATA LIST.
- (g) According to the display on tester, read the "DATA LIST".

Item	Measurement Item/Range (Display)	Normal Condition*	Diagnostic Note
INJECTOR	Injection period of the No. 1 cylinder/ Min.: 0 ms, Max.: 32.64 ms	Idling: 2.1 to 3.9 ms	-
IGN ADVANCE	Ignition timing advance for No.1 cylinder/ Min.: -64 deg., Max.: 63.5 deg.	Idling: BTDC 5 to 25°	-
CALC LOAD	Calculated load by ECM/ Min.: 0%, Max.: 100%	Hdling: 12.5 to 19.7% Racing without load (2,500 rpm): 10.7 to 17.9%	-
MAF	Air flow rate from MAF sensor/ Min.: 0 gm/s, Max.: 655 gm/s	 ★dling: 4.1 to 6.4 gm/sec. ★Racing without load (2,500 rpm): 12.5 to 20.8 gm/sec. 	If value is approximately 0.0 gm/s: ★Mass air flow meter power source circuit open ★/G circuit open or short If value is 160.0 gm/s or more: ★E2G circuit open
ENGINE SPD	Engine Speed/ Min.: 0 rpm, Max.: 16,383 rpm	Idling: 650 to 750 rpm	-
COOLANT TEMP	Coolant temperature/ Min.: -40°C, Max.: 140°C	After warming up: 80 to 95°C (176 to 203°F)	★If value is -40 ℃ (-40 F): sensor circuit is open.
INTAKE AIR	Intake air temperature/ Min.: -40 °C, Max.: 140 °C	Equivalent to ambient temp. (After cold soak)	Hf value is 140⊡C (284⊡F) or more: sensor circuit is shorted.
THROTTLE POS	Absolute throttle position sensor/ Min.: 0%, Max.: 100%	★Throttle fully closed: 10 to 24% ★Throttle fully open: 66 to 98%	Read value with the ignition switch ON (Do not start engine).
THROTTLE INITIAL	Image: Construct of the construction of the consecond the construction of the construction of the const	-	
CTP SW			
VEHICLE SPD		Vehicle stopped: 0 km/h (0 mph)	Speed indicated on speedometer
O2S B1 S1	the bank 1 sensor 1/		Performing INJ VOL or A/F CON- TROL function of ACTIVE TEST enables the technician to check the voltage output of each sensor.
O2S B2 S1	the bank 2 sensor 1/	Idling: 0.1 to 0.9 V	Performing INJ VOL or A/F CON- TROL function of ACTIVE TEST enables the technician to check the voltage output of each sensor.

DIAGNOSTICS - ENGINE

O2S B1 S2	Oxygen sensor output voltage of the bank 1 sensor 2/ Min.: 0 V, Max.: 1.275 V	Driving 50 km/h (31 mph):	Performing INJ VOL or A/F CON- TROL function of ACTIVE TEST enables the technician to check the voltage output of each sensor.
O2S B2 S2	Oxygen sensor output voltage of the bank 2 sensor 2/ Min.: 0 V, Max.: 1.275 V	0.1 to 0.9 V	Performing INJ VOL or A/F CON- TROL function of ACTIVE TEST enables the technician to check the voltage output of each sensor.
SHORT FT #1	Short term fuel trim of bank 1/ Min.: -100%, Max.: 100%	0 ± 20%	This item is short-term fuel com- pensation used to maintain air-fuel ratio at stoichiometric air-fuel ratio
LONG FT #1	Long term fuel trim of bank 1/ Min.: -100%, Max.: 100%	0 ± 20%	This item is overall, long-term fuel compensation that helps to main- tain air-fuel ratio at stoichiometric air-fuel ratio (steadies long term deviations of short-term fuel trim from central value)
TOTAL FT #1	Total fuel trim of bank 1/ Min.: 0.5, Max.: 1.496	Idling: 0.5 to 1.4	-
SHORT FT #2	Short term fuel trim of bank 2/ Min.: -100%, Max.: 100%	0 ± 20%	Same as SHORT FT #1
LONG FT #2	Long term fuel trim of bank 2/ Min.: -100%, Max.: 100%	0 ± 20%	Same as LONG FT #1
TOTAL FT #2	Total fuel trim of bank 2/ Min.: 0.5, Max.: 1.496	Idling: 0.5 to 1.4	-
O2FT B1 S1	Short term fuel trim associated with the bank 1, sensor 1/ Min.: -100%, Max.: 100%	0 ± 20%	Same as SHORT FT #1
O2FT B1 S2	Short term fuel trim associated with the bank 1, sensor 2/ Min.: -100%, Max.: 100%	0 ± 20%	Same as SHORT FT #2
O2FT B2 S1	Short term fuel trim associated with the bank 2, sensor 1/ Min.: -100%, Max.: 100%	0 ± 20%	Same as SHORT FT #1
O2FT B2 S2	Short term fuel trim associated with the bank 2, sensor 2/ Min.: -100%, Max.: 100%	0 ± 20%	Same as SHORT FT #2
O2 LR B1 S1	Response time of the O2 sensor lean to rich (bank 1, sensor 1)/ Min.: 0 ms, Max.: 16,711 ms	Idling after warming up: 0 to 1,000 ms	-
O2 LR B2 S1	Response time of the O2 sensor lean to rich (bank 2, sensor 1)/ Min.: 0 ms, Max.: 16,711 ms	Idling after warming up: 0 to 1,000 ms	-
O2 RL B1 S1	Response time of the O2 sensor rich to lean (bank 1, sensor 1)/ Min.: 0 ms, Max.: 16,711 ms	Idling after warming up:	-
O2 RL B2 S1	Response time of the O2 sensor rich to lean (bank 2, sensor 1)/ Min.: 0 ms, Max.: 16,711 ms	0 to 1,000 ms	-

208

FUEL SYS #1	Fuel system status (Bank1)/ OL or CL or OLDRIVE or OL- FAULT or CLFAULT		 ★OL: Open Loop-has not yet satisfied conditions to go closed loop. ★CL: Closed Loop-using oxygen sensor(s) as feed back for fuel control. ★OL DRIVE: Open loop due to the control due to the contro
FUEL SYS #2	Fuel system status (Bank2)/ OL or CL or OLDRIVE or OL- FAULT or CLFAULT	Idling after warming up: CL	 driving conditions (Power enrichment, deceleration enlargement). ★OL FAULT: Open loop due to detected system fault. ★CL FAULT: Closed loop, but fault with at least one oxygen sensor may be using single oxygen sensor for fuel control.
FC IDL	Idle fuel cut/ ON or OFF	Fuel cut operation: ON	FC IDL = "ON" when throttle valve fully closed and engine speed is over 1,500 rpm.
MIL	MIL status/ ON or OFF	MIL ON: ON	-
STARTER SIG	Starter signal/ ON or OFF	Cranking: ON	-
A/C SIG	A/C signal/ ON or OFF	A/C ON: ON	-
PNP SW [NSW]	Park/neutral position switch signal/ ON or OFF	P or N range: ON	-
ELECT LOAD SIG	Electrical load signal/ ON or OFF	Defogger switch ON: ON	-
STOP LIGHT SW	Stop light switch/ ON or OFF	Harake pedal depressed: ON Harake pedal released: OFF	-
FUEL PMP SP CTL	Fuel pump speed control status/ ON or OFF	Idling: ON	-
FUEL PUMP/SPD	Fuel pump/speed status/ ON/H or OFF/M, L	Idling: ON	-
A/C MAG CLUTCH	A/C magnet clutch status/ ON or OFF	A/C magnet clutch ON: ON	-
EVAP VSV	VSV status for EVAP control/ ON or OFF	VSV operating: ON	VSV for EVAP is controlled by the ECM (ground side duty control)
IGNITION	Ignition counter/ Min.: 0, Max.: 400	0 to 400	-
VAPOR PRESS	Vapor pressure/ Min.: -4.125 kPa, Max.: 2.125 kPa	Fuel tank cap removed: 0 kPa	Pressure inside of fuel tank as read by the vapor pressure sen- sor.
CYL #1 - CYL #8	Misfire ratio of the cylinder/ Min.: 0%, Max.: 50%	0%	This item is displayed in only idling

*1: If no conditions are specifically stated for "Idling", it means the shift lever is in the N or P position, the A/C switch is OFF and all accessory switches are OFF.

8. ACTIVE TEST

HINT:

Performing the ACTIVE TEST using the hand-held tester or the OBD II scan tool allows the relay, VSV, actuator and so on to operate without parts removal. Performing the ACTIVE TEST as a first step of troubleshooting is one method to shorten diagnostic time.

It is possible to display the DATA LIST during the ACTIVE TEST.

- (a) Warm up the engine.
- (b) Turn the ignition switch OFF.
- (c) Connect the hand-held tester or the OBD II scan tool to the DLC3.
- (d) Turn the ignition switch ON.
- (e) Push the "ON" button of the hand-held tester or the OBD II scan tool.
- (f) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / ACTIVE TEST.
- (g) According to the display on tester, perform the "ACTIVE TEST".

Item	Test Details	Diagnostic Note
INJ VOL	[Test Details] Control the injection volume. Min.: -12.5%, Max.: 24.8% [Vehicle Condition] Engine speed: 3,000 rpm or less.	 ★All injectors are tested at once. ★Injection volume is gradual-ly changed between -12.5 and 25%
A/F CONTROL	[Test Details] Control injection volume -12.5 or 25 % (change injection volume -12.5 % or 25 %) [Vehicle Condition] Engine speed: 3,000 rpm or less	Following A/F CONTROL procedure enables techni- cian to check and graph volt- age outputs of both the A/F sensor and heated oxygen sensor For displaying graph, enter "ACTIVE TEST / A/F CON- TROL / USER DATA", select "AFS B1S1 and O2S B1S2" by pressing "YES" and push "ENTER". Then press "F4"
FUEL PUMP / SPD	[Test Details] Control the fuel pump speed. ON or OFF	-
VVT CTRL B1	[Test Details] Active VVT system (Bank 1) ON or OFF	★ON: Rough idle or engine stall ★OFF: Normal engine speed
VVT CTRL B2	[Test Details] Active VVT system (Bank 2) ON or OFF	★ON: Rough idle or engine stall ★OFF: Normal engine speed
CAN CTRL VSV	[Test Details] Activate the VSV for canister control. ON or OFF	-
TANK BYPASS VSV	[Test Details] Activate the VSV for tank bypass. ON or OFF	-
A/C MAG CLUTCH	[Test Details] Control the A/C magnet clutch. ON or OFF	-
EVAP VSV (ALONE)	[Test Details] Activate the VSV for EVAP control. ON or OFF	-

DIAGNOSTICS - ENGINE

TC/TE1	[Test Details] Connect the TC and TE1. ON or OFF	Switch to the same state as the connection between terminal TC and TE1.
FC IDL PROHBT	[Test Details] Control the idle fuel cut prohibit. ON or OFF	-

9. DEFINITION OF TERMS

Term	Definition
Monitor description	Description of what the ECM monitors and how it detects malfunctions (monitoring purpose and its details).
Related DTCs	Diagnostic code
Typical enabling condition	Preconditions that allow the ECM to detect malfunctions. With all preconditions satisfied, the ECM sets the DTC when the monitored value(s) exceeds the malfunction threshold(s).
Sequence of operation	The priority order that is applied to monitoring, if multiple sensors and components are used to detect the malfunc- tion. When a sensor is being monitored, the next sensor or component will not be monitored until the sensor monitoring is finished.
Required sensor/compo- nents	The sensors and components that are used by the ECM to detect malfunctions.
Frequency of operation	The number of times that the ECM checks for malfunctions per driving cycle. "Once per driving cycle" means that the ECM detects the malfunction only one time during a single driving cycle. "Continuous" means that the ECM detects malfunction every time an enabling condition is met.
Duration	The minimum time that the ECM must sense a continuous deviation in the monitored value(s) before setting a DTC. This timing begins after the "typical enabling conditions" are met.
Malfunction thresholds	Beyond this value, the ECM will conclude that there is a malfunction and set a DTC.
MIL operation	MIL illumination timing after a defect is detected. "Immediately" means that the ECM illuminates MIL the instant the ECM determines that there is a malfunction. "2 driving cycle" means that the ECM illuminates MIL if the same malfunction is detected again in the 2nd driving cycle.

10. TOYOTA/LEXUS PART AND SYSTEM NAME LIST

This reference list indicates the part names used in this manual along with their definitions.

TOYOTA/LEXUS name	Definition
Toyota HCAC system, Hydro-carbon Adsorptive Catalyst (HCAC) system, HC adsorptive three-way catalyst	HC adsorptive three-way catalytic converter
Variable Valve Timing sensor, VVT sensor	Camshaft position sensor
Variable valve timing system, VVT system	Camshaft timing control system
Camshaft timing oil control valve, Oil control valve, OCV, VVT, VSV	Camshaft timing oil control valve
Variable timing and lift, VVTL	Camshaft timing and lift control
Crankshaft position sensor "A"	Crankshaft position sensor
Engine speed sensor	Crankshaft position sensor
ТНА	Intake air temperature
Knock control module	Engine knock control module
Knock sensor	Engine knock sensor
Mass or volume air flow circuit	Mass air flow sensor circuit
Vacuum sensor	Manifold air pressure sensor
Internal control module, Control module, Engine control ECU, PCM	Power train control module
FC idle	Deceleration fuel cut

VSV for CCV, Canister dose valve VSV for canister control Evaporative emissions canister vent valve VSV for EVAP, Vacuum switching valve assembly No. 1, EVAP VSV, Purge VSV Evaporative emissions canister purge valve VSV for pressure sensor, EVAP pressure sensor, Evaporative emission control system pressure sensor Evaporative emissions canister Charcoal canister OR/R system On-board refueling vapor recovery system Intake manifold runner control Intake manifold tuning system Intake manifold runner valve, IMRV, IACV (runner valve) Intake manifold tuning system Intake manifold runner valve, IMRV, IACV (runner valve) Intake manifold tuning system Intake manifold runner valve, IMRV, IACV (runner valve) Intake manifold tuning solenoid valve AFS Ar fuel ratic sensor Oxygen sensor output signal Oxygen sensor pumping current circuit Oxygen sensor output signal Oxygen sensor Accel position sensor Accelerator pedal position sensor Electronic throttle actuator Throttle solution control motor, Throttle control motor, Electronic throttle control motor, Throttle control motor, Throttle pedal position sensor Throttle position sensor Throttle position sensor, Throttle/pedal position sensor Turbo press sensor Turbo pressure switch VSV for ACM Adve	Idle air control valve	Idle speed control
VSV for EVAP, Vacuum switching valve assembly No. 1. Evaporative emissions canister purge valve EVAP VSV, Furge VSV Evaporative emission pressure switching valve VSV for pressure switching valve, Bypass VSV Evaporative emission pressure switching valve VSV for pressure switching valve, Bypass VSV Evaporative emission pressure sensor Charcoal canister Evaporative emissions canister ORVR system On-board refueling vapor recovery system Intake manifold runner control Intake manifold tuning system Intake manifold runner valve, IMRV, IACV (runner valve) Intake manifold tuning system Intake control VSV Air fuel ratio sensor AFS Air fuel ratio sensor Oxygen sensor promping current circuit Oxygen sensor signal ground Accol position sensor Accolerator pedal position sensor Throttle actuator control motor, Actuator control motor, Electronic throttle control system, Throttle/pedal position sensor Electronic throttle actuator Turbo VSV Turbocharger pressure sensor Valve satering pressure sensor YV for ACM Active control system Turotile position sensor Turbo VSV Turbocharger pressure sensor Valvice speed sensor VSV for A		
EVAP VSV, Purge VSV Evaporative emissions canster purge valve VSV for pressure sensor, EVAP pressure sensor, Evaporative emission control system pressure sensor. Evaporative emission pressure sensor Charcoal canister Evaporative emissions canister On-board refueling vapor recovery system Intake manifold runner control Intake manifold runing system Intake manifold runing system Intake manifold runner valve, IMRV, IACV (runner valve) Intake manifold runing system Intake manifold runing system Intake manifold runner valve, IMRV, IACV (runner valve) Intake manifold runing solenoid valve AFS AFS Air fuel ratio sensor Go Sygen sensor CUPU system Intake manifold runing solenoid valve AFS Air fuel ratio sensor Go Sygen sensor reference ground circuit Oxygen sensor cuput signal Go Sygen sensor signal ground Accel position sensor Accelerator pedal position sensor Electronic throttle actuator Electronic throttle actuator Throttle control system, Throttle pedal position sensor Turbo charger pressure sensor Turbo System Proteit actuator control motor, Actuator control motor, Electronic throttle control system Throttle position sensor Turbo System Protestize sensor Turbo charger pressure sensor <td></td> <td></td>		
Vapor pressure sensor, EVAP pressure sensor Fuel tank pressure sensor Charcoal canister Evaporative emissions canister ORVR system On-board refueling vapor recovery system Intake manifold runner control Intake manifold tuning system Intake manifold runner valve, IMRV, IACV (runner valve) Intake manifold tuning system Intake manifold runner valve, IMRV, IACV (runner valve) Intake manifold tuning system Intake manifold runner valve, IMRV, IACV (runner valve) Intake manifold tuning system Intake manifold runner valve, IMRV, IACV (runner valve) Intake manifold tuning solenoid valve AFS Air fuel ratio sensor Oxygen sensor output signal Oxygen sensor pumping ourrent circuit Oxygen sensor output signal Oxygen sensor Oxygen sensor reference ground circuit Oxygen sensor output signal Oxygen sensor Oxygen sensor reference ground circuit Oxygen sensor output signal Oxygen sensor Throttle actuator control motor, Actuator control motor, Electronic throttle control system Electronic throttle control system Throttle position sensor, Throttle/pedal position switch Throttle position sensor Turbo press sensor Turbocharger pressure sensor Turbo press sensor, Ve		Evaporative emissions canister purge valve
emission control system pressure sensor Fuel tark pressure sensor Charcoal canister Evaporative emissions canister OR-Voal canister On-board refueling vapor recovery system Intake manifold runner control Intake manifold tuning system Intake manifold runner valve, IMRV, IACV (runner valve) Intake manifold tuning solenoid valve AFS Air fuel ratio sensor O2 sensor Heater oxygen sensor output signal Oxygen sensor output signal Oxygen sensor output signal Oxygen sensor output signal Oxygen sensor Oxygen sensor output signal Oxygen sensor Accel position sensor Accelerator pedal position sensor Throttie actuator control motor, Actuator control Electronic throttle control system Electronic throttle control system, Throttle actuator control Electronic throttle control system Throttle position sensor/ Turbocharger pressure sensor Turbo press sensor Turbocharger pressure sensor Turbo press sensor Turbocharger pressure sensor Turbo VSV Turbocharger pressure sensor Spressure switch Power-steering pressure sensor VSV for ACM Active control engine mou	VSV for pressure switching valve, Bypass VSV	Evaporative emission pressure switching valve
ORVR system On-board refueling vapor recovery system Intake manifold runner control Intake manifold tuning system Intake manifold runner valve, IMRV, IACV (runner valve) Intake manifold tuning selenoid valve Intake control VSV Intake manifold tuning selenoid valve AFS Air fuel ratio sensor Oxygen sensor and tuning selenoid valve Oxygen sensor pumping current circuit Oxygen sensor output signal Oxygen sensor Oxygen sensor reference ground circuit Oxygen sensor output signal Oxygen sensor Accelerator pedal position sensor Accelerator pedal position sensor Throttle actuator control motor, felectionic throttle motor, Throttle outprol motor, felectionic throttle motor, Throttle actuator control motor Electronic throttle control system Throttle/pedal position sensor, Throttle/pedal position switch, Throttle position sensor/switch Throttle position sensor Turbo press sensor Turbocharger pressure sensor Turbocharger pressure sensor YV for ACM Speed sensor for Vehicle speed sensor for System Vehicle speed sensor for Vehicle speed sensor Intake control Eductor Counter gear speed sensor Turbocharger pressure sensor Turbot VSV Turbocharger pressure sensor <td></td> <td>Fuel tank pressure sensor</td>		Fuel tank pressure sensor
Intake manifold runner control Intake manifold runner valve, IMRV, IACV (runner valve) Intake manifold tuning system Intake control VSV Intake manifold tuning solenoid valve AFS Air fuel ratio sensor O2 sensor Heater oxygen sensor output signal Oxygen sensor runner or dircuit Oxygen sensor output signal Oxygen sensor reference ground circuit Oxygen sensor output signal Accel position sensor Accelerator pedal position sensor Throttle actuator control motor, Actuator control motor, Electronic throttle control motor Electronic throttle control system Throttle control system, Throttle actuator control Electronic throttle control system Throttle position sensor, Throttle/pedal position switch, Throttle/pedal position sensor Throttle position sensor Turbo press sensor Turbocharger pressure sensor Turbocharger pressure switch VSV for ACM Active control engine mount Vehicle speed sensor Speed sensor, Vehicle speed sensor "A", Speed sensor for skid control Ecu Flectronically controled automatic transmission, ECT Electronic controlled automatic transmission, ECT Electronically controled automatic Thermperature sensor Counter gear speed sensor Output speed sensor	Charcoal canister	Evaporative emissions canister
Intake manifold runner valve, IMRV, IACV (runner valve) Intake manifold running valve Intake control VSV Intake manifold running solenoid valve AFS Air fuel ratio sensor 02 sensor Heater oxygen sensor output signal 0xygen sensor pumping current circuit Oxygen sensor output signal 0xygen sensor reference ground circuit Oxygen sensor signal ground Accel position sensor Accelerator pedal position sensor Thortite actuator control motor, Actuator control motor, Electronic throttle control motor, Throttle control motor Electronic throttle control system Throttle pedal position sensor Throttle actuator Electronic throttle control system Turbo press sensor Turbocharger pressure sensor Turbocharger pressure sensor Turbo VSV Turbocharger pressure sensor Vehicle speed sensor VSV for ACM Active control engine mount Speed sensor, Vehicle speed sensor "A" Counter gear speed sensor Electronic control led automatic transmission, ECT Electronically controlled automatic Intermediate shaft speed sensor "A" Counter gear speed sensor Output shaft speed sensor Output shaft speed sensor Input speed sensor Park/ne	ORVR system	On-board refueling vapor recovery system
Intake control VSV Intake manifold tuning solenoid valve AFS Air fuel ratio sensor Q2 sensor Heater oxygen sensor Qxygen sensor pumping current circuit Oxygen sensor output signal Oxygen sensor reference ground circuit Oxygen sensor output signal Accel position sensor Accelerator pedal position sensor Accel position sensor Accelerator pedal position sensor Throttle actuator control motor, Actuator control motor, Elec- tronic throttle control system, Throttle actuator control Electronic throttle control system Throttle position sensor/switch Throttle position sensor Throttle position sensor Turbo press sensor Turbocharger pressure sensor Turbocharger pressure sourch solenoid valve P/S pressure switch Power-steering pressure switch Vehicle speed sensor "A", Speed sensor VsV for ACM Active control engine mount Speed sensor "A" Counter gear speed sensor "A" Counter gear speed sensor Counter gear speed sensor AFF temperature sensor "A" Counter gear speed sensor Intake control engine mount Speed sensor "A" Counter gear speed sensor Counter gear speed sensor Intermediate shaft speed sensor "A"	Intake manifold runner control	Intake manifold tuning system
AFS Air fuel ratio sensor O2 sensor Heater oxygen sensor Oxygen sensor pumping current circuit Oxygen sensor output signal Oxygen sensor reference ground circuit Oxygen sensor signal ground Accel position sensor Accelerator pedal position sensor Throttle actuator control motor, Actuator control motor, Electronic throttle control system, Throttle actuator control Electronic throttle control system, Throttle actuator control Throttle/pedal position sensor, Throttle/pedal position switch, Throttle position sensor Throttle position sensor Turbo press sensor Turbocharger pressure sensor Turbo VSV Turbocharger pressure sontrol solenoid valve P/S pressure switch Power-steering pressure switch VSV for ACM Active control engine mount Speed sensor, Vehicle speed sensor "A", Speed sensor for skid control ECU Vehicle speed sensor ATF temperature sensor "A" Counter gear speed sensor Couput speed sensor "A" Counter gear speed sensor Output speed sensor Output shaft speed sensor Intermediate shaft speed sensor "A", Speed sensor Input speed sensor Output speed sensor (NT), Turbine speed sensor "A", Speed sensor Input typeed sensor Input speed sensor, Input turbine speed sensor "A	Intake manifold runner valve, IMRV, IACV (runner valve)	Intake manifold tuning valve
O2 sensor Heater oxygen sensor Oxygen sensor pumping current circuit Oxygen sensor output signal Oxygen sensor reference ground circuit Oxygen sensor signal ground Accel position sensor Accelerator pedal position sensor Throttle actuator control motor, Actuator control motor, Electronic throttle motor, Throttle control motor Electronic throttle actuator Electronic throttle control system, Throttle actuator control system Electronic throttle control system Throttle/pedal position sensor, Throttle/pedal position switch, Throttle position sensor Throttle position sensor Turbo press sensor Turbocharger pressure sensor Turbo VSV Turbocharger pressure sensor VSV for ACM Active control engine mount Speed sensor, Vehicle speed sensor "A", Speed sensor for Vehicle speed sensor ATF temperature sensor, Trans. fluid temp. sensor, ATF Transmission fluid temperature sensor Intermediate shaft speed sensor "A" Counter gear speed sensor Output speed sensor Output shaft speed sensor Intermediate shaft speed sensor "A" Counter gear speed sensor Output speed sensor Output shaft speed sensor PN switch, NSW Park/neutral position switch	Intake control VSV	Intake manifold tuning solenoid valve
Oxygen sensor pumping current circuit Oxygen sensor output signal Oxygen sensor reference ground circuit Oxygen sensor output signal Oxygen sensor reference ground circuit Oxygen sensor signal ground Accel position sensor Accelerator pedal position sensor Throttle actuator control motor, Actuator control motor, Electronic throttle control system, Throttle control motor Electronic throttle actuator Electronic throttle control system, Throttle actuator control system Electronic throttle control system, Throttle/pedal position switch, Throttle position sensor, Throttle/pedal position sensor Throttle position sensor Turbo VSV Turbocharger pressure sensor Turbocharger pressure sensor VSV for ACM Active control engine mount Speed sensor, Vehicle speed sensor "A", Speed sensor for skid control ECU ATF temperature sensor, Trans. fluid temp. sensor, ATF Transmission fluid temperature sensor Tarsmission fluid temperature sensor Intermediate shaft speed sensor "A" Counter gear speed sensor Output shaft speed sensor Output shaft speed sensor Intermediate shaft speed sensor Output shaft speed sensor Input turbine speed sensor Output shaft speed sensor PP S writch, NSW Park/neutral position switch Park/neutral position switch Park/neutral position	AFS	Air fuel ratio sensor
Oxygen sensor reference ground circuit Oxygen sensor signal ground Accel position sensor Accelerator pedal position sensor Throttle actuator control motor, Actuator control motor, Electronic throttle control system, Throttle actuator control system Electronic throttle control system Throttle actuator sensor, Throttle pedal position sensor Electronic throttle control system Throttle position sensor, Throttle/pedal position switch Throttle position sensor Turbo press sensor Turbocharger pressure sensor Turbo VSV Turbocharger pressure sensor P/S pressure switch Power-steering pressure switch VSV for ACM Active control engine mount Speed sensor, Vehicle speed sensor "A", Speed sensor for skid control ECU Vehicle speed sensor ATF temperature sensor, Trans. fluid temp. sensor, ATF Transmission fluid temperature sensor Intermediate shaft speed sensor "A" Counter gear speed sensor Output speed sensor Output speed sensor Input turbine speed sensor Input turbine speed sensor PNP switch, NSW Park/neutral position switch Pressure control solenoid Transmission pressure control solenoid	O2 sensor	Heater oxygen sensor
Accel position sensor Accelerator pedal position sensor Throttle actuator control motor, Actuator control motor, Electronic throttle control system, Throttle control system, Throttle actuator control system Electronic throttle control system, Throttle actuator control system Throttle/pedal position sensor, Throttle/pedal position switch, Throttle position sensor, Throttle/pedal position sensor, Throttle/pedal position switch, Throttle position sensor Throttle control system Turbo press sensor Turbocharger pressure sensor Turbocharger pressure sensor Yurbo VSV Turbocharger pressure switch Power-steering pressure switch VSV for ACM Active control engine mount Speed sensor, Trans. fluid temp. sensor, ATF temperature sensor, Trans. fluid temp. sensor, ATF Transmission fluid temperature sensor Intermediate shaft speed sensor "A" Counter gear speed sensor Output speed sensor (NT, Turbine speed sensor "A", Speed sensor Input turbine speed sensor Output speed sensor (NT, Turbine speed sensor "A") Counter gear speed sensor Power-steering pressure control engine mount Speed sensor Preserve sensor, Trans. fluid temp. sensor, ATF Transmission fluid temperature sensor Intermediate shaft speed sensor "A" Counter gear speed sensor Output speed sensor Output sha	Oxygen sensor pumping current circuit	Oxygen sensor output signal
Throttle actuator control motor, Actuator control motor, Electronic throttle control system Electronic throttle control system, Throttle control actuator control system Electronic throttle control system, Throttle actuator control system Electronic throttle control system Throttle/pedal position sensor, Throttle/pedal position switch, Throttle position sensor Throttle position sensor Turbo press sensor Turbocharger pressure sensor Turbo VSV Turbocharger pressure control solenoid valve P/S pressure switch Power-steering pressure switch VSV for ACM Active control engine mount Speed sensor, Vehicle speed sensor "A", Speed sensor for skid control ECU Vehicle speed sensor ATF temperature sensor, Trans. fluid temp. sensor, ATF temperature sensor, Trans. fluid temp. sensor, ATF Transmission fluid temperature sensor Electronic controlled automatic transmission, ECT Electronically controlled automatic Intermediate shaft speed sensor Output shaft speed sensor Output speed sensor (NT), Turbine speed sensor "A", Speed sensor Input turbine speed sensor PN witch, NSW Park/neutral position switch Pressure control solenoid Transmission pressure control solenoid Shift solenoid Transmission shift solenoid valve	Oxygen sensor reference ground circuit	Oxygen sensor signal ground
tronic throttle motor, Throttle control motorElectronic throttle actuatorElectronic throttle control system, Throttle actuator control systemElectronic throttle control systemThrottle/pedal position sensor, Throttle/pedal position switch, Throttle position sensor/SwitchThrottle position sensorTurbo press sensorTurbocharger pressure sensorTurbo VSVTurbocharger pressure sonsorP/S pressure switchPower-steering pressure switchVSV for ACMActive control engine mountSpeed sensor, Vehicle speed sensor "A", Speed sensor for skid control ECUVehicle speed sensorATF temperature sensor, Trans. fluid temp. sensor, ATF temperature sensor "A"Transmission fluid temperature sensorElectronic controlled automatic transmission, ECTElectronically controlled automaticIntermediate shaft speed sensor "A"Counter gear speed sensorOutput speed sensorOutput shaft speed sensorPNP switch, NSWPark/neutral position switchPressure control solenoidTransmission pressure control solenoidShift solenoidTransmission pressure control solenoid	Accel position sensor	Accelerator pedal position sensor
systemElectronic throttle control systemThrottle/pedal position sensor, Throttle/pedal position switch, Throttle position sensor/switchThrottle position sensorTurbo press sensorTurbocharger pressure sensorTurbo VSVTurbocharger pressure control solenoid valveP/S pressure switchPower-steering pressure switchVSV for ACMActive control engine mountSpeed sensor, Vehicle speed sensor "A", Speed sensor for skid control ECUVehicle speed sensorATF temperature sensor, Trans. fluid temp. sensor, ATF temperature sensor "A"Transmission fluid temperature sensorElectronic controlled automatic transmission, ECTElectronically controlled automaticIntermediate shaft speed sensorOutput shaft speed sensorOutput speed sensor, Input turbine speed sensor "A", Speed 		Electronic throttle actuator
Throttle position sensor/switch Throttle position sensor Turbo press sensor Turbocharger pressure sensor Turbo VSV Turbocharger pressure control solenoid valve P/S pressure switch Power-steering pressure switch VSV for ACM Active control engine mount Speed sensor, Vehicle speed sensor "A", Speed sensor for skid control ECU Vehicle speed sensor ATF temperature sensor, Trans. fluid temp. sensor, ATF temperature sensor "A" Transmission fluid temperature sensor Electronic controlled automatic transmission, ECT Electronically controlled automatic Intermediate shaft speed sensor Output shaft speed sensor Output speed sensor (NT), Turbine speed sensor Input turbine speed sensor PNP switch, NSW Park/neutral position switch Pressure control solenoid Transmission pressure control solenoid	-	Electronic throttle control system
Turbo VSV Turbocharger pressure control solenoid valve P/S pressure switch Power-steering pressure switch VSV for ACM Active control engine mount Speed sensor, Vehicle speed sensor "A", Speed sensor for skid control ECU Vehicle speed sensor ATF temperature sensor, Trans. fluid temp. sensor, ATF temperature sensor "A" Transmission fluid temperature sensor Electronic controlled automatic transmission, ECT Electronically controlled automatic Intermediate shaft speed sensor Output speed sensor Output speed sensor Output shaft speed sensor Input speed sensor Input turbine speed sensor PNP switch, NSW Park/neutral position switch Pressure control solenoid Transmission pressure control solenoid		Throttle position sensor
P/S pressure switch Power-steering pressure switch VSV for ACM Active control engine mount Speed sensor, Vehicle speed sensor "A", Speed sensor for skid control ECU Vehicle speed sensor ATF temperature sensor, Trans. fluid temp. sensor, ATF temperature sensor "A" Transmission fluid temperature sensor Electronic controlled automatic transmission, ECT Electronically controlled automatic Intermediate shaft speed sensor Output shaft speed sensor Output speed sensor, Input turbine speed sensor Output shaft speed sensor Input speed sensor Input turbine speed sensor PNP switch, NSW Park/neutral position switch Pressure control solenoid Transmission pressure control solenoid	Turbo press sensor	Turbocharger pressure sensor
VSV for ACM Active control engine mount Speed sensor, Vehicle speed sensor "A", Speed sensor for skid control ECU Vehicle speed sensor ATF temperature sensor, Trans. fluid temp. sensor, ATF temperature sensor "A" Transmission fluid temperature sensor Electronic controlled automatic transmission, ECT Electronically controlled automatic Intermediate shaft speed sensor Output speed sensor Output speed sensor, Input turbine speed sensor Output shaft speed sensor Input speed sensor, Input turbine speed sensor Input turbine speed sensor PNP switch, NSW Park/neutral position switch Pressure control solenoid Transmission pressure control solenoid	Turbo VSV	Turbocharger pressure control solenoid valve
VSV for ACM Active control engine mount Speed sensor, Vehicle speed sensor "A", Speed sensor for skid control ECU Vehicle speed sensor ATF temperature sensor, Trans. fluid temp. sensor, ATF temperature sensor "A" Transmission fluid temperature sensor Electronic controlled automatic transmission, ECT Electronically controlled automatic Intermediate shaft speed sensor Output speed sensor Output speed sensor Output shaft speed sensor Input speed sensor, Input turbine speed sensor "A", Speed sensor (NT), Turbine speed sensor Input turbine speed sensor PNP switch, NSW Park/neutral position switch Pressure control solenoid Transmission pressure control solenoid Shift solenoid Transmission shift solenoid valve	P/S pressure switch	Power-steering pressure switch
Speed sensor, Vehicle speed sensor "A", Speed sensor for skid control ECU Vehicle speed sensor ATF temperature sensor, Trans. fluid temp. sensor, ATF temperature sensor "A" Transmission fluid temperature sensor Electronic controlled automatic transmission, ECT Electronically controlled automatic Intermediate shaft speed sensor "A" Output speed sensor Output shaft speed sensor Input speed sensor Output shaft speed sensor Input speed sensor Input turbine speed sensor PNP switch, NSW Park/neutral position switch Pressure control solenoid Transmission pressure control solenoid	VSV for ACM	
temperature sensor "A"Transmission fluid temperature sensorElectronic controlled automatic transmission, ECTElectronically controlled automaticIntermediate shaft speed sensor "A"Counter gear speed sensorOutput speed sensorOutput shaft speed sensorInput speed sensor, Input turbine speed sensor "A", Speed sensor (NT), Turbine speed sensorInput turbine speed sensorPNP switch, NSWPark/neutral position switchPressure control solenoidTransmission pressure control solenoidShift solenoidTransmission shift solenoid valve		Vehicle speed sensor
Intermediate shaft speed sensor "A" Counter gear speed sensor Output speed sensor Output shaft speed sensor Input speed sensor, Input turbine speed sensor "A", Speed sensor Input turbine speed sensor PNP switch, NSW Park/neutral position switch Pressure control solenoid Transmission pressure control solenoid Shift solenoid Transmission shift solenoid valve		Transmission fluid temperature sensor
Output speed sensor Output shaft speed sensor Input speed sensor, Input turbine speed sensor "A", Speed sensor (NT), Turbine speed sensor Input turbine speed sensor PNP switch, NSW Park/neutral position switch Pressure control solenoid Transmission pressure control solenoid Shift solenoid Transmission shift solenoid valve	Electronic controlled automatic transmission, ECT	Electronically controlled automatic
Input speed sensor, Input turbine speed sensor "A", Speed sensor (NT), Turbine speed sensor Input turbine speed sensor PNP switch, NSW Park/neutral position switch Pressure control solenoid Transmission pressure control solenoid Shift solenoid Transmission shift solenoid valve	Intermediate shaft speed sensor "A"	Counter gear speed sensor
sensor (NT), Turbine speed sensor Input turbine speed sensor PNP switch, NSW Park/neutral position switch Pressure control solenoid Transmission pressure control solenoid Shift solenoid Transmission shift solenoid valve	Output speed sensor	Output shaft speed sensor
Pressure control solenoid Transmission pressure control solenoid Shift solenoid Transmission shift solenoid valve		Input turbine speed sensor
Shift solenoid Transmission shift solenoid valve	PNP switch, NSW	Park/neutral position switch
	Pressure control solenoid	Transmission pressure control solenoid
Transmission control switch. Shift lock control unit	Shift solenoid	Transmission shift solenoid valve
	Transmission control switch, Shift lock control unit	Shift lock control module
Engine immobiliser system, Immobiliser system Vehicle anti-theft system	Engine immobiliser system, Immobiliser system	Vehicle anti-theft system

212

11. The monitor will run whenever the following DTCs are not present (Monitor disablement List) HINT:

This table indicates ECM monitoring status for the items in the upper columns if the DTCs in each line on the left are being set.

As for the "X" mark, when the DTC on the left is stored, detection of the DTC in the upper column is not performed.

Г					T								T	ISAD	Terri	ent	(<u>)</u>			lea)					Т	Т
	Fault code			P0010,P0020	P0011	P0012	P0016,P0018	P0021	P0022	P0030,50	P0135,P0155	P0043.44.63.64	P0100	P0101	P0105	P0110	P0115	P0116	P0120,P0121	P0125	P0128	P0130-P0153	P0136,P0156	P0142,P0162	P0171,P0172	3110 15 110 1
		Fault code		P0010,P0020	P0011	P0012	P0016,P0018	P0021	P0022	P0031,32,51,52	P0031,32,51,52	P0043,44,63,64	P0100-P0103	P0101	P0105-P0108	P0110-P0113	P0115-P0118	P0116	P0120-P0223,P2135	P0125	P0128	P0130-P0153	P0136,P0156	P0142,P0162	P0171,P0172	410 5 10 1
			Component/ system	VVT VSV1,2	VVT System1 -Advance	VVT System1 - Retard	VVT System - Misalignment	VVT System2 - Advance	VVT System2 - Retard	O2 Sensor Heater - Sensor1	A/F Sensor Heater - Sensor1	02 Sensor Heater - Sensor3		MAF sensor	MAP sensor	MAP sensor IAT sensor	ECT sensor	ECT sensor	TP sensor	Insufficient ECT for Closed Loop	Thermostat	02 Sensor -Sensor1 02 Sensor A/F Sensor(No Activity) - Sensor1	02 Sensor, Ar Sensor (No Activity) - Sensor I 02 Sensor - Sensor2	O2 Sensor - Sensor3	Fuel system	
	P0010,P0020	P0010,P0020	VVT VSV1,2																		×				×	٢
	P0011	P0011	VVT System1 - Advance				×		×												×				×	(
L	P0012	P0012	VVT System1 - Retard				×		×												×				×	٢
	P0016,P0018	P0016,P0018	VVT System - Misalignment																							\downarrow
	P0021	P0021	VVT System2 - Advance			×	×														×				×	٢
	P0022	P0022	VVT System2 - Retard			×															×				×	۲
	P0030,50	P0031,32,51,52	O2 Sensor Heater - Sensor1																		× :	× >	××	_	-	٢
	P0135,P0155	P0031,32,51,52	A/F Sensor Heater - Sensor1								<u>.</u>										×		×	-	-	(
	P0036,56	P0037,38,57,58	O2 Sensor Heater - Sensor2									×											×	< X	:	
	P0043,44,63,64	P0043,44,63,64	O2 Sensor Heater - Sensor3	<u> </u>									<u> </u>				_							×	:	
	P0100,P0101	P0100-P0103	MAF sensor	L	×	+		×									_	×		+	×			-		-+-
H	P0105,P0106	P0105-P0108	MAP sensor		×	×		×	×			_				×		×				×		-	-	
-	P0110	P0110-P0113	IAT sensor	ļ								_					ğ					××				-
	P0115,P0116	P0115-P0118	ECT sensor		×	×	×	×	×			_		×		×				×	_	×>		_	-	_
-	P0120,P0121	P0120-P0223,P2135	TP sensor	ļ	ļ									×		×		ļ				× >				-
H	P0125	P0125	Insufficient ECT for Closed Loop	ļ	×	×		×	×			_		×		×					×	×	××	(X	×	<
H	P0128	P0128	Thermostat																		₩.	<u>_</u>		+-	+	_
H	P0130-P0153	P0130-P0153	O2 Sensor - Sensor1	ļ	ļ	ļ		_					1		_	_	_	ļ			×			(×	_	_
F	P0134,P0154	P0134,P0154	O2 Sensor, A/F Sensor(No Activity) - Sensor1								×					_					×	×	×	×	X	4
- H	P0136,P0156	P0136,P0156	O2 Sensor - Sensor2			-								$\left - \right $	_		+-					+			+	+
- H	P0142,P0162	P0142,P0162	O2 Sensor - Sensor3	-	-	-	\vdash	_	\vdash		_	+	-	\parallel	_	_	+	-	\vdash	\square	<u> </u>	<u>_</u> +.	+	<u> </u>		₫
H	P0171,P0172	P0171,P0172	Fuel system	-					$\left - \right $	~		+		$\left \cdot \right $			+	-			× : × :					4
- H	P0300-P0308	P0300-P0308	Misfire	\vdash	-	-	\vdash	_		×	+	+	-	$\left \cdot \right $	+	+	+	\vdash	\vdash		<u> </u>	¥	¥	+	+	k
H	P0325,P0330 P0335	P0325-P0333 P0335	Knock sensor		-	×		×						×		×				\vdash	×	.,	+-	+-	+-	
H	P0335 P0340, P0341	P0335 P0340, P0341	CKP sensor CMP sensor	-	-	××			× ×		+	+	+	×		× ×	+	\vdash	\vdash		XX					
-	P0340, P0341 P0340-P0346	P0340-P0346	VVT sensor1,2		Ê	ŕ		-	Ĥ					Ĥ	-+		+				x	+	÷	+	f	+
H	P0351-P0358	P0351-P0358	Ignitor		×	×		×	×					$\left - \right $		+		-			x	+	+	+	+	+
- H	P0351-P0356	P0385	CKP sensor 2	-	Ê	Ê	\vdash	-	Ĥ		+	-	+	×		×	+	\vdash	\vdash		<u>^</u> x :	\mathbf{x}^{\dagger}	<u>,</u>	t	t	+
H	P0385	P0401	EGR system (closed)	+			\vdash		\vdash		+	+-		Ĥ	-†	+	+	+			x	÷	+	+	X	-+-
- H	P0402	P0402	EGR system (open)	\vdash	\vdash	-	\vdash		\vdash	\square	+	+	+	$\left \right $	+	+	+	\vdash	\vdash		X	x	x x	; tx		
H	P0405,P0409	P0405-P0409	Lift sensor	+	+		\vdash				+	╈	+	$\left - \right $	+		+	+	\vdash	\square		+	+	+	x	-+-
H	P0420,P0430	P0420,P0430	Catalyst	-	-	-	\vdash	-	\vdash		+	+	+	$\left \right $	+	+	+	-	\vdash	\vdash	+	+	+	+	Ť	┽
- H	P0442-P0456	P0442-P0456	EVAP system	\vdash			\vdash		$\left - \right $			+	+	$\left \cdot \right $	-+		+	\vdash		$\left \right $	+	x,	××	tx	÷	+
H	P0450,P0451	P0450-P0453	EVAP press sensor			1-		-					+	$\left \right $				+			-+'	÷	+	+	+	+

Author :

ſ	an an t-fan la Arta Y. San y la dan la fan la fa la Anta an				Т	T						T		sabl	T		Ť	T	T					T	1	
	Fault code			P0010,P0020	P0011	P0012	P0016,P0018	P0021	P0022	P0030,50	P0135,P0155 P0036.56	P0043,44,63,64	P0100	P0101	P0105	P0106	P0115	P0116	P0120,P0121	P0125	P0128	P0130-P0153	P0134,P0154	P0136,P0156	PU142,PU102	FU1/1,FU1/2
		Fault code		P0010,P0020	P0011	P0012	P0016,P0018	P0021	P0022	P0031,32,51,52	P0031,32,51,52 P0037 38 57 58	P0043,44,63,64	P0100-P0103	P0101	P0105-P0108	P0106 P0110 D0113	P0115-P0118	P0116	P0120-P0223,P2135	P0125	P0128	P0130-P0153	P0134,P0154	P0136,P0156	P0142,P0162	FU1/1,FU1/2
			Component/ system	VVT VSV1,2	VVT System1 -Advance	VVT System1 - Retard	VVT System - Misalignment	VVT System2 - Advance	VVT System2 - Retard	02 Sensor Heater - Sensor1	A/F Sensor Heater - Sensor1 02 Sensor Heater - Sensor2	02 Sensor Heater - Sensor3	MAF sensor	MAF sensor	MAP sensor	MAP sensor IAT sensor	ECT sensor	ECT sensor	TP sensor	Insufficient ECT for Closed Loop	Thermostat	02 Sensor -Sensor1	02 Sensor, A/F Sensor(No Activity) - Sensor1	02 Sensor - Sensor2	UZ Sensor - Sensor3 Ettel evetem	ruei system
	P0500	P0500	VSS																		×	×	X	×	×>	×
ĺ	P0511	P0511	IAC valve																			×				
	P0510	P0510	Idle switch											×		×					×	×		X	×)	×
	P0560	P0560	System Voltage																							
	P0617	P0617	Starter signal																							
	P0705	P0705	Shift lever position switch																							
	P0710	P0710-P0713	Trans fluid temp sensor																							
	P0720-P0793	P0720-P0793	Output speed sensor																							
	P0715-P0717	P0715-P0717	Input speed sensor																							
	P0724	P0724	Stop lamp switch																							
	P0741-P0796	P0741-P0796	Trans solenoid (function)																							
	P0748-P0798	P0748-P0799	Trans solenoid (range)																				Ц			
	P0850	P0850	PNP switch																							
	P1010,P1020	P1010,P1020	VVTL																		×		Ц			×
	P1011,12(,21,22)	P1011,12(,21,22)	VVTL system1(,2)																		×				>	×
	P1126	P1126	Electronic magnet clutch									_											\square			
	P1129	P1129	Electronic throttle system		ļ	ļ											_		ļ				 	_	_	
	P1430	P1430	HC adsorber ACT press sensor			<u> </u>													_	L		Щ	\square	_		
	P2004,6	P2004,6	Intake Manifold Runner Control																				\vdash			
	P2009,10	P2009,10	Intake Manifold Runner Control Circuit		ļ					_					_			-	ļ	ļ			┝──╋	_	_	_
	P2014,16,17	P2014,16,17	Intake Manifold Runner Position Sensor		_	<u> </u>				_	\perp	_			_		\perp	\vdash	<u> </u>			\square	\vdash		_	_
	P2102,P2103	P2102,P2103	Throttle motor		<u> </u>	-				-		-				_		-				\vdash	┝─┼	_	_	
	P2120-P2138	P2120-P2138	Accel position sensor		-	\vdash				_	+	+			_	+	+	+	-	_		\vdash	⊢∔			_
+	P2196,P2198	P2196,P2198	A/F sensor (rationality)																		×	$\left \right $		× :		
	P2226	P2226	BARO sensor		-										_		_	-	-	_	••	×		× :	_	_
	P2237,P2240	P2237,P2240	A/F sensor (open)												_	_		-			×	┝┥	⁻	×	×	
ŀ	P2423,24	P2423,24	HC Adsorption Catalyst			-						+		$\left - \right $	+	+	+-	-				\vdash	┢╼╋			_
ł	P2430,2,3	P2430,2,3	AIR Pressure Sensor(Low/High)	_	-	\vdash		\vdash		-+	_	+	\square	\vdash	-+	+	+	+	\vdash			\vdash	⊢-+	-+	+	_
	P2431	P2431	AIR Pressure Sensor(Rationality)							-+				\vdash	+		+-	+						-	。.	
ŀ	P2440	P2440	AIR control valve stuck open	-+	\vdash	\vdash		\vdash	\vdash	-+	_	+	\vdash	\vdash	-+	+	+	+	\vdash	-			X	-	_	
╞	P2441	P2441	AIR control valve stuck close		-				\vdash					\vdash			+-	+-	\vdash	-			× :			
ŀ	P2444	P2444	AIP stuck On		-	-		$\left \right $				+	\square	\vdash		+	+	+	╞				× : × :	-	_	_
ł	P2445 P2714-P2759	P2445 P2714-P2759	AIP stuck Off			-		$\left - \right $				+		\vdash				+					4	4	4	^
	1 21 14-52109	1 21 14-12/09	Trans solenoid(SLU-SLD)		1	1		1			1	1						1	1	1		1	(

214

DIAGNOSTICS - ENGINE

г					T	r				<u>T</u>	Mo	nitc	r di	sab	lem	ent	(X -	dis	abl	ed)	 					
	Fault code	[P0325,P0330	P0335	P0340,P0341	P0340-P0346	P0351-P0358	P0385	P0401	P0405	P0409	P0420,P0430	P0440-P0446	P0450,P0451	P0500	P0500	P0511	P0510	P0560	P0617	60/04	P0/10 P0720-P0793	PU/20-PU/33	P0724	1 UI 41
		Fault code	[P0325-P0333	P0335	P0340,P0341	P0340-P0346	P0351-P0358	P0385	P0401	P0405 P0406	P0409	P0420,P0430	P0440-P0446	P0450-P0453	P0500	P0500	P0511	P0510	P0560	P0617	PU/U5 D0710_D0713	P0/10-P0/13	PU/20-PU/33	P0724	12101
			Component/ system	Knock sensor	CKP sensor	CMP sensor	VVT sensor1,2	Ignitor	CKP sensor 2	EGR system (closed)	EGK system (open) EGR I ift sensor	EGR Lift sensor	Catalyst	EVAP system	EVAP press sensor	VSS(ECT1sensor) VSS(ECT1sensor, non-ECT)	VSS(M/T)	IAC valve	Idle switch	System Voltage	Starter signal	Shift lever position switch	Trans fluid temp sensor Output sneed sensor	Output speed serisor	input speed sensor Ston lamp switch	
	P0010,P0020	P0010,P0020	VVT VSV1,2																							
	P0011	P0011	VVT System1 - Advance							×>			-	×				×								
	P0012	P0012	VVT System1 - Retard							×)	K		×	×				×								
	P0016,P0018	P0016,P0018	VVT System - Misalignment									_	_			_						_		\perp		
	P0021	P0021	VVT System2 - Advance							_	<			×				×								
	P0022	P0022	VVT System2 - Retard								K	_		×				×				_		\perp		_
	P0030,50	P0031,32,51,52	O2 Sensor Heater - Sensor1						_		<		×					×			\perp	\perp	\perp	\perp	\perp	
	P0135,P0155	P0031,32,51,52	A/F Sensor Heater - Sensor1	L						×>	<	_	×				_	×				_		_		\downarrow
	P0036,56	P0037,38,57,58	O2 Sensor Heater - Sensor2		L								×					L			_	\downarrow		\downarrow		
+	P0043,44,63,64	P0043,44,63,64	O2 Sensor Heater - Sensor3								_	_					-				_	+		+	_	_
$\left \right $	P0100,P0101	P0100-P0103	MAF sensor		ļ					×>		-		×			×	+			\rightarrow	+		_	+	4
╞	P0105,P0106	P0105-P0108	MAP sensor		_	-		\square			K	+	×			_	×	×			+	+	+	+	+	_
$\left \right $	P0110	P0110-P0113	IAT sensor								<	-		×		_	+					+		-		_
┝	P0115,P0116	P0115-P0118	ECT sensor	<u> </u>	-	-					<	×	-				×				+	+	+	+	+	_
$\left \right $	P0120,P0121	P0120-P0223,P2135								× > × >		+-		×		×	×	××				+		+	+-	_
┢	P0125 P0128	P0125 P0128	Insufficient ECT for Closed Loop Thermostat		-	-				~/`	-	×	×	^		-	^	^			+	+		+	+	_
┢	P0128 P0130-P0153	P0120 P0130-P0153	O2 Sensor - Sensor1							×>	-	+	v	×			+	×			+	+		+	+	+
$\left \right $	P0130-P0155 P0134,P0154	P0130-P0155		-		-		$\left \right $		~ / ^ × / >	_	-	×		-	+		×			+	+		+	+	-
╞	P0134,P0154 P0136,P0156	P0136,P0156	O2 Sensor, A/F Sensor(No Activity) - Sensor1 O2 Sensor - Sensor2	-				$\left - \right $		+	+	+	×	$\left - \right $	+	+		Ê	\vdash		+	+	+	+	+	+
ŀ	P0142,P0162	P0142,P0162	O2 Sensor - Sensor3	-		-				-	+	-	Ê	$\left \right $	+	+	+	-	\vdash		+	+	+	+	+	+
$\left \right $	P0171,P0172	P0171,P0172	Fuel system	\vdash	\vdash	\vdash		\vdash	-	×>	k	+	×	×	+	+	+	×	H		+	+	+	+	+	+
ŀ	P0300-P0308	P0300-P0308	Misfire			1		\vdash	+	+	+	+		×	+	+	+	×			-	+	+	+	+	╉
ŀ	P0325,P0330	P0325-P0333	Knock sensor					\vdash		×>	K	+				+	+	Ē			+	+	+	+	+	+
ŀ	P0335	P0335	CKP sensor	<u></u>						x >		1	×	×	-	+	+	×			+	+	+	+	+	+
ŀ	P0340, P0341	P0340, P0341	CMP sensor							×>	ĸ	1	×	×			1	×			-	+	+	+	+	1
ľ	P0340-P0346	P0340-P0346	VVT sensor1,2		1						1	1				1					-	+	T	T	T	T
ļ	P0351-P0358	P0351-P0358	Ignitor							×>	<		×	×				×						T		
ľ	P0385	P0385	CKP sensor 2							×>	<		×	×				×								T
	P0401	P0401	EGR system (closed)										×											Τ	Τ	
	P0402	P0402	EGR system (open)								*		×	×				×								
	P0405,P0409	P0405-P0409	Lift sensor												T											
	P0420,P0430	P0420,P0430	Catalyst																							
	P0442-P0456	P0442-P0456	EVAP system															×								
ſ	P0450,P0451	P0450-P0453	EVAP press sensor	1	1	1		ΙT	T	Γ			1	×			1	1		Ī	Г					ſ

					Τ	1				T						eme		<u></u>				" т				Т	
	Fault code			P0325,P0330	P0335	P0340,P0341	P0340-P0346	P0351-P0358	P0385	P0401	P0402	P0409	P0420,P0430	P0440-P0446	P0450,P0451	P0500	P0500	P0500	P0511	P0510	P0560	P0617	P0705	P0710	P0715-P0717	P0724	1 01 2 1
		Fault code		P0325-P0333	P0335	P0340,P0341	P0340-P0346	P0351-P0358	P0385	P0401	P0402	P0409	P0420,P0430	P0440-P0446	P0450-P0453	P0500	P0500	P0500	P0511	P0510	P0560	P0617	P0705	P0710-P0713	P0715_P0717	P0724	
			Component/ system	Knock sensor	CKP sensor	CMP sensor	VVT sensor1,2	Ignitor	CKP sensor 2	EGR system (closed)	EGR system (open)	EGR Lift sensor	Catalyst	EVAP system	EVAP press sensor	VSS(ECT2sensor)	VSS(ECT1sensor, non-ECT)	VSS(M/T)	IAC valve	Idle switch	System Voltage	Starter signal	Shift lever position switch	Trans fluid temp sensor	Output speed serisor	Stop lamp switch	
F	20500	P0500	VSS		\square					×	×		×	×					×			\uparrow	+	-	x >	<	
F	20511	P0511	IAC valve		1							1										1				1	
F	20510	P0510	Idle switch		1						×		×	×					×			1	1		1	T	1
F	20560	P0560	System Voltage		Γ														ſ			1				Τ	1
F	20617	P0617	Starter signal		1										_				1	ſ			-		1	1	
F	0705	P0705	Shift lever position switch																		-						
F	20710	P0710-P0713	Trans fluid temp sensor																			T					
F	0720-P0793	P0720-P0793	Output speed sensor																				T				
F	0715-P0717	P0715-P0717	Input speed sensor		1														1			1	1	-		8	
F	20724	P0724	Stop lamp switch																			\neg					8
	0741-P0796	P0741-P0796	Trans solenoid (function)																				T		T	Τ	
F	0748-P0798	P0748-P0799	Trans solenoid (range)																				T	;	x >	<	
F	0850	P0850	PNP switch																×				Τ	T			
F	21010,P1020	P1010,P1020	VVTL																							T	
F	1011,12(,21,22)	P1011,12(,21,22)	VVTL system1(,2)							×	×		×	x					×			Τ					
F	91126	P1126	Electronic magnet clutch																T				T				
F	°1129	P1129	Electronic throttle system																								
F	°1430	P1430	HC adsorber ACT press sensor											×	×												
F	2004,6	P2004,6	Intake Manifold Runner Control																								
F	2009,10	P2009,10	Intake Manifold Runner Control Circuit																								
F	2014,16,17	P2014,16,17	Intake Manifold Runner Position Sensor																								
F	2102,P2103	P2102,P2103	Throttle motor																								
F	2120-P2138	P2120-P2138	Accel position sensor																								
F	2196,P2198	P2196,P2198	A/F sensor (rationality)							×	×		×						×								
F	2226	P2226	BARO sensor																								
F	2237,P2240	P2237,P2240	A/F sensor (open)							×	×		×						×								
F	2423,24	P2423,24	HC Adsorption Catalyst		ļ																						
F	2430,2,3	P2430,2,3	AIR Pressure Sensor(Low/High)																								
F	2431	P2431	AIR Pressure Sensor(Rationality)		ļ							1	1									\square		\perp			_
	2440	P2440	AIR control valve stuck open							×	_	\perp	×			Ц						\square		\perp			
	2441	P2441	AIR control valve stuck close		1	_				×		1	×						_			\square		\perp		_	
F	2444	P2444	AIP stuck On							×	_		×			Ц											_
F	2445	P2445	AIP stuck Off		1					×	×	1	×														
F	2714-P2759	P2714-P2759	Trans solenoid(SLU-SLD)																								_
F	2A00,P2A03	P2A00,P2A03	A/F sensor (slow response)							×	×		×						×								

216

DIAGNOSTICS - ENGINE

					·	·		,			Mo	nito	r di	sable	eme	nt (2	X -	disa	able	ed)	·	·	·····		
	Fault code			P0741-P0796	P0748-P0798	P0850	P1010,P1020	P1011,12(,21,22)	P1126	P1129	P1430 P2004.P2006	P2009.P2010	P2014,16,17	P2102,P2103 P2120_P2138	P2196,P2198	P2226	P2237,P2240	P2423,24	P2430,2,3	P2431 P2440	P2441	P2444	P2445	P2714-P2759	P2A00,P2A03
		Fault code		P0741-P0796	P0748-P0999	P0850	P1010,P1020	P1011,12(,21,22)	P1126	P1129	P1430 P2004.6	P2009,10	P2014,16,17	P2102,P2103 P2120_P2138	P2196,P2198	P2226	P2237,P2240	P2423,24	P2430,2,3	P2440	P2441	P2444	P2445	P2714-P2759	P2A00,P2A03
			Component/ system	Trans solenoid (function)*2	Trans solenoid (range)	PNP switch	WTL	VVTL system1(,2)	Electronic magnet clutch	Electronic throttle system	HC adsorber AUT press sensor Intake Manifold Runner Control	Intake Manifold Runner Control Circuit	Intake Manifold Runner Position Sensor	Throttle motor Accel position sensor	A/F Sensor(Rationality) - Sensor1	BARO sensor	A/F Sensor(Open) - Sensor1	HC Adsorption Catalyst	Alk Pressure Sensor(Low/High)	AIR Pressure Sensor(Kationality) AIR control valve stuck open	AIR control valve stuck close	AIP stuck On	AIP stuck Off	Trans solenoid(SLU-SLD)	A/F Sensor (Slow response) - Sensor1
	P0010,P0020	P0010,P0020	VVT VSV1,2																	×		×	1		
	P0011	P0011	VVT System1 - Advance													Ш				×		+			
uo	P0012	P0012	VVT System1 - Retard																	×	-	+			
	P0016,P0018	P0016,P0018	VVT System - Misalignment																	×	+	+	++		
Monitor detected maitunction	P0021	P0021	VVT System2 - Advance										Ш			Ш				×	-	-			
altr	P0022	P0022	VVT System2 - Retard																	×		+			
E D	P0030,50	P0031,32,51,52	O2 Sensor Heater - Sensor1										\square					×		×					
cte	P0135,P0155	P0031,32,51,52	A/F Sensor Heater - Sensor1												×		×	×		×	×	×	×		×
Jete	P0036,56	P0037,38,57,58	O2 Sensor Heater - Sensor2	_									\square		×			×				1			
5	P0043,44,63,64	P0043,44,63,64	O2 Sensor Heater - Sensor3												_			×		_		1			
luo	P0100,P0101	P0100-P0103	MAF sensor	_				×				-			×			×			×	+			×
Σ	P0105,P0106	P0105-P0108	MAP sensor				×	×			_		\square		×			×		×	-	+			×
	P0110	P0110-P0113	IAT sensor								×				×		×	_	_	×		+	++		×
	P0115,P0116	P0115-P0118	ECT sensor	×			×	×		\downarrow	×	-	\square		×	\square		×		×		-	+ +		×
	P0120,P0121	P0120-P0223,P2135	TP sensor										$\left - \right $		×			×		×	-	+			×
	P0125	P0125	Insufficient ECT for Closed Loop	×		-	×								×		×	×	_	×	×	×	×		×
	P0128	P0128	Thermostat																_		-	-			
	P0130-P0153	P0130-P0153	O2 Sensor - Sensor1							+		+	$\mid \mid$		+	$\left \right $		×	4	×	+	+			
	P0134,P0154	P0134,P0154	O2 Sensor, A/F Sensor(No Activity) - Sensor1			-				_		-	$\left - \right $		×	\vdash	×	×	+	×	×	×	×		×
	P0136,P0156	P0136,P0156	O2 Sensor - Sensor2			-			-				-		×	$\left - \right $		×	-		+-		$\left - \right $		
	P0142,P0162	P0142,P0162	O2 Sensor - Sensor3		-		-	\vdash			+	+			-	$\left \right $	-	×	+	-		-			÷
	P0171,P0172	P0171,P0172	Fuel system	-		-						+	$\left - \right $		×	+		×	+		×	+			×
	P0300-P0308	P0300-P0308	Misfire	-	-			\vdash		-+	-	+	\vdash	_	×	$\left \right $	×	^	+		×	+			×
	P0325,P0330	P0325-P0333	Knock sensor				~		-+			+	$\left - \right $		-	$\left - \right $	J	-			×	+			Ĵ
	P0335 P0340, P0341	P0335 P0340, P0341	CKP sensor CMP sensor	-	-	-	<u> </u>	× ×			+		\vdash		××		-	× ×	+		×	-	+		× ×
	P0340, P0341 P0340-P0346	P0340, P0341 P0340-P0346	VVT sensor1,2				^					+	$\left - \right $		<u> </u> ^	$\left - \right $	^	-				+			-
	P0340-P0346 P0351-P0358	P0340-P0346 P0351-P0358	Ignitor			$\left - \right $						+	$\left - \right $			$\left - \right $		×	+	×	+	×	I		
	P0351-P0358 P0385	P0351-P0358 P0385	CKP sensor 2	\vdash			×	×		+	-	+	\vdash	-+	×	$\left \right $	×	×	+		×	+	+ +		×
	P0305 P0401	P0385 P0401	EGR system (closed)				^			+		+	$\left - \right $		+^	$\left - \right $	^	x	+	+^	1	<u> </u> ^	Ĥ	\square	-
	P0401	P0401	EGR system (open)	\vdash	-	\vdash		\vdash	-+	+	+	+	\vdash	_	×	$\left \right $	×		+	- x	×	×	×		×
	P0402 P0405,P0409	P0402 P0405-P0409	Lift sensor									+	$\left - \right $		+^	$\left - \right $	-		+	Ť	+^	ŕ	<u> </u>		-
	P0403,P0409 P0420,P0430	P0403-P0409	Catalyst	-				$\left \right $		+	+	+	\vdash		+	\vdash		-	+		+	+	\square		
	P0420,P0430	P0420,P0430	EVAP system	-								+	$\left - \right $		×	$\left - \right $	×	-+	+		×	×	×		×
	1 0772-0400	1 0772-F 0400	Levil ayatom	1		-	L						\square		1^		^				: x				^

Г					Τ		T						or di	T	Т	T		(- (,u)						
	Fault code	(P0741-P0796	P0748-P0798	P0850	P1010,P1020	P1011,12(,21,22)	P1126	P1129	P1430	P2004, P2006	P2009.P2010	P2102,P2103	P2120-P2138	P2196,P2198	P2226	P2237,P2240	P2423,24	P2430,2,3	P2431	P2440	P2441	P2444	P2445	P2714-P2759	P2A00,P2A03
		Fault code		P0741-P0796	P0748-P0999	P0850	P1010,P1020	P1011,12(,21,22)	P1126	P1129	P1430	PZ004,6	P2009,10	P2102,P2103	P2120-P2138	P2196,P2198	P2226	P2237,P2240	P2423,24	P2430,2,3	P2431	P2440	P2441	P2444	P2445	P2714-P2759	P2A00,P2A03
			Component/ system	Trans solenoid (function)*2	Trans solenoid (range)	PNP switch	WTL	VVTL system1(,2)	Electronic magnet clutch	Electronic throttle system	HC adsorber ACT press sensor	Intake Manifold Runner Control	Intake Manifold Runner Control Circuit Intake Manifold Runner Dosition Sensor	Throttle motor	Accel position sensor	A/F Sensor(Rationality) - Sensor1	BARO sensor	A/F Sensor(Open) - Sensor1	HC Adsorption Catalyst	AIR Pressure Sensor(Low/High)	AIR Pressure Sensor(Rationality)	AIR control valve stuck open	AIR control valve stuck close	AIP stuck On	AIP stuck Off	Trans solenoid(SLU-SLD)	A/F Sensor (Slow response) - Sensor1
Γ	P0500	P0500	VSS	×												×		×	×			×	×	×	×		×
	P0511	P0511	IAC valve											Γ		×		×									×
	P0510	P0510	Idle switch													×		×	×								×
	P0560	P0560	System Voltage																								
	P0617	P0617	Starter signal																								
	P0705	P0705	Shift lever position switch																								
	P0710	P0710-P0713	Trans fluid temp sensor																								
	P0720-P0793	P0720-P0793	Output speed sensor					L																			
L	P0715-P0717	P0715-P0717	Input speed sensor																				Ц				
L	P0724	P0724	Stop lamp switch					<u> </u>																			
	P0741-P0796	P0741-P0796	Trans solenoid (function)					ļ																			
	P0748-P0798	P0748-P0799	Trans solenoid (range)	×		<u></u>																	Ц				
	P0850	P0850	PNP switch				L																				
	P1010,P1020	P1010,P1020	VVTL											\perp								×		×	\rightarrow		
	P1011,12(,21,22)	P1011,12(,21,22)	VVTL system1(,2)		_	_												ļ				×	×	×	×		×
	P1126	P1126	Electronic magnet clutch											_									Ц				
	P1129	P1129	Electronic throttle system		_	<u> </u>						_						ļ					\vdash		_		
Ļ	P1430	P1430	HC adsorber ACT press sensor		-	_		\vdash			Щ.							_				Ш	Щ	_	-	_	
F	P2004,6	P2004,6	Intake Manifold Runner Control	_	-			-			_Ř	8				-				_			\vdash		\rightarrow	_	
$\left \right $	P2009,10	P2009,10	Intake Manifold Runner Control Circuit		+							- 10		-							$\left - \right $		⊢┥	-+			
┝	P2014,16,17	P2014,16,17	Intake Manifold Runner Position Sensor		+	+		-	-	$\left \right $	+	+				+	-	-	-		\vdash	\vdash	⊢┤	-+	-	_	
$\left \right $	P2102,P2103	P2102,P2103	Throttle motor		+	+		-	-	$\left - \right $	-+	+				-					$\left - \right $		$\left - \right $	-+	+		
┝	P2120-P2138 P2196,P2198	P2120-P2138	Accel position sensor		+	+	-	\vdash	$\left \right $	\vdash	_	+		+			-	-	×		\vdash			,	-	+	×
$\left \right $	P2196,P2198 P2226	P2196,P2198 P2226	A/F sensor (rationality) BARO sensor		+	+			-	$\left - \right $		+		+-	+	×	6	×	<u> </u> ^		++		××				×
$\left \right $	P2226 P2237,P2240	P2226 P2237,P2240	A/F sensor (open)	_	+	+	-			$\left \right $	+	+		+	+	<u> ^</u>	pi de la compañía de	ĥ	×	-		-	×		_	-	×
$\left \right $	P2423,24	P2237,P2240 P2423,24	HC Adsorption Catalyst		╋	+					+	+		+-	+	-		***	ĥ		$\left - \right $	Ĥ	1	4	^		^
$\left \right $	P2423,24 P2430,2,3	P2423,24 P2430,2,3	AIR Pressure Sensor(Low/High)		+-	+				$\left - \right $	-+	+	+	+		-	-	-	p Mil			×	×	Y	×		
$\left \right $	P2430,2,3 P2431	P2430,2,3 P2431	AIR Pressure Sensor(Low/High)	_	+	+	\vdash	\vdash		\vdash	+	+		+	+	+	-	-	\vdash		4		×			+	
$\left \right $	P2431 P2440	P2431 P2440	AIR control valve stuck open		+	+			-			+		+	+	×		×	×		M	ŵ	Ĥ	-			×
$\left \right $	P2440	P2441	AIR control valve stuck close		+	+	-	\vdash	\vdash	\vdash	+	+		+	+	×	+		x		$\left \right $			+	+		Ŷ
+	P2441	P2444	AIP stuck On	_	+	+	-			\vdash		+		+	+	x	+	+	x		\vdash		M	_	+		x
$\left \right $	P2445	P2445	AIP stuck Off		+	+	-	\vdash			+	+	+	+	+	×	+		×		\vdash	\square	H			-	Ŷ
$\left \right $	P2714-P2759	P2714-P2759	Trans solenoid(SLU-SLD)		+	+		+			+	+		+	+	ŕ		ŕ	ŕ		$\left - \right $	\vdash	-+	-ŀ		,	
+	P2A00,P2A03	P2A00,P2A03	A/F sensor (slow response)		+	+	-	+		\vdash	+	+		+	+-	+	\vdash		×		$\left - \right $	×	×	×	×	***	

218

12. O2S TEST RESULT INTRODUCTION

The O2S TEST RESULT refers to the results of the engine control module (ECM) when it monitors the oxygen sensor (O2S), and it can be read using the hand-held tester or the generic OBD II scantool. Based on this, you can find the O2S's conditions.

The ECM monitors the O2S in the various items. You can read the monitor result (TEST DATA) of each monitor item using the O2S TEST RESULT. However, the output value of the TEST DATA is the latest "snapshot" value that is taken after monitoring and therefore is not dynamic.

In this repair manual, the description of the O2S TEST RESULT (for O2S related DTCs) are written in a table.

This table consists of 5 items:

- (1) TEST ID (a code applied to each TEST DATA)
- (2) Description of TEST DATA
- (3) Conversion Factor (When Conversion Factor has a value written in the table, multiply the TEST DATA value appearing on the scan tool by the Conversion Factor value. The result will be the required value.)
- (4) Unit
- (5) Standard Value

If the TEST DATA value appearing on the scan tool is out of the standard value, the O2S is malfunctioning. If it is within the standard value, the O2S is functioning normally. However, if the value is on the borderline of the standard value, the O2S may malfunction very soon.

HOW TO READ O2S TEST RESULT USING HAND-HELD TESTER

(a) Connect the hand-held tester to the DLC3.

02S T	EST R	ESUI	LTS	SC	reen			
	0	2 SE	NS	0	R TES	ST		
	01 B/ 02 B/ 03 B/ 04 B/	ANK ANK	1 2	- ;	SENS SENS	OR OR	2 1	
								A21190

(b) On the tester screen, select the following menus: DIAG-NOSIS/CARB OBDII/O2S TEST RESULT. A list of the O2S equipped on the vehicle will be displayed.

DI-27

LOW SW V 0.400 V
HIGH SW V 0.550 V
MIN O2S V 0.035 V
MAX O2S V 0.835 V
Time \$81 17
Time \$84 84
Time \$8579

- (c) Select the desired O2S and press ENTER. The following screen will appear.
- (d) Press HELP and 🕹 simultaneously. More information will appear.
- (e) Example:

A21191

- (1) The hand-held tester displays "17" as a value of the "TIME \$81" (see the illustration on the left).
- (2) Find the Conversion Factor value of "TIME \$81" in the O2S TEST RESULT chart below. 0.3906 is specified for \$81 in this chart.
- (3) Multiply "17" in step (1) by 0.3906 (Conversion Factor) in the step (2).

17 x 0.3906 = 6.6 %

(4) If the answer is within the standard value, the "TIME \$81" can be confirmed to be normal.

O2S TEST RESULT Chart

TEST ID	Description of TEST DATA	Conversion Factor	Unit	Standard Value
\$81	Percentage of monitoring time when the HO2S voltage is less than 0.05V	Multiply 0.3906	%	Within 60 %

Author :

13. CHECKING MONITOR STATUS NOTICE:

The Monitor Status is not applicable to the heated oxygen sensor (HO2S). The HO2S status can be checked with O2S TEST RESULT.

(a) INTRODUCTION

The purpose of the monitor result (mode 6) is to allow access to the results for on-board diagnostic monitoring tests of specific components/systems that are not continuously monitored. Examples are catalyst, EVAP and thermostat.

The monitor result allows the OBD scan tool to display the monitor status, test value and test limit. The monitor status indicates whether the component is functioning normally or not (PASS or FAIL). The test value is the value that was used to determine the monitor status. When the test value is inside the test limit, the ECM determines the component is functioning normally (PASS). If the test value is outside the test limit, the ECM determines the component is malfunctioning (FAIL).

A problem in these components/systems can be found by comparing the test value and test limit. The monitor result information is included under "MONITOR RESULT" in the DTC sections.

(b) PROCEDURE

NOTICE:

The monitor result and test value are cleared when the ignition switch is turned OFF.

- (1) Connect the hand-held tester to the DLC3.
- (2) Turn the ignition switch ON.
- (3) Clear the DTCs.
- (4) Run the vehicle in accordance with the applicable drive pattern described in READINESS MONITOR DRIVE PATTERN (see page DI-30).

MONITOR RESULT	
CATALYST#1 B1.INCMP	
CATALYST#1 B2.INCMP	
O2S HEAT B1S1. INCMP	
O2S HEAT B1S2. INCMP	
O2S HEAT B2S1. INCMP	
O2S HEAT B2S2. INCMP	
THERMOSTAT PASS	
Press [ENTER] to	
Select the Label.	
	A20449

(5) Select from the tester menus: DIAGNOSIS, EN-HANCED OBD II, MONITOR INFO and MONITOR RESULT. The monitor result appears after the component name.

INCMP: The component has not been monitored yet.

Date :

PASS: The component is functioning normally. FAIL: The component is malfunctioning.

(6) Confirm that the component is set to either PASS or FAIL.

Thermostat malfunction VAL		
[HELP] to notice [EXIT] to return	A20450	

- (7) Select the component (Label) and press ENTER. The accuracy test value appears when the monitor result is either PASS or FAIL. VAL The test value
 - LMT: The test limit

TLT: The test limit type. Either 0 or 1 is displayed.

- (8) If TLT is 0, the component is malfunctioning when the test value is higher than the test limit. If TLT is 1, the component is malfunctioning when the test value is lower than the test limit.
- (9) Compare the test value with the test limit. The test value is usually significantly higher or lower than the test limit. If the test value is on the borderline of the test limit, there is a potential malfunction in the component.

HINT:

The monitor result might on rare occasions be PASS even if the MIL is illuminated. This indicates the system malfunctioned on a previous driving cycle. This might be caused by an intermittent problem.

DIAGNOSTICS - ENGINE

PROBLEM SYMPTOMS TABLE

Symptom	Suspect Area	See page
Engine does not crank (Does not start)	16.Starter 17.Starter relay 18.Park/neutral position switch	ST-16 ST-18 DI-402
No initial combustion (Does not start)	 ECM power source circuit Fuel pump control circuit Engine control module (ECM) 	DI-345 DI-350 IN-36
No complete combustion (Does not start)	1. Fuel pump control circuit	DI-350
Engine cranks normally but difficult to start	 Starter signal circuit Fuel pump control circuit Compression 	DI-336 DI-350 EM-3
Difficult to start with cold engine	 Starter signal circuit Fuel pump control circuit 	DI-336 DI-350
Difficult to start with hot engine	 Starter signal circuit Fuel pump control circuit 	DI-336 DI-350
High engine idle speed (Poor idling)	 A/C switch circuit ECM power source circuit 	DI-345
Low engine idle speed (Poor idling)	 A/C switch circuit Fuel pump control circuit 	DI-350
Rough idling (Poor idling)	 Compression Fuel pump control circuit 	EM-3 DI-350
Hunting (Poor idling)	 ECM power source circuit Fuel pump control circuit 	DI-345 DI-350
Hesitation/Poor acceleration (Poor driveability)	 Fuel pump control circuit A/T faulty 	DI-350 DI-396
Surging (Poor driveability)	1. Fuel pump control circuit	DI-350
Engine stalls soon after starting	1. Fuel pump control circuit	DI-350
Engine stalls during A/C operation	 A/C switch circuit Engine control module (ECM) 	IN-36
Unable to refuel/Difficult to refuel	1. ORVR system	-

DI1L9-13

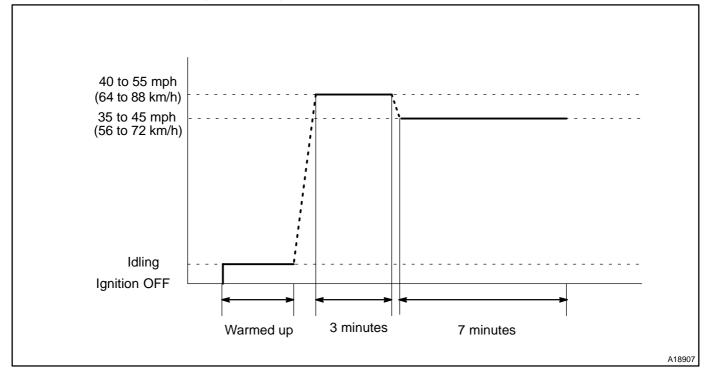
READINESS MONITOR DRIVE PATTERN

1. PURPOSE OF THE READINESS TESTS

- ★ The On-Board Diagnostic (OBD II) system is designed to monitor the performance of emission-related components and report any detected abnormalities in the form of Diagnostic Trouble Codes (DTCs). Since the various components need to be monitored during different driving conditions, the OBD II system is designed to run separate monitoring programs called Readiness Monitors. Many state Inspection and Maintenance (I/M) programs require that vehicles complete their Readiness Monitors prior to beginning an emissions test.
- ★ The current status of the Readiness Monitors can be seen by using the hand-held tester with version 9.0 software (or newer), or a generic OBD II Scan tool.
- ★ To view the Readiness Monitor status using the hand-held tester, select "Monitor Status" from the Enhanced OBD II Menu.
- ★ A status of "complete" indicates that the necessary conditions have been met to run the performance tests for the related Readiness Monitor.
- \star The Readiness Monitor will be reset to "incomplete" if:
 - \star ECM has lost power (battery or fuse).
 - \star DTCs have been cleared.
 - ★ The conditions for running the Readiness Monitor have not been met.
- ★ In the event that any Readiness Monitor shows "incomplete," follow the appropriate Readiness Monitor Drive Pattern to active the monitor and change the readiness status to "complete."

CAUTION:

Strictly observe of posted speed limits, traffic laws, and road conditions when performing these drive patterns.


NOTICE:

These drive patterns represent the fastest method to satisfy all necessary conditions which allow the specific readiness monitor to complete.

In the event that the drive pattern must be interrupted (possibly due to traffic conditions or other factors) the drive pattern can be resumed, and in most cases, the readiness monitor will still set to "complete".

To ensure rapid completion of readiness monitors, avoid sudden changes in vehicle load and speed (driving up and down hills and/or sudden acceleration).

2. CATALYST MONITOR (O2S TYPE)

(a) Preconditions

The monitor will not run unless:

- ★ MIL is OFF.
- ★ Engine Coolant Temperature (ECT) is 75°C (167°F) or greater.
- ★ Intake Air Temperature (IAT) is -10°C (14°F) or greater

NOTICE:

The readiness test can be completed in cold ambient conditions (less than -10°C / 14°F), if the drive pattern is repeated a second time after cycling the ignition off.

- (b) Drive Pattern
 - (1) Connect the OBD II scan tool to the DLC3 to check monitor status and preconditions.
 - (2) Drive the vehicle at 40 to 55 mph (64 to 88 km/h) for approximately for 3 minutes.

NOTICE:

Drive with smooth throttle operation and avoid sudden acceleration.

If IAT is less than 10°C (50°F) when engine was started, drive the vehicle at 40 to 55 mph (64 to 88 km/h) for additional 4 minutes.

(3) Drive the vehicle at 35 to 45 mph (56 to 72 km/h) for approximately 7 minutes.

NOTICE:

Drive with smooth throttle operation and avoid sudden deceleration as much as possible with the throttle fully closed.

- (4) If readiness status does not switch to complete, make sure that the preconditions are met and the ignition switch is turned OFF and then repeat steps (2) and (3).
- (5) Release pressure in the fuel tank by removing and then reinstalling the fuel tank cap.
- (6) Start the engine and immediately begin driving as directed.

3. EVAP MONITOR (VACUUM PRESSURE MONITOR)

NOTICE:

A cold soak must be performed prior to conducting the drive pattern to complete the Internal Pressure Readiness Monitor.

(a) Cold Soak Preconditions

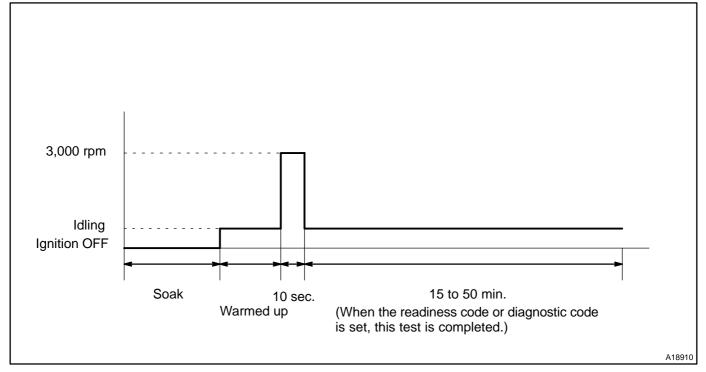
- The monitor will not run unless:
 - ★ MIL is OFF
 - ★ Fuel level is approximately 1/2 to 3/4
 - ★ Altitude is 7,800 feet (2,400 m) or less
- (b) Cold Soak Procedure Let the vehicle cold soak for 8 hours or until the difference between IAT and ECT becomes less than 7°C (13°F)

HINT:

 \star

Examples:

- ★ Scenario 1
 - ECT = $24^{\circ}C(75^{\circ}F)$ IAT = $16^{\circ}C(60^{\circ}F)$ Difference between ECT and IAT is $8^{\circ}C(15^{\circ}F)$


 \rightarrow The monitor will not run because difference between ECT and IAT is greater than 7°C (13°F) Scenario 2

ECT = $21^{\circ}C(70^{\circ}F)$ IAT = $20^{\circ}C(68^{\circ}F)$

Difference between ECT and IAT is 1°C (2°F)

 \rightarrow The monitor will run because difference between ECT and IAT is less than 7°C (13°F)

4. EVAP MONITOR (VACUUM PRESSURE MONITOR) (CONTINUED)

(a) Preconditions

The monitor will not run unless:

- \star MIL is OFF
- ★ Fuel level is approximately 1/2 to 3/4
- ★ Altitude is 7,800 feet (2,400 m) or less*
- ★ Engine Coolant Temperature (ECT) is between 4.4°C and 35°C (40°F and 95°F)
- ★ Intake Air Temperature (IAT) is between 4.4°C and 35°C (40°F and 95°F)
- ★ Cold Soak Procedure has been completed
- ★ Before starting the engine, the difference between ECT and IAT must be less than 7°C (13°F)

HINT:

Examples:

★ Scenario 1

ECT = 24°C (75°F) IAT = 16°C (60°F) Difference between ECT and IAT is 8°C (15°F) \rightarrow The monitor will not run because difference between ECT and IAT is greater than 7°C (13°F)

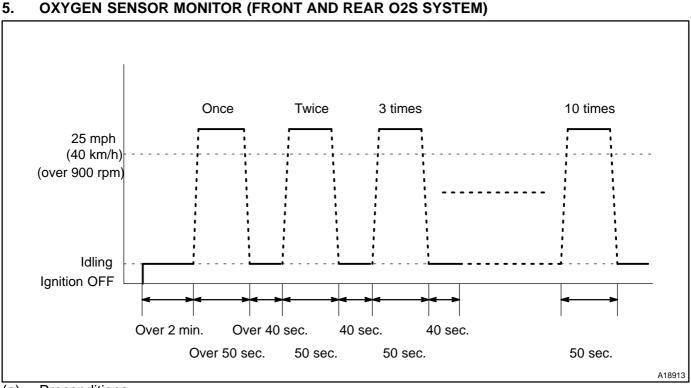
★ Scenario 2

ECT = $21^{\circ}C(70^{\circ}F)$ IAT = $20^{\circ}C(68^{\circ}F)$ Difference between ECT and IAT is $1^{\circ}C(2^{\circ}F)$

 \rightarrow The monitor will run because difference between ECT and IAT is less than 7°C (13°F)

The readiness test can be completed in cold ambient conditions (less than 40° F / 4.4° C) and/or at high altitudes (more than 7,800 feet / 2,400 m) if the drive pattern is repeated a second time after cycling the ignition off.

- (b) Drive Pattern
 - (1) Connect the OBD II scan tool to DLC3 to check monitor status and preconditions (refer to "a").
 - (2) Release pressure in fuel tank by removing the fuel tank cap and then reinstalling it.
 - (3) Start the engine and allow it to idle until ECT becomes 75°C (167°F) or higher.
 - (4) Run the engine at 3,000 rpm for about 10 seconds.

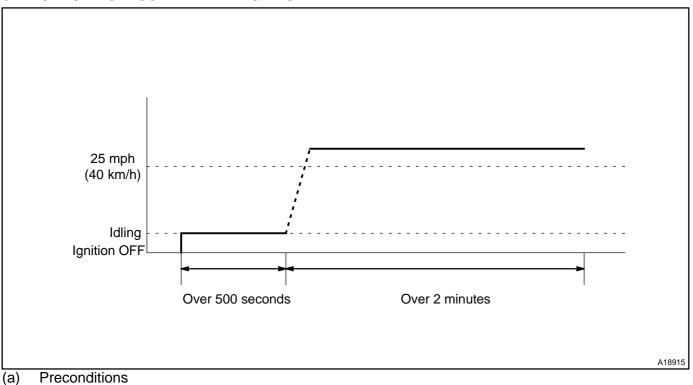

(5) Allow the engine to idle with the A/C ON (to create slight load) for 15 to 50 minutes.

NOTICE:

If the vehicle is not equipped with A/C put a slight load on the engine by doing the following :

- \star Securely set the parking brake.
- \star Block the drive wheels with wheel chocks.
- \star Allow the vehicle to idle in drive for 15 to 50 minutes.

DI-34

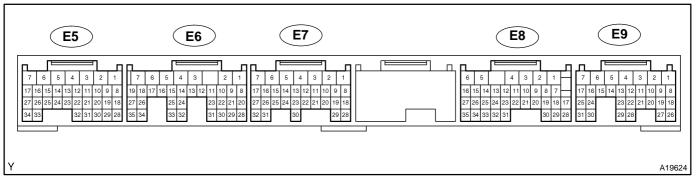


(a) Preconditions

The monitor will not run unless:

- ★ MIL is OFF
- (b) Drive Pattern
 - (1) Connect the OBD II scan tool to DLC3 to check monitor status and preconditions (refer to step "a").
 - (2) Start the engine and allow it to idle for 2 minutes or more.
 - (3) Drive the vehicle at 25 mph (40 km/h) or more for at least 50 seconds.
 - (4) Stop the vehicle and allow the engine to idle for 40 seconds or more.
 - (5) Perform steps (3) and (4) ten times.
 - (6) Check the status of the readiness monitor on the scan tool display. If readiness status did not switch to complete, ensure preconditions are met, turn the ignition off and then repeat steps (1) and (5).

6. OXYGEN SENSOR HEATER MONITOR



The monitor will not run unless:

- ★ MIL is OFF
- (b) Drive Pattern
 - (1) Connect the OBD II scan tool to the DLC3 to check monitor status and preconditions (refer to step "a").
 - (2) Start the engine and allow it to idle for 500 seconds or more.
 - (3) Drive the vehicle at 25 mph (40 km/h) or more at least 2 minutes.
 - (4) Check the status of the readiness monitor on the scan tool display. If readiness status did not switch to complete, ensure the preconditions are met, turn the ignition off and then repeat steps (2) and (3).

DIAGNOSTICS - ENGINE

TERMINALS OF ECM

Each ECM terminals standard normal voltage is shown in the table below. In the table, first follow the information under "Condition".

Look under "Symbols (Terminals No.)" for the terminals to be inspected.

The standard normal voltage between the terminals is shown under "STD Voltage".

Use the illustration above as a reference for the ECM terminals.

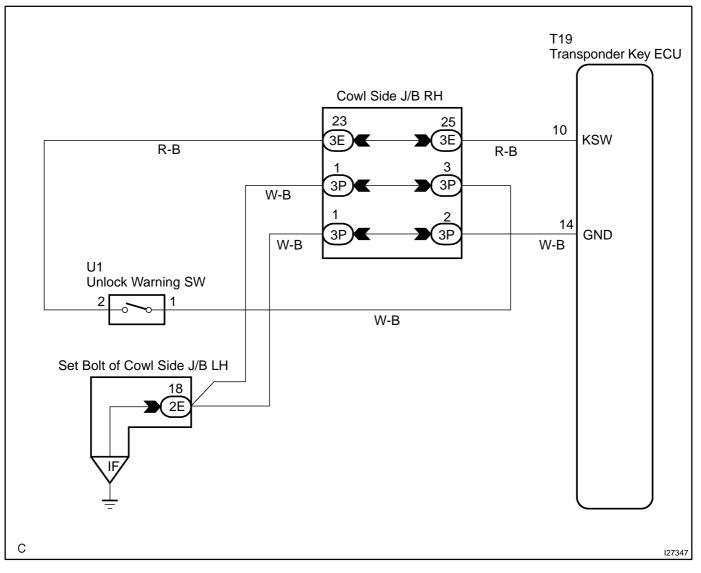
Symbols (Terminals No.)	Wiring Color	Condition	STD Voltage
BATT (E9-3) - E1 (E7-1)	B-R - BR		
+BM (E8-6) - E1 (E7-1)	Y-B - BR	Always	9 to 14 V
IGSW (E9-9) - E1 (E7-1)	B-R - BR		
+B (E9-1) - E1 (E7-1)	B-Y - BR	IG switch ON	9 to 14 V
MREL (E9-8) - E1 (E7-1)	B-W - BR	IG switch ON	9 to 14 V
VC (E5-18) - E2 (E5-28)	L-R - BR-W	IG switch ON	4.5 to 5.5 V
VG (E5-30) - E2G (E5-29)	L-Y - G-W	Idling, P or N position, A/C switch OFF	0.5 to 3.0 V
THA (E5-20) - E2 (E5-28)	Y-B - BR-W	Idling, Intake air temp. 20°C (68°F)	0.5 to 3.4 V
THW (E5-19) - E2 (E5-28)	G-B - BR-W	Idling, Engine coolant temp. 80°C (176°F)	0.2 to 1.0 V
		IG switch ON, Accelerator pedal released	0.5 to 1.2 V
VTA1 (E5-21) - E2 (E5-28)	R-Y - BR-W	IG switch ON, Accelerator pedal depressed	3.2 to 4.8 V
		IG switch ON, Accelerator pedal released	2.0 to 3.1 V
VTA2 (E5-31) - E2 (E5-28)	Y-B - BR-W	IG switch ON, Accelerator pedal depressed	4.7 to 5.1 V
		IG switch ON, Accelerator pedal released	0.3 to 0.9 V
VPA (E9-22) - E2 (E5-28)	R - BR-W	IG switch ON, Accelerator pedal depressed	3.2 to 4.8 V
		IG switch ON, Accelerator pedal released	1.8 to 2.7 V
VPA2 (E9-23) - E2 (E5-28)	R-B - BR-W	IG switch ON, Accelerator pedal depressed	4.7 to 5.1 V
VCPA (E9-26) - EPA (E9-28)	L-R - BR-W	IG switch ON	4.5 to 5.5 V
VCP2 (E9-27) - EPA2 (E9-29)	W - W-R	IG switch ON	4.5 to 5.5 V
OX1A (E6-23) - E1 (E7-1) OX1B (E6-29) - E1 (E7-1)	B - BR B - BR	Maintain engine speed at 2,500 rpm for 2 minutes after warming up	Pulse generation (See page DI-215)
OX2A (E6-22) - E1 (E7-1) OX2B (E6-21) - E1 (E7-1)	W - BR W - BR	Maintain engine speed at 2,500 rpm for 2 minutes after warming up	Pulse generation (See page DI-215)
HT1A (E6-4) - E1 (E7-1) HT1B (E6-5) - E1 (E7-1)	R - BR L - BR	Idling	Below 3.0 V
HT2A (E6-33) - E1 (E7-1) HT2B (E6-25) - E1 (E7-1)	Y - BR R - B - BR	IG switch ON	9 to 14 V

DI1L7-17

#1 (E5-1) - E01 (E5-7) #2 (E5-2) - E01 (E5-7)	Y - W-B B - W-B	IG switch ON	9 to 14 V
#3 (E5-3) - E01 (E5-7)	L - W-B		
#4 (E5-4) - E01 (E5-7)	R - W-B		
#5 (E5-5) - E01 (E5-7)	G - W-B		Pulse generation
#6 (E6-3) - E01 (E5-7)	R-L - W-B W - W-B	Idling	(See page DI-167)
#7 (E7-6) - E01 (E5-7) #8 (E7-5) - E01 (E5-7)	w - w-в в-W - W-в		
KNK1 (E6-1) - E1 (E7-1)	B - BR		
		Maintain engine speed at 4,000 rpm after warming up	Pulse generation (See page DI-186)
KNK2 (E6-2) - E1 (E7-1)	W - BR		
G2+ (E7-27) - G2- (E7-32)	R-G	Idling	Pulse generation
NE+ (E7-25) - NE- (E7-24)	L - G		(See page DI-191)
PRG (E5-34) - E1 (E7-1)	L-B - BR	IG switch ON	9 to 14 V
CCV (E5-27) - E1 (E7-1)	L-R - BR	IG switch ON	9 to 14 V
TBP (E9-4) - E1 (E7-1)	L - BR	IG switch ON, disconnect vacuum hose from VSV for pressure switching valve	9 to 14 V
PTNK (E9-21) - E2 (E5-28)	L-B - BR-W	Ignition switch ON	2.9 to 3.7 V
	L-D - DK-VV	Apply vacuum 4.0 kPa (30 mmHg, 1.18 in.Hg)	Below 0.5 V
SPD (E8-17) - E1 (E7-1)	V - BR	IG switch ON, Rotate driving wheel slowly	Pulse generation (See page DI-274)
M+ (E7-3) - E1 (E7-1) M- (E7-2) - E1 (E7-1)	R - BR W - BR	Idling	Pulse generation (See page DI-302)
FPR (E5-33) - E1 (E7-1)	G-W - BR	IG switch ON	0 to 3.0 V
FC (E9-10) - E1 (E7-1)	B-W - BR	IG switch ON	9 to 14 V
IGT1 (E5-9) - E1 (E7-1) IGT2 (E5-8) - E1 (E7-1) IGT3 (E5-25) - E1 (E7-1) IGT4 (E5-11) - E1 (E7-1) IGT5 (E5-12) - E1 (E7-1) IGT6 (E5-26) - E1 (E7-1) IGT7 (E5-13) - E1 (E7-1) IGT8 (E5-10) - E1 (E7-1)	B - BR R - BR L - BR G - BR Y - BR B-Y - BR B-L - BR L-B - BR	Idling	Pulse generation (See page DI-202)
		IG switch ON	4.5 to 5.5 V
IGF1 (E5-24) - E1 (E7-1)	B-W - BR		Pulse generation
IGF2 (E5-23) - E1 (E7-1)	B-R - BR	Idling	(See page DI-202)
		Brake pedal is depressed	7.5 to 14 V
STP (E8-19) - E1 (E7-1)	G-W - BR	Brake pedal is released	Below 1.5 V
		Brake pedal is depressed	Below 1.5 V
ST1- (E8-12) - E1 (E7-1)	R-G - BR	Brake pedal is released	7.5 to 14 V
STA (E5-17) - E1 (E7-1)	B-R - BR	Shift lever range P or N, Ignition switch START	6.0 V or more
STSW (E7-12) - E1 (E7-1)	B-W - BR	Shift lever range P or N, ignition switch START	6.0 V or more
ACCR (E5-15) - E1 (E7-1)	R-G - BR	Shift lever range P or N, ignition switch START	9 to 14 V
STAR (E6-9) - E1 (E7-1)	B-W - BR	Shift lever range P or N, ignition switch START	9 to 14 V
SIAN (LU-3) - EI (E/-I)	D-VV - DK	IG switch ON, Other shift position in P, N	9 to 14 V 9 to 14 V
NSW (E5-16) - E1 (E7-1)	B-W - BR		
		IG switch ON, Shift position in P, N	0 to 3.0 V
W (E9-11) - E1 (E7-1)	W-BR	Idling	9 to 14 V
		IG switch ON	Below 3.0 V
SIL (E9-18) - E1 (E7-1)	V-W - BR	During transmission	Pulse generation
TACH (E9-5) - E1 (E7-1)	B - BR	Idling	Pulse generation

240

CIRCUIT INSPECTION


DTC	B2780	Key Unlock Warning Switch Malfunction
-----	-------	---------------------------------------

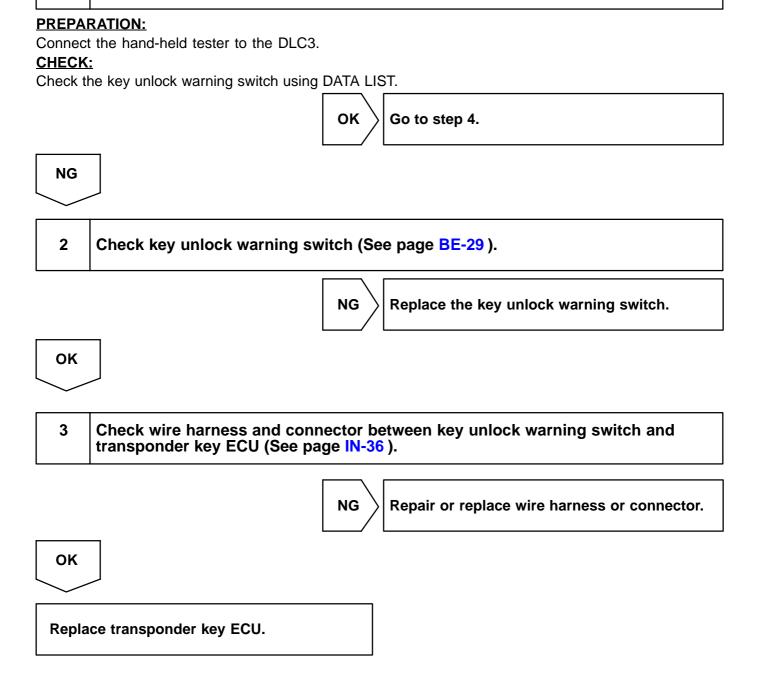
CIRCUIT DESCRIPTION

This DTC is detected when the Transponder key ECU does not detect the key unlock warning switch ON even with the ignition switch ON. (In normal condition, the key unlock warning switch should be ON when the ignition switch is ON.)

DTC No.	DTC Detecting Condition	Trouble Area
B2780	The key unlock warning switch On is not detected when the gnition switch is ON.	₩ey unlock warning switch ₩Wire harness

WIRING DIAGRAM

DIB5X-02


INSPECTION PROCEDURE

HINT:

1

In case of using the hand-held tester, start the inspection from step 1 and in case of not using the hand-held tester, start from step 2.

Check key unlock warning switch using hand-held tester.

2004 LAND CRUISER (RM1071U)

4	Check whether or not DTC is detected when DTC is cleared, key is inserted into ignition key cylinder and IG SW is turned ON. (See page DI-1004).						
		<u>RESULT:</u>					
		ОК	B2780 is not output.				
		NG	B2780 is output.				
		NG Replace Transp	oonder Key ECU).				
ОК							

No problem at this time. It is suspected that DTC was detected for some reason in the past. TRANSPONDER KEY COIL MALFUNCTION

CIRCUIT DESCRIPTION

B2784

This DTC is output when short or open of the key coil built in the transponder key amplifier is detected.

DTC No.	DTC Detecting Condition	Trouble Area			
B2784	Transponder key coil malfunction	Transponder key amplifier with coil			

INSPECTION PROCEDURE

Replace key.

2004 LAND CRUISER (RM1071U)

DTC

CUSTOMER PROBLEM ANALYSIS CHECK

ENGINE IMMOBILISER Check Sheet

Inspector's

Na	me	•
110		

				Registration No.			
Customer's Name				Registration Year	1	1	
				Frame No.			
Date Vehicle Brought In	1		1	Odometer Reading			km miles

Date Problem First Occurred		1	1	
Frequency Problem Occurs	Continuous		Intermittent (times a day)

Sumatomo	Immobiliser is not set. (Engine starts with key codes other than the registered key code.)
Symptoms	Engine does not start.

Check Item Malfunction Indicator Lamp	Normal	□ Remains ON	Does not Light Up
--	--------	--------------	-------------------

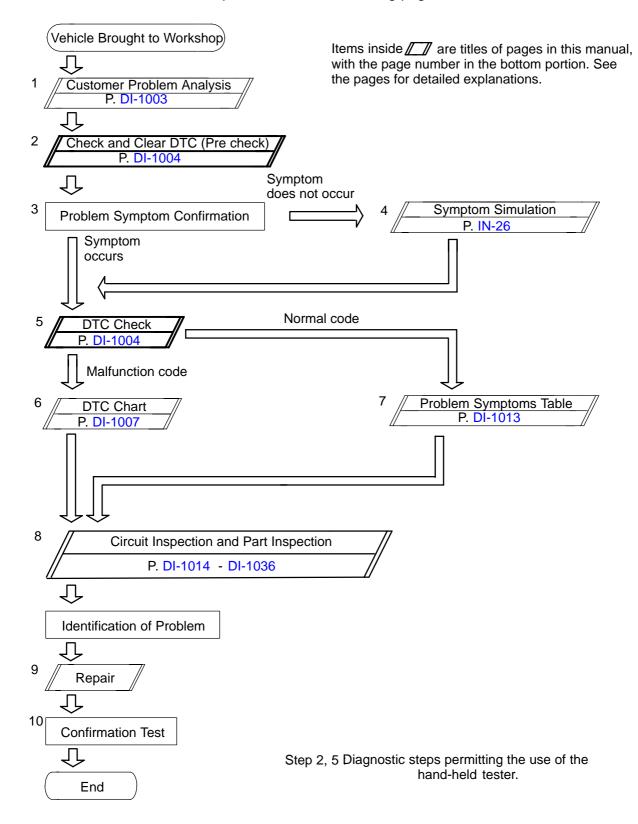
DTO Check	1st Time	Normal Code	Malfunction Code (Code)
DTC Check	2nd Time	Normal Code	Malfunction Code (Code)

DI1AK-22

DIAGNOSTIC TROUBLE CODE CHART

DI1AM-29	

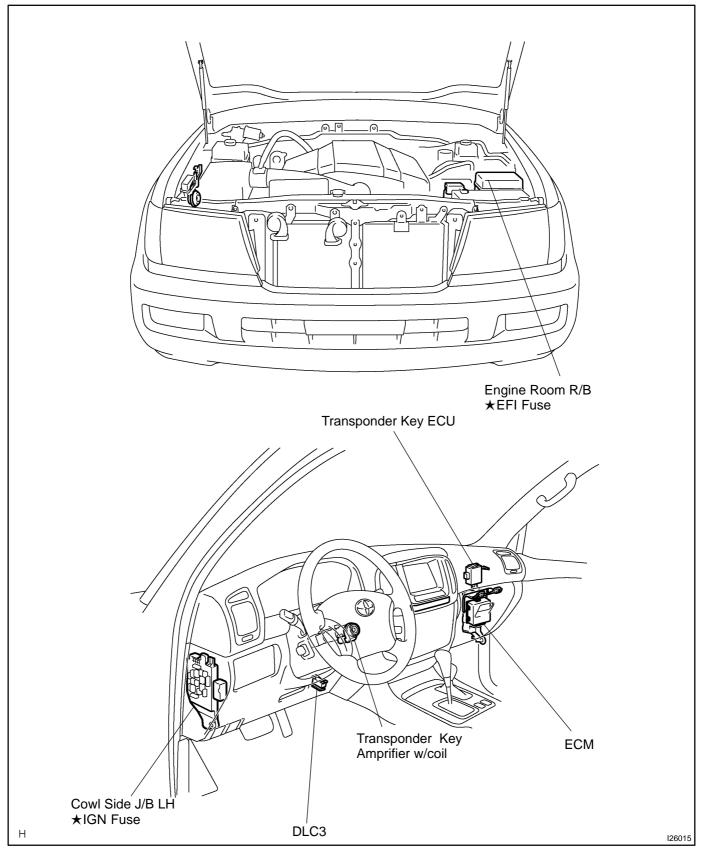
DI-1007

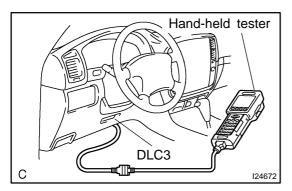

DTC No. (SEE PAGE)	Circuit Inspection	Trouble Area
B2780 (DI-1014)	Key unlock warning switch malfunction	₩ey unlock warning switch ₩Vire harness
B2784 (DI-1017)	Transponder key coil malfunction	Transponder key amplifier with coil
B2793 (DI-1018)	Transponder chip malfunction	Кеу
B2794 (DI-1019)	Unmatched encryption code	₩ey ★Transponder key amplifier
B2795 (DI-1020)	Unmatched key code	₩ey #Unregistered key inserted before
B2796 (DI-1021)	No communication in immobiliser system	₩ey ★Transponder key amplifier with coil ₩Wire harness ★Transponder key ECU
B2797 (DI-1023)	Communication malfunction No.1	₩ey ₩ire harness ★Transponder key amplifier with coil ★Transponder key ECU
B2798 (DI-1026)	Communication malfunction No.2	₩ey ★Transponder key amplifier with coil ₩Vire harness ★Transponder key ECU
B2799/99 (DI-1026)	Engine immobiliser system malfunction	₩Vire harness ★Transponder key ECU ÆCM

HINT:

To reduce the unnecessary exchange of Transponder key ECU, check that a trouble occurs with the original Transponder key ECU at the time of exchanging Transponder key ECU and the trouble will disappear with a new Transponder key ECU.

ENGINE IMMOBILISER SYSTEM HOW TO PROCEED WITH TROUBLESHOOTING

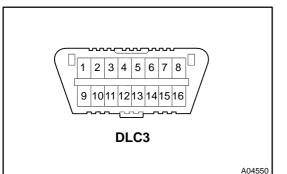

Troubleshoot in accordance with the procedure on the following pages.



DI1AJ-40

PARTS LOCATION

PRE-CHECK


1. DIAGNOSIS SYSTEM

(a) Description

ECM controls the function of immobiliser on this vehicle. Data of the immobiliser or DTC can be read from DLC3 of the vehicle. When a trouble occurs on immobiliser, MIL does not light up but DTC inspection is performed.

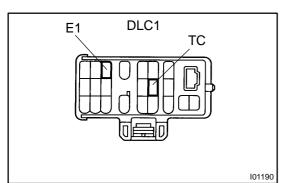
DI1AL-28

Therefore when there seems to be a trouble on immobiliser, use hand-held tester or SST to check and troubleshoot it.

(b) Inspect the DLC3.

The vehicle's ECM uses ISO 9141-2 for communication. The terminal arrangement of DLC3 complies with SAEJ1962 and matches the ISO 9141-2 format.

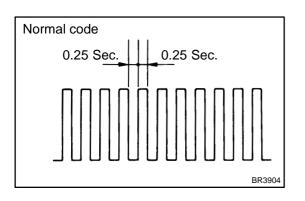
Tester connection	condition	Specified condition
7 (Bus \pm Line) - 5 (Signal ground)	During communication	Pulse generation
4 (Chassis Ground) - Body	Always	1 Ω or less
5 (Signal Ground) - Body	Always	1 Ω or less
16 (B+) - Body	Always	9 - 14 V


HINT:

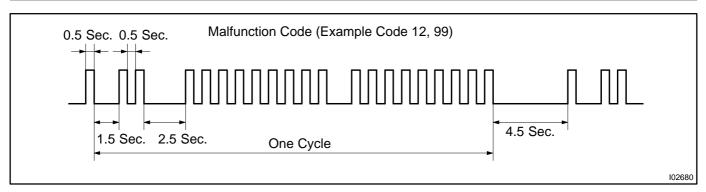
If your display shows "UNABLE TO CONNECT TO VEHICLE" when you have connected the cable of hand-held tester to DLC3, turned the ignition switch ON and operated the hand-held tester, there is a problem on the vehicle side or tool side.

- ★ If communication is normal when the tool is connected to another vehicle, inspect DLC3 on the original vehicle.
- ★ If communication is still not possible when the tool is connected to another vehicle, the problem is probably in the tool itself, so consult the Service Department listed in the tool's instruction manual.

2. INSPECT DIAGNOSIS


- (a) Check the DTC (Using hand-held tester).
 - (1) Prepare hand-held tester.
 - (2) Connect hand-held tester to DLC3 under the instrument panel lower pad.
 - (3) Turn the ignition switch ON and turn hand-held tester switch ON.
 - (4) Use hand- held tester to check the DTCs. and "Snap-shot function" which records the monitor data (For operating instructions, see the hand-held tester instruction book.).
 - (5) See page DI-1007 to confirm the details of the DTCs.

- (b) Check the DTC (Using diagnosis check wire).
 - (1) Turn ignition switch ON.
 - (2) Using SST, connect between terminals 11 (TC) and 3 (E1) of DLC1.
 - SST 09843-18020
 - (3) Read the diagnostic trouble code from malfunction indicator lamp.


HINT:

- ★ If a diagnostic trouble code is not output, check the TC terminal circuit.
- ★ ECM controls the immobiliser function on this vehicle, DTC is out put with engine data.

 ★ As an example, the blinking patterns for codes; normal, 12 and 99 are shown in the charts.

2004 LAND CRUISER (RM1071U)

- (4) When DTC "99" is output, there is a trouble of immobiliser. Start troubleshooting referring to PROBLEM SYMPTOMS TABLE.
- (5) After completing the check, disconnect terminals 11(TC) and 3 (E1) and turn off the display.

HINT:

In the event of 2 or more malfunction codes, indication will begin from the smaller numbered code and continue in order to the larger.

(c) Clear the DTC.

The following operations will erase the DTCs and freeze frame data.

- (1) Operating the hand-held tester to erase the codes (See the hand-held tester instruction book for operating instructions.).
- (2) Disconnecting the battery terminals or EFI fuse.

3. CHECK HAND-HELD TESTER

- (a) ECU DATA MONITOR
 - (1) Make a judgement of good or bad and find out a malfunctioning part by the data monitor. **Standard:**

TRANSPONDER KEY ECU

Item	Condition	Specified Condition
IMMOBILISER	Ignition switch $ON \rightarrow When key is not inserted in the ignition switch cylinder$	UNSET/SET
MASTER KEY	Ignition switch ON with master key \rightarrow Pull out key from ignition switch cylinder	CORRESP/WRONG
SUB KEY	Ignition switch ON with sub-key \rightarrow Pull out key from ignition switch cylinder	CORRESP/WRONG
REGIST MAS CODE	-	0 - 3
REGIST SUB CODE	-	0 - 1
KEY SW	Ignition switch $ON \rightarrow Without key$	ON/OFF
IG SW	Ignition switch $ON \rightarrow OFF$	ON/OFF

(b) ACTIVE TEST

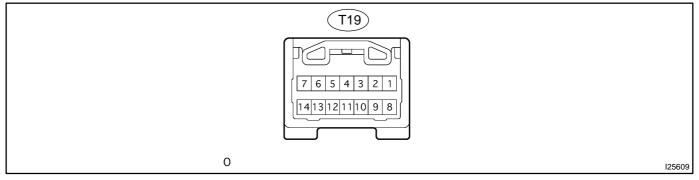
(1) Make a judgement of good or bad and find out a malfunctioning part by the active test.

Standard:

TRANSPONDER KEY ECU

Item	Operation
SECURITY INDIC	ON / OFF

PROBLEM SYMPTOMS TABLE

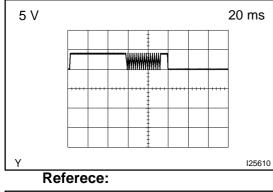

Symptom	Suspect Area	See page
Immobiliser is not set. (Engine starts with key codes other than the registered key code.)	1. Transponder key ECU	IN-36
Engine does not start.	 Key Wire harness Transponder key coil Amplifier Transponder key ECU ECM 	*1 IN-36 BE-196 IN-36
Security indicator is always ON.	 Multi-display (security indicator) Wire harness Transponder key ECU 	*2 IN-36 IN-36
Security indicator is always ON. (Although code has been registered in the automatic registration mode, indicator is not OFF.)	 Wire harness Transponder key amplifier with coil Transponder key ECU 	IN-36 BE-196 IN-36
Security indicator is OFF. (When DTC of immobiliser is output)	 Wire harness Transponder key amplifier with coil Transponder key ECU 	IN-36 BE-196 IN-36
Security indicator is OFF. (When DTC of immobiliser is not output)	 Multi-display (security indicator) Diagnosis circuit Wire harness Transponder key ECU 	IN-36 IN-36
Security indicator is abnormally blinking.	 Wire harness Transponder key ECU 	IN-36 IN-36
No code is output.	 Power source circuit Transponder key ECU 	DI-1031 IN-36

*1 : Check that the key which did not start the engine has been registered and that it is possible to start with other already registered key.

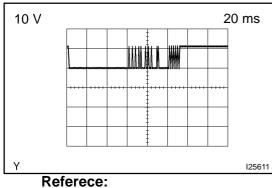
*2 : Finish the automatic registration mode because the mode might still remain.

TERMINALS OF ECM

1. TRANSPONDER KEY ECU

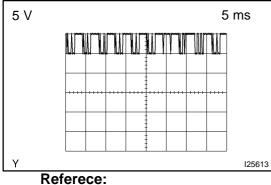

(a) Disconnect the transponder key ECU connector.

Standard:

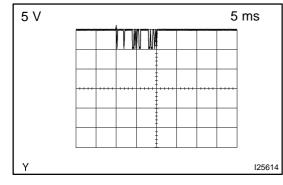

Symbols (Terminal No.)	Wiring Color	Condition	Specified condition
T19-14 🛿 Body ground (GND 🖉 Body ground)	$W\text{-}B \leftrightarrow Body \text{ ground}$	Constant	Continuity
T19-1 🕗 T19-14 (+B 🖉 GND)	$L\text{-}W\leftrightarrowW\text{-}B$	Constant	10 - 14 V
T19-2 🕹 T19-14 (IG 🛃 GND)	$B\text{-}R \leftrightarrow W\text{-}B$	Ignition switch OFF \rightarrow ON	$0 \text{ V} \rightarrow 10 \text{ - } 14 \text{ V}$
T19-10 🕗 T19-14 (KSW 🖉 GND)	$R\text{-}B\leftrightarrowW\text{-}B$	No key in the ignition key cylinder \rightarrow With key	No Continuity \rightarrow Continuity
T19-4 🕗 T19-14 (CTY 🕗 GND)	$R\text{-}Y\leftrightarrowW\text{-}B$	Driver's door close \rightarrow open	No Continuity \rightarrow Continuity
T19-10 🕹 T19-14 (KSW 🖉 GND)	$R\text{-}B\leftrightarrowW\text{-}B$	No key in the ignition key cylinder \rightarrow With key	10 - 14 V \rightarrow 0 V
T19-8 🕗 T19-14 (VC5 ど GND)	$Y \leftrightarrow W\text{-}B$	Ignition switch OFF \rightarrow ON	$0 \text{ V} \rightarrow 5 \text{ V}$
T19-12 🕗 T19-14 (TXCT 🖉 GND)	$V\text{-}G\leftrightarrowW\text{-}B$	Ignition switch OFF \rightarrow ON	Waveform 1
T19-11 [] T19-14 (CODE [] GND)	$L\text{-}B\leftrightarrowW\text{-}B$	Ignition switch OFF \rightarrow ON	Waveform 2
T19-6 🕗 T19-14 (EFIO 🕗 GND)	$W\leftrightarrowW\text{-}B$	Ignition switch OFF \rightarrow ON	Waveform 3
T19-7 🕗 T19-14 (EFII 🖉 GND)	$Y \leftrightarrow W\text{-}B$	Ignition switch OFF \rightarrow ON	Waveform 4
T19-3 🕗 T19-14 (IND 🖉 GND)	$G\text{-}R\leftrightarrowW\text{-}B$	Immobiliser system unset \rightarrow set	$\begin{array}{c} 0 \text{ V} \rightarrow \\ 10 \text{ - } 14 \text{ V} \leftrightarrow 0 \text{ V} \end{array}$
T19-4 🕗 T19-14 (CTY 🖉 GND)	$R\text{-}Y\leftrightarrowW\text{-}B$	Driver's door close \rightarrow open	10 - 14 V \rightarrow 0 V

DIB5W-01

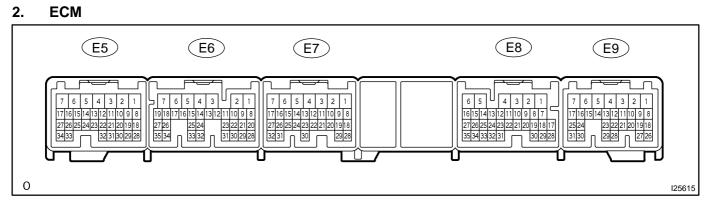
Inspection using osilloscope. (b) **Referece:**



(c)	Waveform 1	I
	Item	Condition
	Terminal	TXCT - GND
	Tool setting	5 V/DIV, 20 ms/DIV
Ve	ehicle condition	Ignition switch ON


Waveform 2 (d)

Item	Condition
Terminal	CODE - GND
Tool setting	10 V/DIV, 20 ms/DIV
Vehicle condition	Ignition switch ON


Waveform 3 (e)

Item	Condition
Terminal	EFIO - GND
Tool setting	5 V/DIV, 5 ms/DIV
Vehicle condition	Ignition switch ON

Waveform 4 (f)

Item	Condition
Terminal	EFII - GND
Tool setting	5 V/DIV, 5 ms/DIV
Vehicle condition	Constant

Symbols (Terminal No.)	Wiring Color	Condition	Specified condition
$\begin{array}{l} E9-3 \leftrightarrow E7-1 \\ (BATT \leftrightarrow E1) \end{array}$	$B\text{-}R \leftrightarrow BR$	Constant	9 - 14 V
E9-1 ↔ E7-1 (+B ↔ E1)	$B\text{-}Y\leftrightarrowBR$	Ignition switch OFF \rightarrow ON	9 - 14 V
$\begin{array}{l} E9-2\leftrightarrowE7-1\\ (+B2\leftrightarrowE1)\end{array}$	$B\text{-}Y\leftrightarrowBR$	Ignition switch OFF \rightarrow ON	9 - 14 V
$\begin{array}{l} E9-9\leftrightarrowE7-1\\ (IGSW\leftrightarrowE1) \end{array}$	$B\text{-}R\leftrightarrowBR$	Ignition switch OFF \rightarrow ON	9 - 14 V
$\begin{array}{l} E8\text{-27} \leftrightarrow E7\text{-1} \\ (IMI \leftrightarrow E1) \end{array}$	$W \leftrightarrow BR$	No key in the ignition key cylinder \rightarrow With key	Waveform 1
$\begin{array}{l} E8\text{-26} \leftrightarrow E7\text{-1} \\ (IMO \leftrightarrow E1) \end{array}$	$Y \leftrightarrow BR$	No key in the ignition key cylinder \rightarrow With key	Waveform 2
$\begin{array}{l} E7-1 \leftrightarrow Body \text{ ground} \\ (E1 \leftrightarrow Body \text{ ground}) \end{array}$	$BR \leftrightarrow Body \text{ ground}$	Constant	Continuity

(a) Inspection using osilloscope.

Referece:

(b) Waveform 1

Item	Condition
Terminal	IMI - GND
Tool setting	5 V/DIV, 5 ms/DIV
Vehicle condition	Ignition switch ON

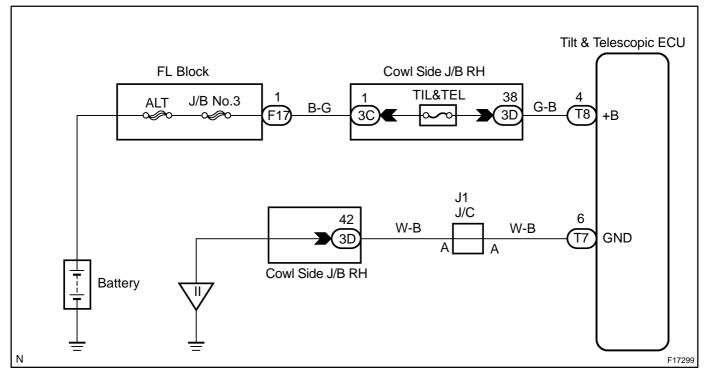
DI-1011

DIAGNOSTICS - ENGINE IMMOBILISER SYSTEM

Referece:

5 V	5 ms
	_
	-
	-
	-
Y	1256

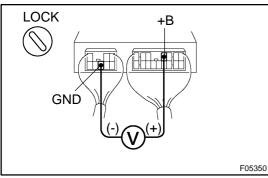
(c) Waveform 2


Item	Condition
Terminal	IMO - GND
Tool setting	5 V/DIV, 5 ms/DIV
Vehicle condition	Constant

DI23L-17

Actuator Power Source Circuit

CIRCUIT DESCRIPTION


This is the power source for the motors.

INSPECTION PROCEDURE

Check voltage between terminals +B and GND of ECU connector.

PREPARATION:

Remove ECU with connectors still connected.

CHECK:

Measure voltage between terminals +B and GND of ECU connector.

<u> 0K:</u>

Voltage: 8 - 16 V

οκ

Proceed to next circuit inspection shown on the problem symptoms table (See page DI-663).

NG

2 Check continuity between to	erminal GND of ECU connector and body ground.
LOCK GND (-) (-) (+) (-) (-) (+) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-	CHECK:Measure resistance between terminal GND of ECU connectorand body ground.OK:Resistance: 1 kΩ or less

NG

Repair or replace harness or connector.

οκ

DIAGNOSTICS -

3 Check POWER fuse.

PREPARATION:

Remove POWER fuse from passenger side J/B.

CHECK:

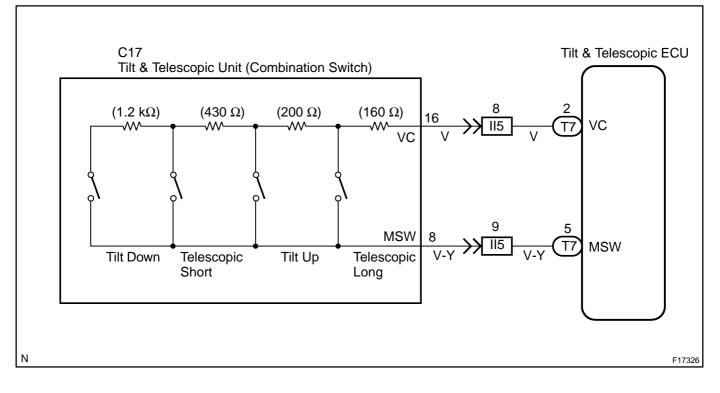
Check continuity of POWER fuse.

<u>OK:</u>

Continuity

Check for short circuit in harness and all components connected to POWER fuse.

Check for open circuit in harness and connector between ECU and battery (See page IN-36).


CIRCUIT INSPECTION

DTC	B2603	Tilt and Telescopic Manual switch circuit Malfunction
-----	-------	---

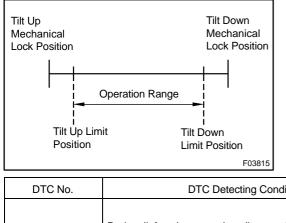
CIRCUIT DESCRIPTION

The different voltage value is input to tilt and telescopic ECU by operating the manual switch. Then tilt and telescopic ECU judges which motor and which direction tilt motor or telescopic motor should be moved based on the voltage value.

DTC No.	DTC Detecting Condition	Trouble Area
B2603	The abnormal voltage value which is not within the specifi- cation is input to tilt and telescopic ECU when being oper- ated with the manual switch.	★Tilt and telescopic manual switch circuit ★Tilt and telescopic ECU

INSPECTION PROCEDURE

1 Check tilt and telescopic manual switch circuit (See page DI-687).

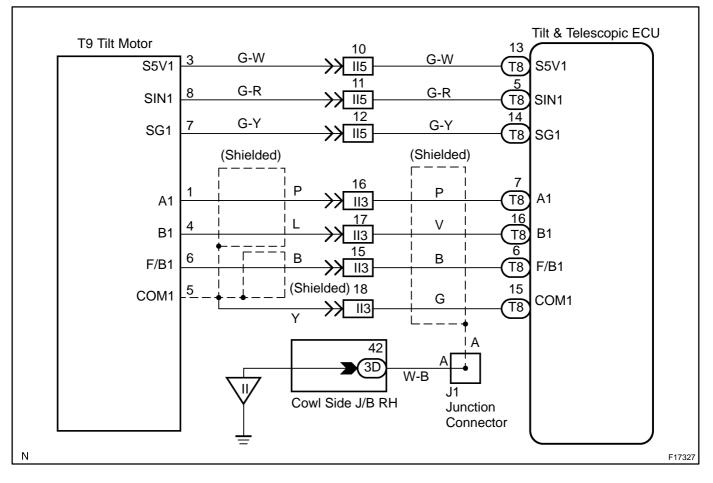


Repair or replace malfunction part.

ОК

Check and replace the tilt and telescopic ECU (See page IN-36).

DTC B2610 Tilt Position Sensor or Tilt Motor Circuit Malfunction


CIRCUIT DESCRIPTION

Tilt motor is operated by the power voltage supplied from tilt and telescopic ECU and makes the steering column tilt upward and downward. Tilt position sensor (Hole IC) in the tilt motor detects the tilt of the steering column and outputs the signal to the CPU in response to that tilt.

HINT:

Limit positions can be confirmed on the screen of the TOYOTA hand-held tester.

DTC No.	DTC Detecting Condition	Trouble Area
B2610	During tilt function operation, tilt operation stops within the operation range.	★Sensor power source circuit ★Actuator power source circuit ★Tilt motor circuit ★Tilt and telescopic ECU

DIAGNOSTICS -

INSPECTION PROCEDURE 1 Check sensor power source circuit (See page DI-679). NG Repair or replace malfunction part. OK 2 Check actuator power source circuit (See page DI-676). NG Repair or replace malfunction part. OK Check tilt motor circuit (See page DI-681). 3 NG Repair or replace malfunction part. OK

Check and replace the tilt and telescopic ECU (See page IN-36).

Telescopic Position Sensor or Telescopic

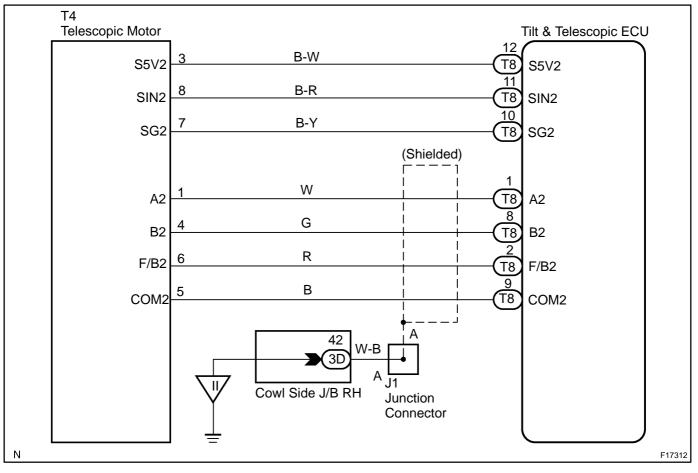
DI23H-17

DI-669

B2611

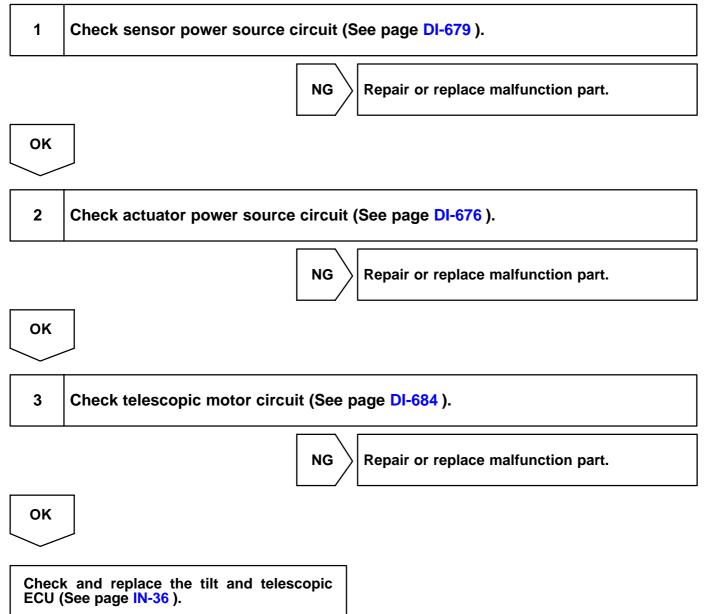
CIRCUIT DESCRIPTION

Motor Circuit Malfunction


Telescopic motor is operated by the power voltage supplied from tilt and telescopic ECU and makes the steering column slide forward and rearward. Telescopic position sensor (Hole IC) in the telescopic motor detects the sliding position of the forward and rearward direction of the steering column and outputs the signal to the CPU in response to that sliding amount. HINT:

Limit positions can be confirmed on the screen of the TOYOTA hand-held tester.

DTC No.	DTC Detecting Condition	Trouble Area
B2611	During telescopic function operation, telescopic operation stops within the operation range.	★Sensor power source circuit ★Actuator power source circuit ★Telescopic motor circuit ★Tilt and telescopic ECU


WIRING DIAGRAM

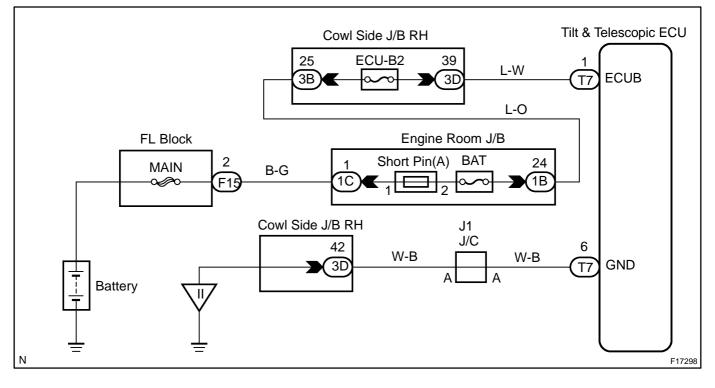
DTC

DIAGNOSTICS -

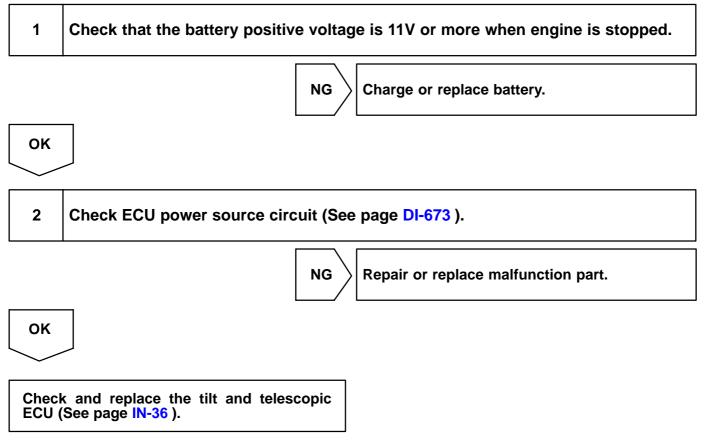
INSPECTION PROCEDURE

DI-671

DI23I-16


B2620

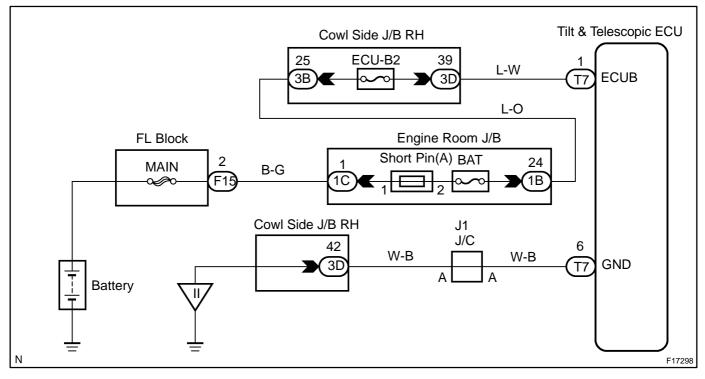
ECU Power Source Circuit Malfunction


CIRCUIT DESCRIPTION

ECU power source circuit supply the battery positive voltage to tilt and telescopic ECU.

DTC No.	DTC Detecting Condition	Trouble Area
B2620	The condition that the voltage of the ECU Power Source circuit drop to be 8V or less continues for 10 seconds or more	

INSPECTION PROCEDURE



DI23K-16

ECU Power Source Circuit

CIRCUIT DESCRIPTION

The ECU power source supplies power to the CPU and sensors, etc. power is supplied to the ECU even when the ignition switch is lock position.

INSPECTION PROCEDURE

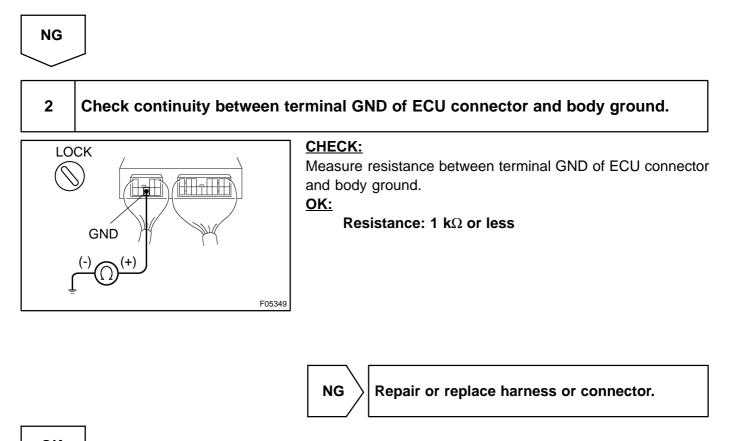


Check voltage between terminals ECUB and GND of ECU connector.

connector.

<u>OK:</u>

-



PREPARATION: Remove ECU with connectors still connected. CHECK: Measure voltage between terminals ECUB and GND of ECU

Voltage: 8 - 16 V

ок

Proceed to next circuit inspection shown on the problem symptoms table (See page DI-663).

OK

3 Check ECU-B fuse.

PREPARATION:

Remove ECU-B fuse from engine room R/B.

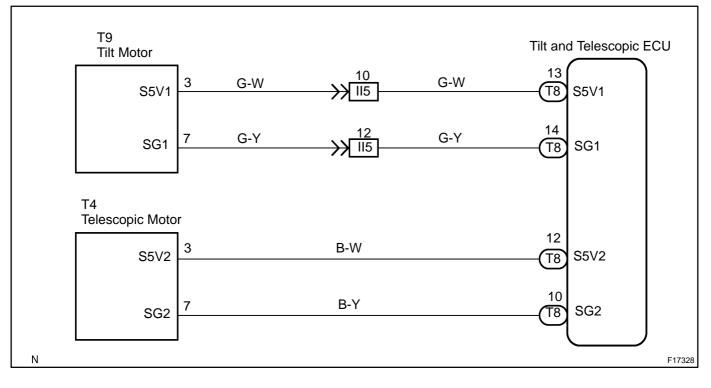
CHECK:

Check continuity of ECU-B fuse.

<u>OK:</u>

Continuity

Check for short in harness and all components connected to ECU-B fuse.

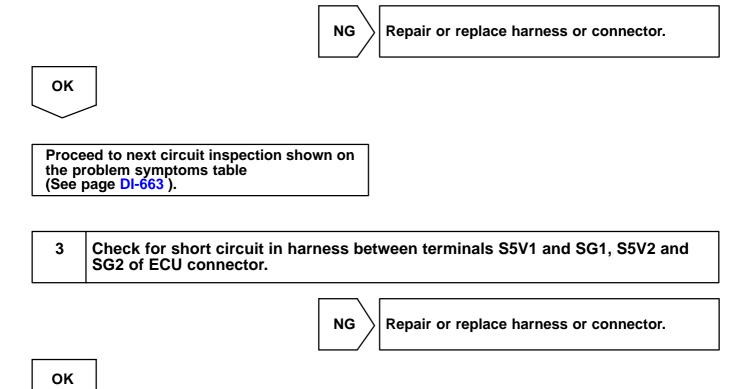

Check for open circuit in harness and connector between ECU and battery (See page IN-36).

Sensor Power Source Circuit

CIRCUIT DESCRIPTION

Power to the position sensor is output from ECU.

WIRING DIAGRAM

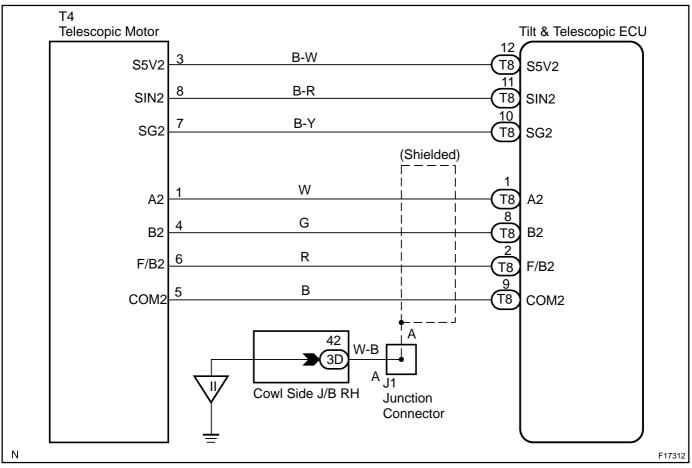

DI1TO-14

INSPECTION PROCEDURE

1	Check volt tor.	age between ter	ninals S5V1 and SG1, S5V2 and SG2 of ECU connec-
ON ON	SG1 S5V1	S5V2 SG2	PREPARATION: Remove ECU with connectors still connected. CHECK: Measure voltage between terminals S5V1 and SG1, S5V2 and SG2 of ECU connector. OK: Voltage: 4.5 - 5.5 V
		F05527	Go to step 3.

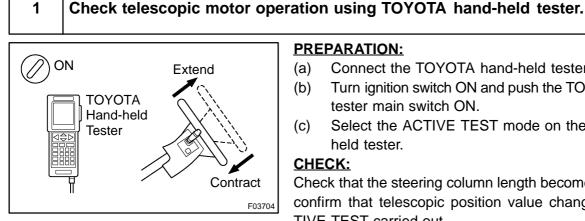
ОК

	Check for open circuit in harness and connector between terminals S5V1 and SG1, S5V2 and SG2 of ECU connector.
--	--


Check and replace tilt and telescopic ECU (See page IN-36).

DI23N-17

Telescopic Motor Circuit


CIRCUIT DESCRIPTION

The ECU provides both +B and ground for the telescopic motor. Reversing polarity of the applied voltage reverses the motor.

INSPECTION PROCEDURE

In case of using TOYOTA hand-held tester, start inspection from step 1. In case of not using TOYOTA hand-held tester, start inspection from step 2.

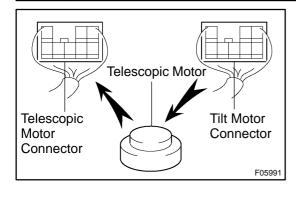
PREPARATION:

- Connect the TOYOTA hand-held tester to the DLC3. (a)
- (b) Turn ignition switch ON and push the TOYOTA hand-held tester main switch ON.
- Select the ACTIVE TEST mode on the TOYOTA hand-(c) held tester.

CHECK:

Check that the steering column length become short (long) and confirm that telescopic position value change when the AC-TIVE TEST carried out.

OK:


Steering column length must be short (long). Telescopic position value must be changed.

Proceed to next circuit inspection shown on the problem symptoms table (See page DI-663).

NG

2 Check telescopic motor.

PREPARATION:

Disconnect telescopic motor connector and tilt motor con-(a) nector.

(b) Remove telescopic motor (See page SR-30).

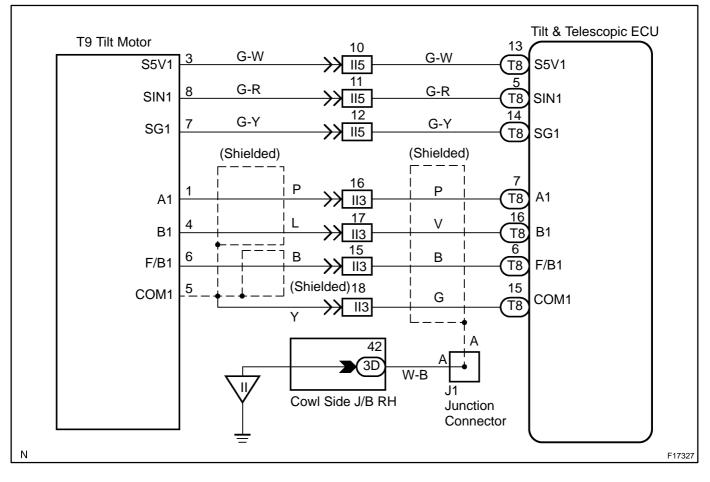
CHECK:

Connect tilt motor connector to telescopic motor. Then confirm that telescopic motor moved when operating the manual switch.

NG

Replace telescopic motor.

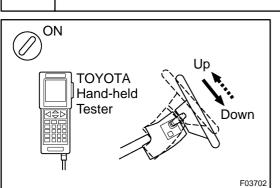
OK


3	Check for open or short circuit in harness and connector between tilt and tele- scopic ECU and telescopic motor (See page IN-36).
	NG Repair or replace harness or connector.
ОК	
the p	eed to next circuit inspection shown on roblem symptoms table page <mark>DI-663</mark>).

DI23M-18

Tilt Motor Circuit

CIRCUIT DESCRIPTION


The ECU provided both +B and ground for the tilt motor. Reversing polarity of the applied voltage reverses the motor.

1

INSPECTION PROCEDURE

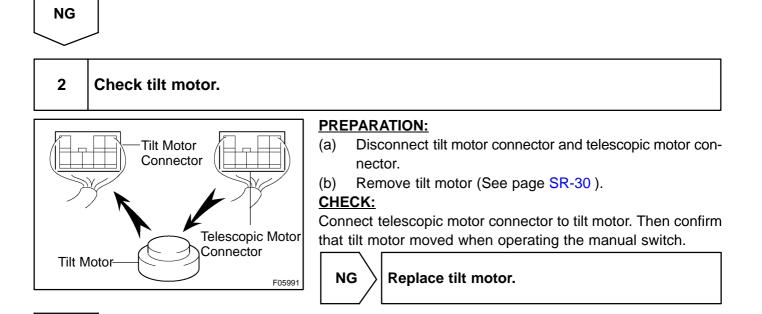
In case of using TOYOTA hand-held tester, start inspection from step 1. In case of not using TOYOTA hand-held tester, start inspection from step 2.

PREPARATION:

- (a) Connect the TOYOTA hand-held tester to the DLC3.
- (b) Turn ignition switch ON and push the TOYOTA hand-held tester main switch ON.
- (c) Select the ACTIVE TEST mode on the TOYOTA handheld tester.

CHECK:

Check that the steering wheel tilt up (down) and confirm that tilt position value change when the ACTIVE TEST carried out.


<u> 0K:</u>

Check tilt motor operation using TOYOTA hand-held tester.

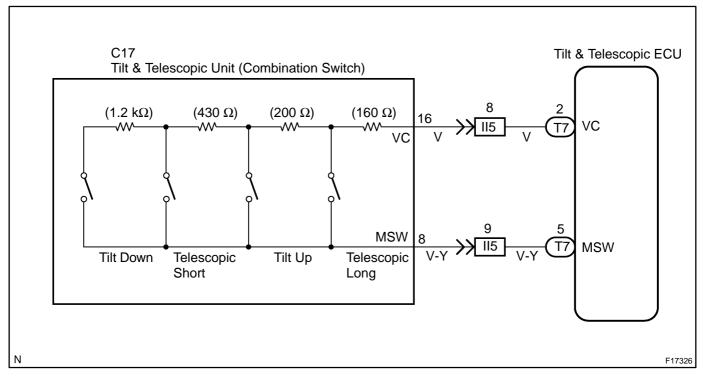
Steering wheel must be moved upward (downward). Tilt position value must be changed.

Proceed to next circuit inspection shown on the problem symptoms table (See page DI-663).

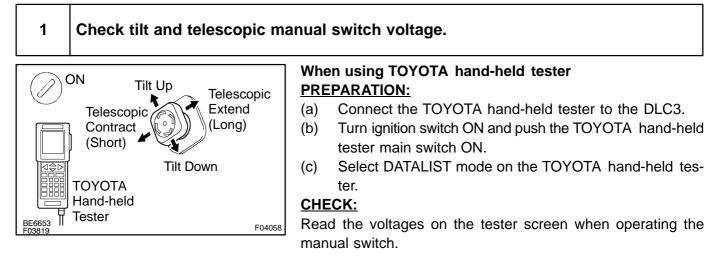
OK

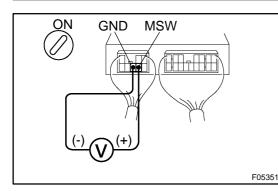
3	Check for open or short circuit in harness and connector between tilt and tele- scopic ECU and tilt motor (See page IN-36).						
	NG Repair or replace harness or connector.						
ОК							

Proceed to next circuit inspection shown on the problem symptoms table (See page DI-663).


DI230-13

Tilt and Telescopic Manual Switch Circuit


CIRCUIT DESCRIPTION


The different voltage signals which are occurred by operating the manual switch are sent to the tilt and telescopic ECU.

WIRING DIAGRAM

INSPECTION PROCEDURE

When not using TOYOTA hand-held tester <u>PREPARATION:</u>

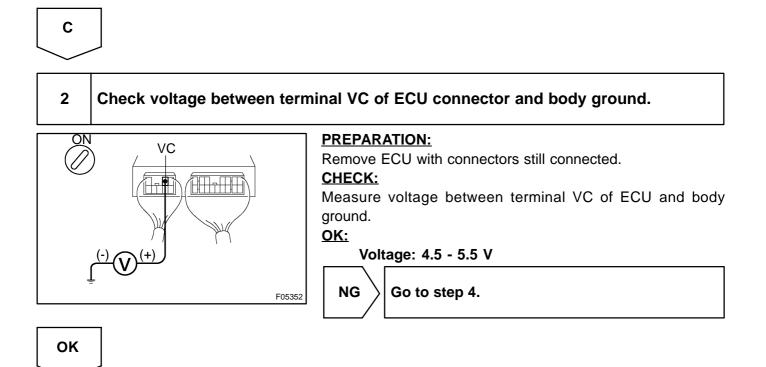
Remove tilt and telescopic ECU with connector still connected. **CHECK:**

Measure voltage between terminals MSW and GND of ECU connector when operating the manual switch.

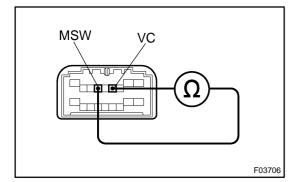
<u> 0K:</u>

Manual switch position	Standard voltage		
Neutral position	0.00 – 0.20 V		
Tilt up	1.30 – 1.70 V		
Tilt down	0.30 – 0.50 V		
Telescopic short	0.65 – 0.95 V		
Telescopic long	2.05 – 2.75 V		

RESULT:


А	Switch voltages in all directions are within the standard.
В	Switch voltage in a certain direction is out of the standard.
С	Switch voltages in all directions are out of the standard.

Proceed to next circuit inspection shown on the problem symptoms table (See page DI-663).


В

Α

Replace the manual switch.

3 Check tilt and telescopic manual switch.

PREPARATION:

Disconnect combination switch connector.

CHECK:

Measure resistance between terminals VC and MSW of combination switch connector when operating the manual switch. **OK:**

Switch position	Resistance
Tilt up	360 Ω
Tilt down	1,990 Ω
Telescopic short	790 Ω
Telescopic long	160 Ω

NG

4 Check for open or short circuit in harness and connector between tilt and telescopic ECU and manual switch (See page IN-36).

NG

Repair or replace harness or connector.

ОК

OK

Proceed to next circuit inspection shown on the problem symptoms table (See page DI-663).

CUSTOMER PROBLEM ANALYSIS CHECK

DI-657

POWER TILT AND POWER TELESCOPIC
STEERING SYSTEM CHECK SHEET

Inspector's Name

			Registration No.			
Customer's Name			Registration Year	1	1	
			Frame No.			
Date Vehicle Brought In	1	1	Odometer Reading			km miles

Date Problem First Occurred		1	1	
Frequency Problem Occurs	Contir	nuous	Intermittent (times a day)

	Manual Function does not Operate	 Both Tilt and Telescopic Tilt only Telescopic only
Symptoms	Auto Away/Return Function does not Operate	 Both Auto Away and Auto Return Auto Away only Auto Return only
	Memory Functio	on does not Operate

DTC Check	1st Time	Normal Code	Malfunction Code (Code)
DTC Check	2nd Time	Normal Code	Malfunction Code (Code)

DI1T7-11

DIAGNOSTIC TROUBLE CODE CHART

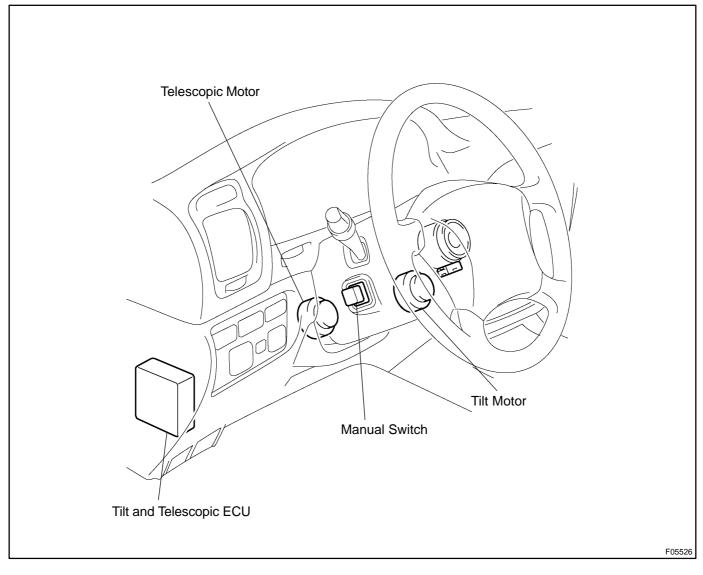
If a DTC is displayed during the DTC check, check the circuit for that code listed in the table below. For details of each code, turn the page referred to under the "See page" for the respective "DTC No." in the DTC chart.

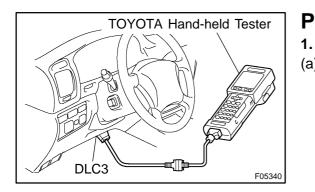
DTC No. (See Page)	Detection Item	Trouble Area
B2603 (DI-665)	Tilt and telescopic manual switch malfunction	★Tilt and telescopic manual switch circuit ★Tilt and telescopic ECU
B2610 (DI-667)	Tilt position sensor or tilt motor malfunction	★Sensor power source circuit ★Actuator power source circuit ★Tilt motor circuit ★Tilt and telescopic ECU
B2611 (DI-669)	Telescopic position sensor or telescopic motor malfunction	★Sensor power source circuit ★Actuator power source circuit ★Telescopic motor circuit ★Tilt and telescopic ECU
B2620 (DI-671)	ECU power source circuit malfunction	

DI237-14

POWER TILT AND POWER TELESCOPIC STEERING COLUMN HOW TO PROCEED WITH TROUBLESHOOTING

Perform troubleshooting in accordance with the procedure on the following page.



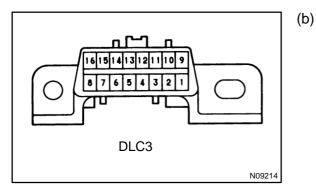

POWER TILT AND POWER TELESCOPIC STEERING COLUMN

DI-661

DI23B-11

PARTS LOCATION

PRE-CHECK


DESCRIPTION

(a) DIAGNOSIS SYSTEM

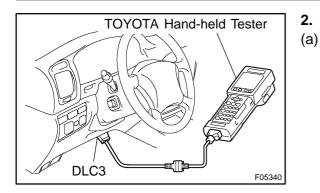
When troubleshooting Multiplex OBD (M-OBD) vehicles, the only difference from the usual troubleshooting procedure is that you connect the TOYOTA hand-held tester to vehicle, and read off various data output from the vehicle's Power Tilt and Telescopic Steering ECU.

The Power Tilt and Telescopic Steering ECU records the applicable DTCs when the computer detects a malfunction in the computer itself or its circuit.

To check the DTCs, connect a TOYOTA hand-held tester to DLC3 on the vehicle. The TOYOTA hand-held tester enables you to erase the DTCs and activate the several actuators and check freeze frame data and various forms on steering data.

) DATA LINK CONNECTOR 3 (DLC3)

The Power Tilt and Telescopic Steering ECU uses ISO 14230 for communication. The terminal arrangement of DLC3 complies with SAE J1962 and matches the ISO 14230 format.


Terminal No.	Connection	Voltage or Resistance	Condition
7	Bus + Line	Pulse generation	During transmission
4	Chassis Ground	$\leftrightarrow Body\ Ground\ 1\ \Omega\ or\ less$	Always
5	Signal Ground	$\leftrightarrow Body \ Ground \ 1 \ \Omega \ or \ less$	Always
16	Battery Positive	\leftrightarrow Body Ground 9 - 14 V	Always

HINT:

If your display shows "UNABLE TO CONNECT TO VEHICLE" when you have connected the cable of TOYOTA hand-held tester to DLC3, turned the ignition switch ON and operated the TOYOTA hand-held tester, there is a problem on the vehicle side or tester side.

- ★ If communication is normal when the tester is connected to another vehicle, inspect DLC3 on the original vehicle.
- ★ If communication is still not possible when the tester is connected to another vehicle, the problem is probably in the tester itself, so consult the Service Department listed in the tester's Operator's Manual.

POWER TILT AND POWER TELESCOPIC STEERING DI-659

DIAGNOSIS INSPECTION

Check the DTC.

- (1) Prepare the TOYOTA hand-held tester.
- (2) Connect the TOYOTA hand-held tester to DLC3 at the lower of the instrument panel.
- (3) Turn the ignition switch ON and turn the TOYOTA hand-held tester switch ON.
- (4) Use the TOYOTA hand-held tester to check the DTCs and freeze frame data, note or print them (See the Operator's Manual for operating instructions.).
- (5) See page DI-660 to confirm the details of the DTC.
- (b) Clear the DTC.

The following actions will erase the DTC and freeze frame data.

- ★ When using the TOYOTA hand-held tester: Operating the TOYOTA hand-held tester to erase the DTCs (See the Operator's Manual for operating instructions.).
- ★ When not using the TOYOTA hand-held tester: Disconnecting the battery terminals.

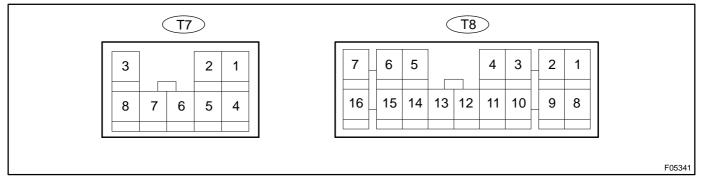
PROBLEM SYMPTOMS TABLE

This system uses the multiplex communication system, so check diagnosis system of the multiplex communication system before you proceed with troubleshooting.

The table below will be useful for you in troubleshooting these electrical systems. The most likely causes of the malfunction are shown in the order of their probability. Inspect each part in the order shown, and replace the part when it is found to be faulty.

- □ If the instruction "Proceed to next circuit inspection shown on the chart" is given in the flow chart for each circuit, proceed to the circuit with the next highest number in the table to continue the check.
- □ If the problem still occurs even though there are no abnormalities in any of the other circuits, then check and replace ECU.

Symptom	Suspect Area	See page
	1. Multiplex communication system	-
	2. ECU power source circuit	DI-673
Both tilt and telescopic:	3. Key unlock warning switch	BE-29
Manual, auto away/return and memory functions	4. Body ECU	DI-1038
Do not operate	5. Actuator power source circuit	DI-676
Stop part way	6. Sensor power source circuit	DI-679
Do not stop	7. Tilt motor circuit	DI-681
	8. Telescopic motor circuit	DI-684
	9. Tilt and telescopic ECU	IN-36
Tilt only:	1. Multiplex communication system	_
Manual, auto away/return and memory functions	2. Sensor power source circuit	DI-679
Do not operate	3. Tilt motor circuit	DI-681
⊡Stop part way ⊡Do not stop	4. Tilt and telescopic ECU	IN-36
Telescopic only:	1. Multiplex communication system	
Manual, auto away/return and memory functions	 Maniplex communication system Sensor power source circuit 	- DI-679
Do not operate	3. Telescopic motor circuit	DI-684
Stop part way	4. Tilt and telescopic ECU	IN-36
Do not stop		111-30
	1. Multiplex communication system	-
Both tilt and telescopic:	2. Tilt and telescopic manual switch circuit	DI-687
Only tilt and telescopic.	3. Tilt motor circuit	DI-681
Only the and telescopic manual switch function does not operate	4. Telescopic motor circuit	DI-684
	5. Tilt and telescopic ECU	IN-36
	1. Multiplex communication system	-
Tilt only:	2. Tilt and telescopic manual switch circuit	DI-687
Only tilt and telescopic manual switch function does not operate	3. Tilt motor circuit	DI-681
	4. Tilt and telescopic ECU	IN-36
	1. Multiplex communication system	-
Telescopic only:	2. Tilt and telescopic manual switch circuit	DI-687
Only tilt and telescopic manual switch function does not operate	3. Telescopic motor circuit	DI-684
	4. Tilt and telescopic ECU	IN-36


DI23D-13

DIAGNOSTICS -

Symptom	Suspect Area	See page
	 Check status of auto away function using TOYOTA hand-held tester 	-
	2. Multiplex communication system	-
Both away and return:	3. Ignition switch	BE-29
Only auto away/return function does not operate	4. Key unlock warning switch	BE-29
	5. Tilt motor circuit	DI-681
	6. Telescopic motor circuit	DI-684
	7. Tilt and telescopic ECU	IN-36
	1. Multiplex communication system	-
	2. Key unlock warning switch	BE-29
Only away:	3. Ignition switch	BE-29
Only Auto away/return function does not operate	4. Tilt motor circuit	DI-681
	5. Telescopic motor circuit	DI-684
	6. Tilt and telescopic ECU	IN-36
	1. Multiplex communication system	-
	2. Key unlock warning switch	BE-29
Only return:	3. Ignition switch	BE-29
Only auto away/return function does not operate	4. Tilt motor circuit	DI-681
	5. Telescopic motor circuit	DI-684
	6. Tilt and telescopic ECU	IN-36

DI23C-14

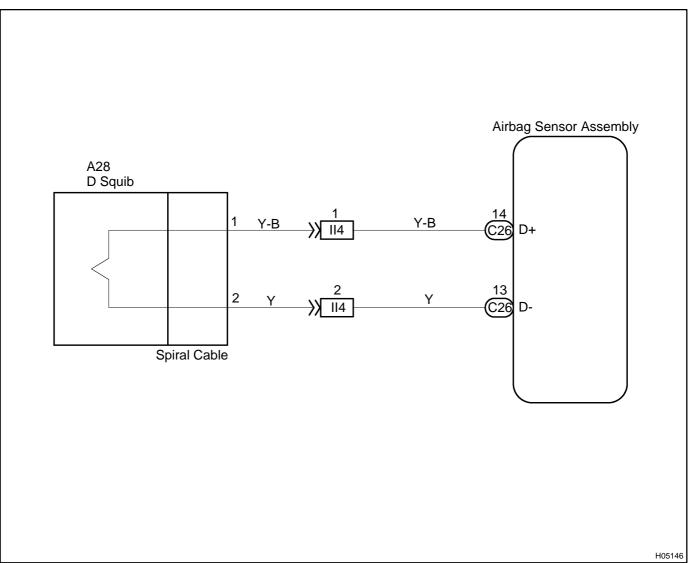
TERMINALS OF ECU

Symbols (Terminals No.)	Wiring Color	Condition	STD Voltage (V)
	B-W - W-B	IG switch ON	10 - 14 (DC)
IG (T7-4) - GND (T7-6)		IG switch LOCK	Below 1 (DC)
VC (T7-2) - GND (T7-6)	V - W-B	Always	4.5 - 5.5 (DC)
GND (T7-6) - Body Ground	W-B - Body Ground	Always	Below 1 (DC)
ECUB (T7-1) - Body Ground	L-W - Body Ground	Always	10 - 14 (DC)
ECUB (T7-1) - GND (T7-6)	L-W - W-B	Always	10 - 14 (DC)
		Tilt up by manual switch	1.30 - 1.70 (DC)
	V-Y - W-B	Tilt down by manual switch	0.30 - 0.50 (DC)
MSW (T7-5) - GND (T7-6)		Telescopic extended by manual switch	2.05 - 2.75 (DC)
		Telescopic contracted by manual switch	0.65 - 0.95 (DC)
		Manual switch is not operating	Below 0.20 (DC)
+B (T8-4) - GND (T7-6)	G-B - W-B	Always	10 - 14 (DC)
S5V1 (T8-13) - SG1 (T8-14)	G-W - G-Y	IG switch ON	4.5 - 5.5 (DC)
S5V2 (T8-12) - SG2 (T8-10)	B-W - B-Y	IG switch ON	4.5 - 5.5 (DC)
A1 (T8-7) - COM1 (T8-15)	P - G	IG switch ON, tilt up or down by manual switch	190 - 230 (AC)
B1 (T8-16) - COM1 (T8-15)	V - G	IG switch ON, tilt up or down by manual switch	190 - 230 (AC)
A2 (T8-1) - COM2 (T8-9)	W - B	IG switch ON, telescopic extend or contracted by manual switch	190 - 230 (AC)
B2 (T8-8) - COM2 (T8-9)	G - B	IG switch ON, telescopic extend or contracted by manual switch	190 - 230 (AC)

CIRCUIT INSPECTION

DTC

B0100/13


Short in D Squib Circuit

CIRCUIT DESCRIPTION

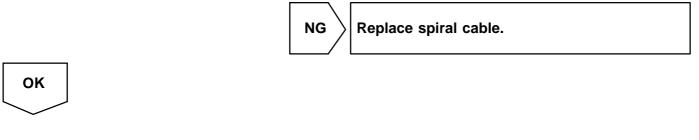
The D squib circuit consists of the airbag sensor assembly, the spiral cable and the steering wheel pad. It causes the airbag to deploy when the airbag deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS-3. DTC B0100/13 is recorded when a short is detected in the D squib circuit.

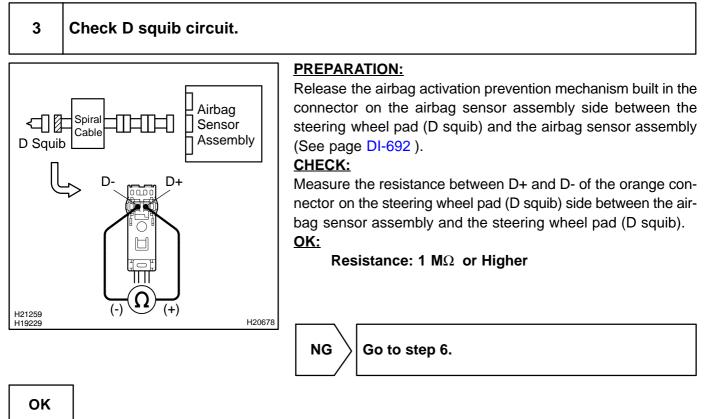
DTC No.	DTC Detecting Condition	Trouble Area
B0100/13	 ★Short in D squib circuit ★D squib malfunction ★Spiral cable malfunction ★Airbag sensor assembly malfunction 	 ★Steering wheel pad (D squib) ★Spiral cable ★Airbag sensor assembly ★Dash wire ★Column wire

WIRING DIAGRAM

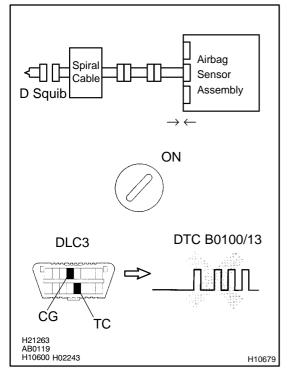
DI3IY-09

INSPECTION PROCEDURE


1	Prepare for inspection (See step 1 on page DI-923).	


CHECK:

Make sure that the orange spiral cable connector is not damaged.


<u>OK:</u>

The lock button is not disengaged, or the claw of the lock is not deformed or damaged.

4 Check airbag sensor assembly.

PREPARATION:

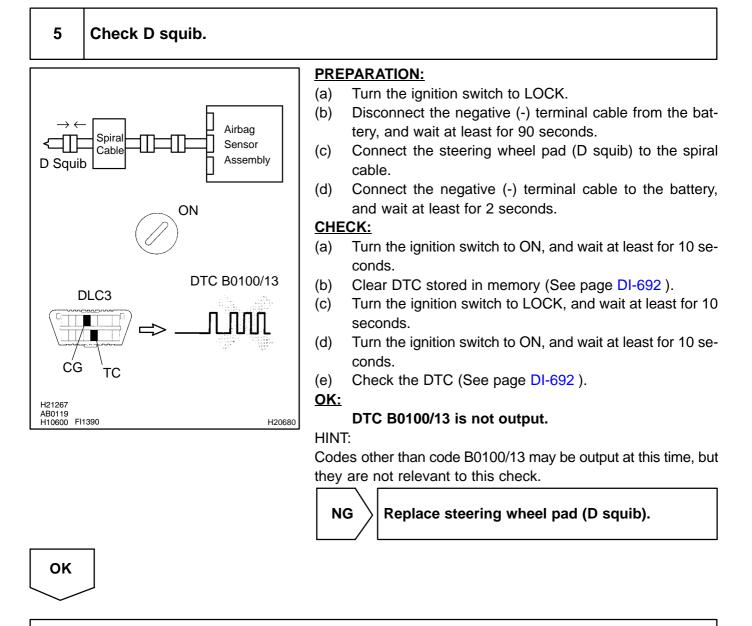
- (a) Connect the connector to the airbag sensor assembly.
- (b) Connect the negative (-) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

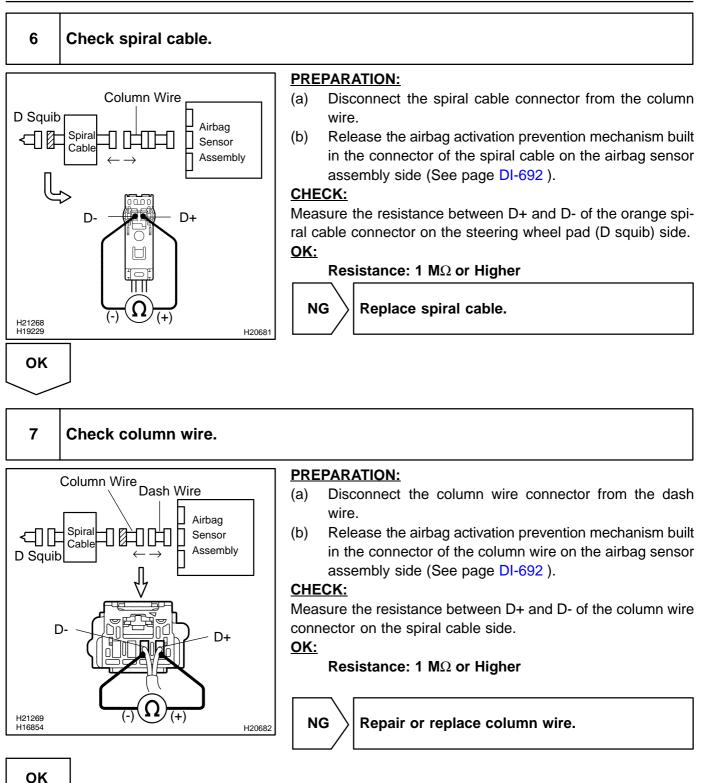
- (a) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (b) Clear the DTC stored in memory (See page DI-692).
- (c) Turn the ignition switch to LOCK, and wait at least for 10 seconds.
- (d) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (e) Check the DTC (See page DI-692).

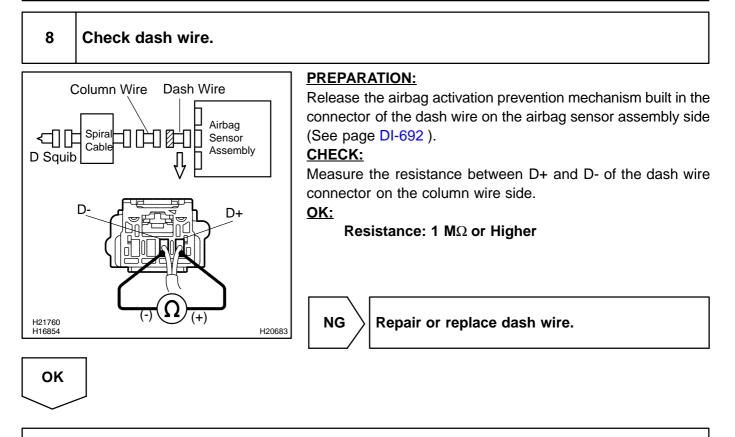
<u>OK:</u>

DTC B0100/13 is not output.


HINT:

Codes other than code B0100/13 may be output at this time, but they are not relevant to this check.


NG


Replace airbag sensor assembly.

OK

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

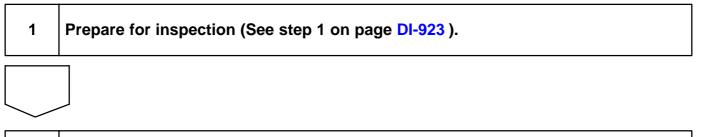
DI3IZ-04

DTC

B0101/14

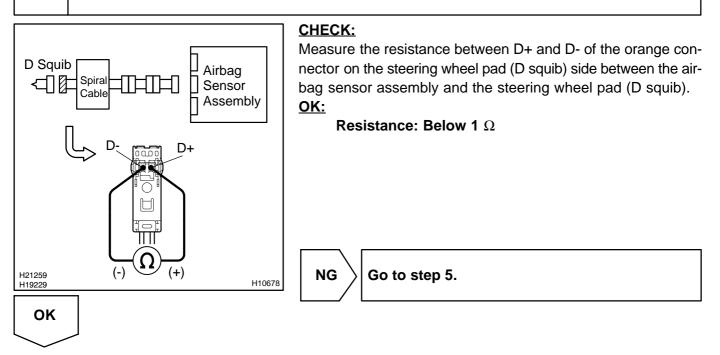
Open in D Squib Circuit

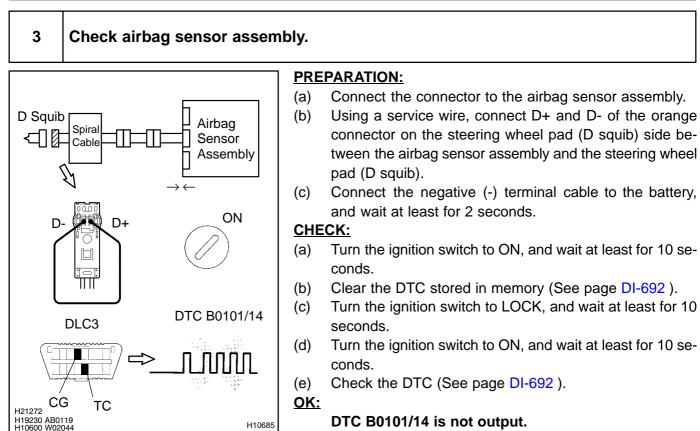
CIRCUIT DESCRIPTION


The D squib circuit consists of the airbag sensor assembly, the spiral cable and the steering wheel pad. It causes the airbag to deploy when the airbag deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS-3. DTC B0101/14 is recorded when an open is detected in the D squib circuit.

DTC No.	DTC Detecting Condition	Trouble Area
B0101/14	 ★Open in D squib circuit ★D squib malfunction ★Spiral cable malfunction ★Airbag sensor assembly malfunction 	★Steering wheel pad (D squib) ★Spiral cable ★Airbag sensor assembly ★Dash wire ★Column wire

WIRING DIAGRAM

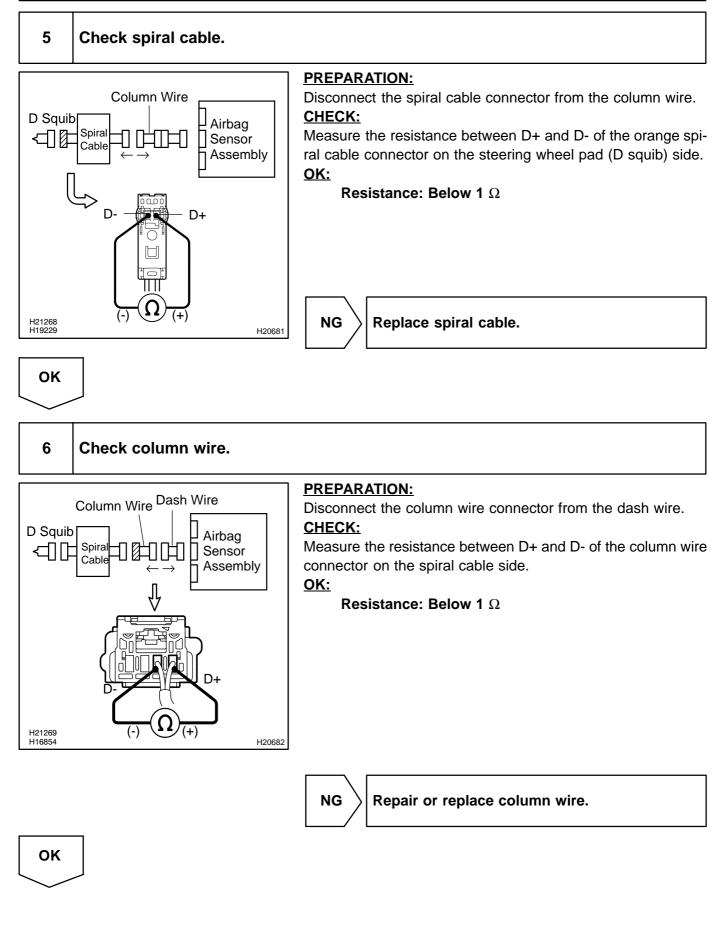

See page DI-71 1.


INSPECTION PROCEDURE

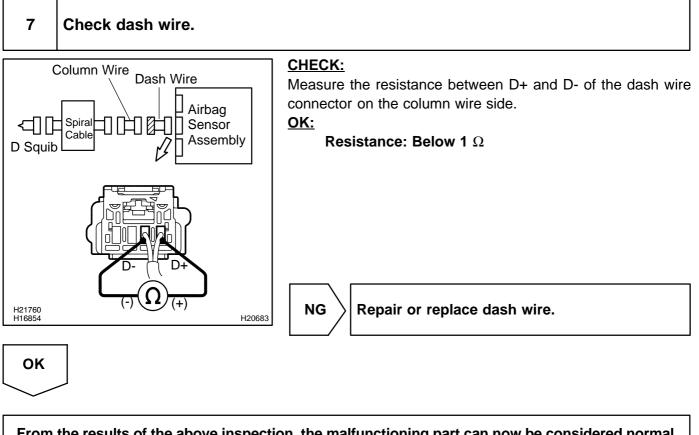
2

Check D squib circuit.

HINT:


Codes other than code B0101/14 may be output at this time, but they are not relevant to this check.

Replace airbag sensor assembly.


OK

4 Check D squib. **PREPARATION:** (a) Turn the ignition switch to LOCK. (b) Disconnect the negative (-) terminal cable from the bat-Airbag tery, and wait at least for 90 seconds. Spira Sensor Cable Connect the steering wheel pad (D squib) to the spiral (c) Assembly D Sauib cable. Connect the negative (-) terminal cable to the battery, (d) and wait at least for 2 seconds. ON CHECK: Turn the ignition switch to ON, and wait at least for 10 se-(a) conds. Clear the DTC stored in memory (See page DI-692). (b) DLC3 DTC B0101/14 Turn the ignition switch to LOCK, and wait at least for 10 (c) seconds. (d) Turn the ignition switch to ON, and wait at least for 10 seconds. Check the DTC (See page DI-692). CG (e) TC <u>OK:</u> H21267 AB0119 H10600 W02044 DTC B0101/14 is not output. H20686 HINT: Codes other than code B0101/14 may be output at this time, but they are not relevant to this check. NG Replace steering wheel pad (D squib). OK

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DIAGNOSTICS - SUPPLEMENTAL RESTRAINT SYSTEM

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DTC

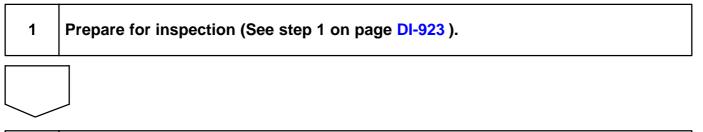
B0102/11

Short in D Squib Circuit (to Ground)

DI3.I0-04

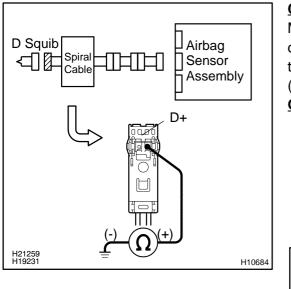
CIRCUIT DESCRIPTION

The D squib circuit consists of the airbag sensor assembly, the spiral cable and the steering wheel pad. It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS-3.


DTC B0102/11 is recorded when a ground short is detected in the D squib circuit.

DTC No.	DTC Detecting Condition	Trouble Area
B0102/11	 ★Short in D squib circuit (to ground) ★D squib malfunction ★Spiral cable malfunction ★Airbag sensor assembly malfunction 	 ★Steering wheel pad (D squib) ★Spiral cable ★Airbag sensor assembly ★Dash wire ★Column wire

WIRING DIAGRAM


See page DI-71 1.

INSPECTION PROCEDURE

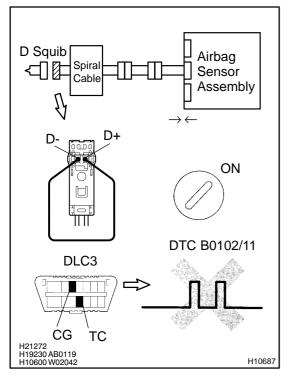
2

Check D squib circuit.

CHECK:

Measure the resistance between the body ground and D+ of the orange connector on the steering wheel pad (D squib) side between the airbag sensor assembly and the steering wheel pad (D squib) side.

<u>OK:</u>


NG

Resistance: 1 M Ω or Higher

 $\langle \rangle$ Go to step 5.

ΟΚ

3 Check airbag sensor assembly.

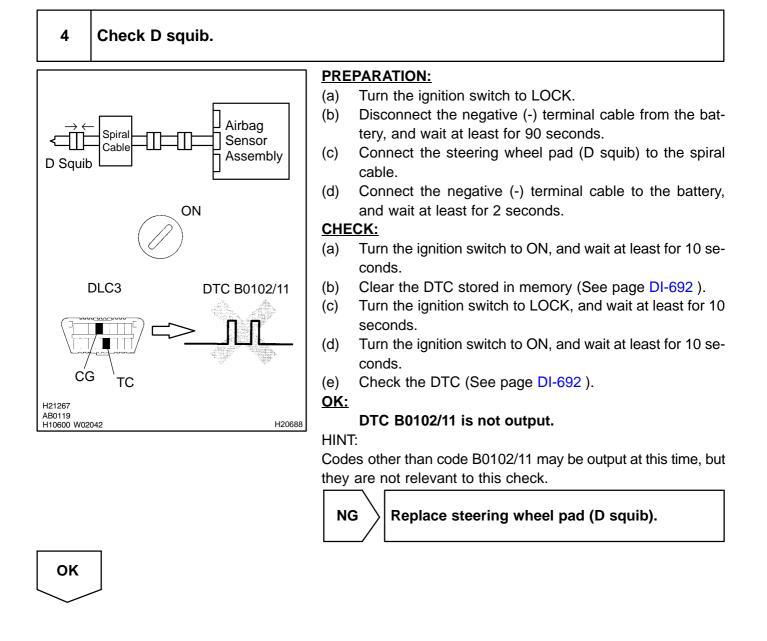
PREPARATION:

- (a) Connect the connector to the airbag sensor assembly.
- (b) Using a service wire, connect D+ and D- of the orange connector on the steering wheel pad (D squib) side between the airbag sensor assembly and the steering wheel pad (D squib).
- (c) Connect the negative (-) terminal cable to the battery, and wait at least for 2 seconds.

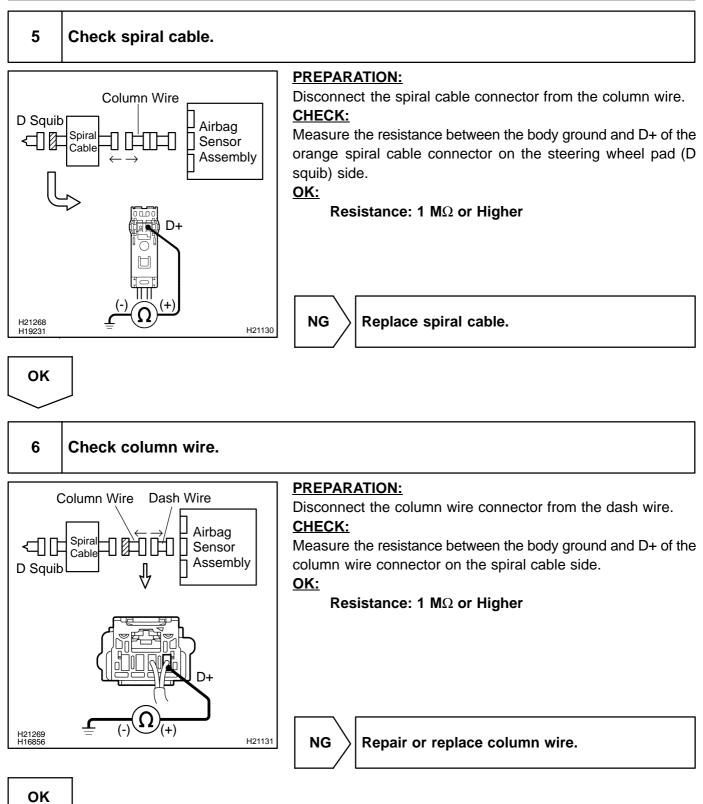
CHECK:

- (a) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (b) Clear the DTC stored in memory (See page DI-692).
- (c) Turn the ignition switch to LOCK, and wait at least for 10 seconds.
- (d) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (e) Check DTC (See page DI-692).

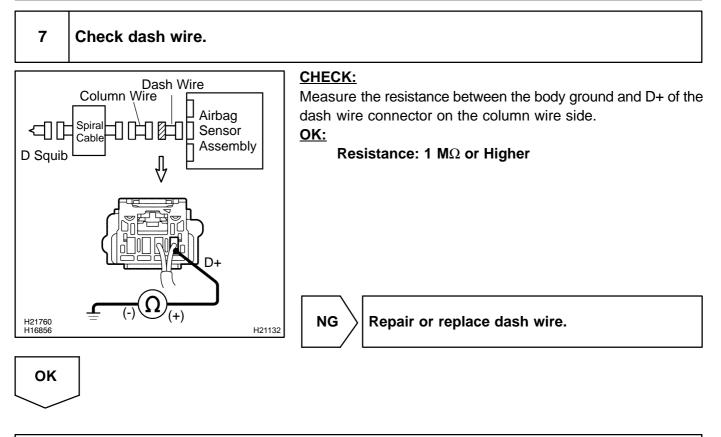
<u>OK:</u>


DTC B0102/11 is not output.

HINT:


Codes other than code B0102/11 may be output at this time, but they are not relevant to this check.

Replace airbag sensor assembly.


OK

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DIAGNOSTICS - SUPPLEMENTAL RESTRAINT SYSTEM

From the results of the above inspection, the malfunctioning par can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DI3.11-05

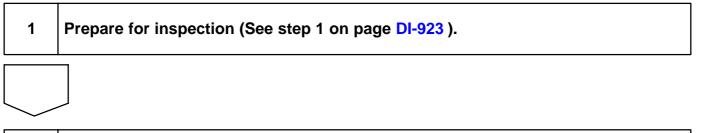
DTC

B0103/12

Short in D Squib Circuit (to B+)

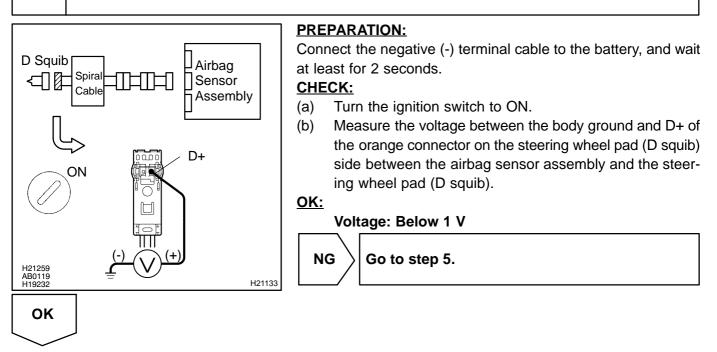
CIRCUIT DESCRIPTION

The D squib circuit consists of the airbag sensor assembly, the spiral cable and the steering wheel pad. It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each components, see page OPERATION on page RS-3.

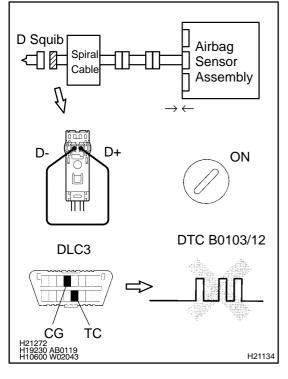

DTC B0103/12 is recorded when a B+ short is detected in the D squib circuit.

DTC No.	DTC Detecting Condition	Trouble Area
B0103/12	 ★Short circuit in D squib circuit (to B+) ★D squib malfunction ★Spiral cable malfunction ★Airbag sensor assembly malfunction 	 ★Steering wheel pad (D squib) ★Spiral cable ★Airbag sensor assembly ★Dash wire ★Column wire

WIRING DIAGRAM


See page DI-71 1.

INSPECTION PROCEDURE



2

Check D squib circuit.

3 Check airbag sensor assembly.

PREPARATION:

(a) Turn the ignition switch to LOCK.

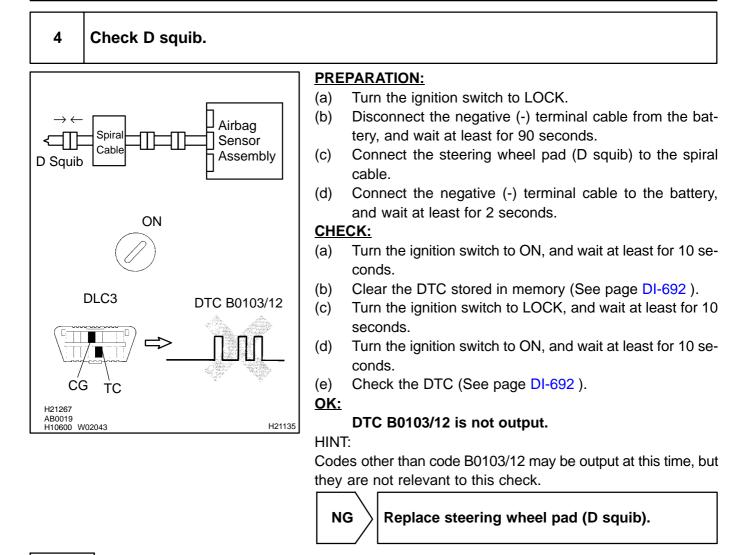
- (b) Disconnect the negative (-) terminal cable from the battery, and wait at least for 90 seconds.
- (c) Connect the connector to the airbag sensor assembly.
- (d) Using a service wire, connect D+ and D- of the orange connector on the steering wheel pad (D squib) side between the airbag sensor assembly and the steering wheel pad (D squib).
- (e) Connect the negative (-) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

- (a) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (b) Clear the DTC stored in memory (See page DI-692).
- (c) Turn the ignition switch to LOCK, and wait at least for 10 seconds.
- (d) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (e) Check the DTC (See page DI-692).

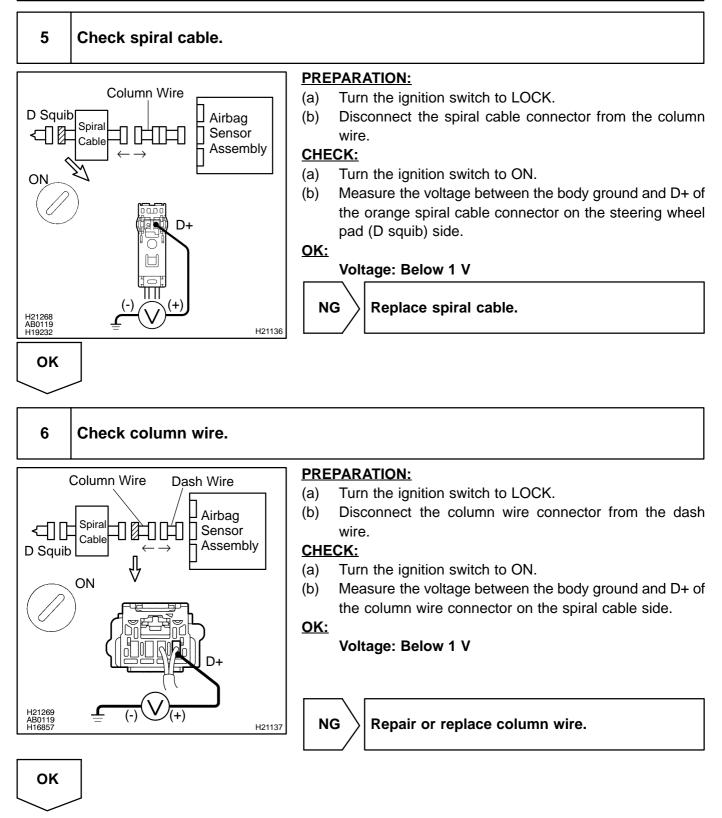
<u>OK:</u>

DTC B0103/12 is not output.

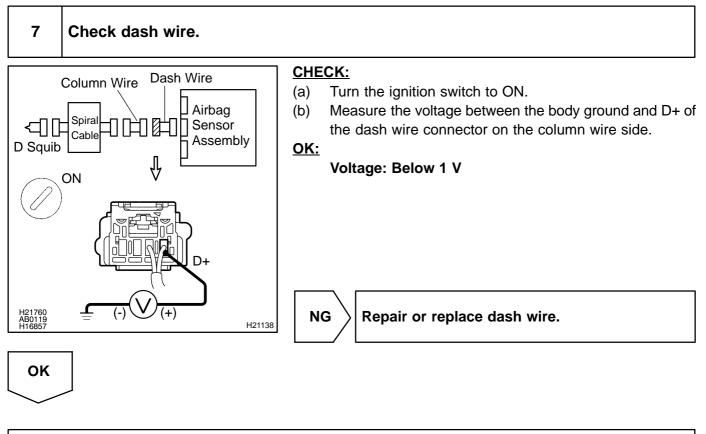

HINT:

Codes other than code B0103/12 may be output at this time, but they are not relevant to this check.

NG


Replace airbag sensor assembly.

ОК



OK

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

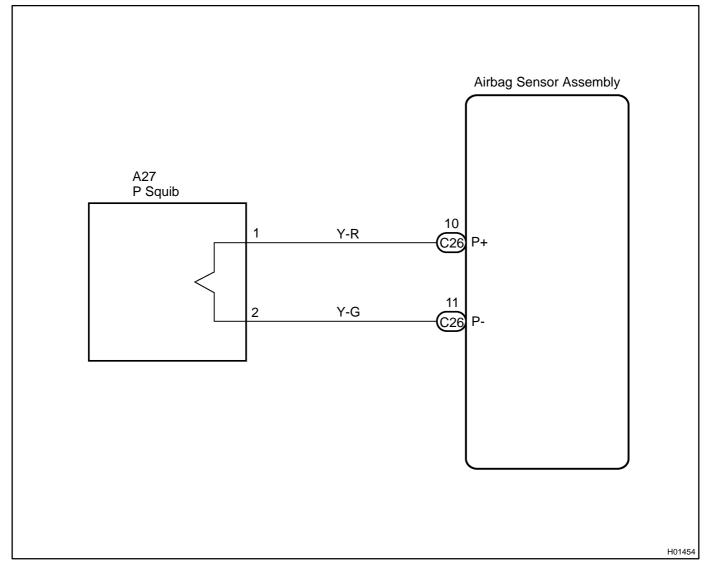
DIAGNOSTICS - SUPPLEMENTAL RESTRAINT SYSTEM

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DI6P7-26

DTC

B0105/53

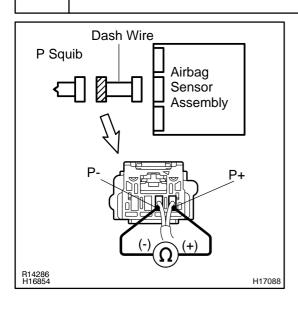

Short in P Squib Circuit

CIRCUIT DESCRIPTION

The P squib circuit consists of the airbag sensor assembly and the front passenger airbag assembly. It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS-3. DTC B0105/53 is recorded when a short is detected in the P squib circuit.

DTC No.	DTC Detecting Condition	Trouble Area
	★Short in P squib circuit	★ ront passenger airbag assembly (P squib)
B0105/53	★P squib malfunction	★Airbag sensor assembly
	★Airbag sensor assembly malfunction	★Dash wire

WIRING DIAGRAM



INSPECTION PROCEDURE

1 Prepare for inspection (See step 1 on page DI-923).

2

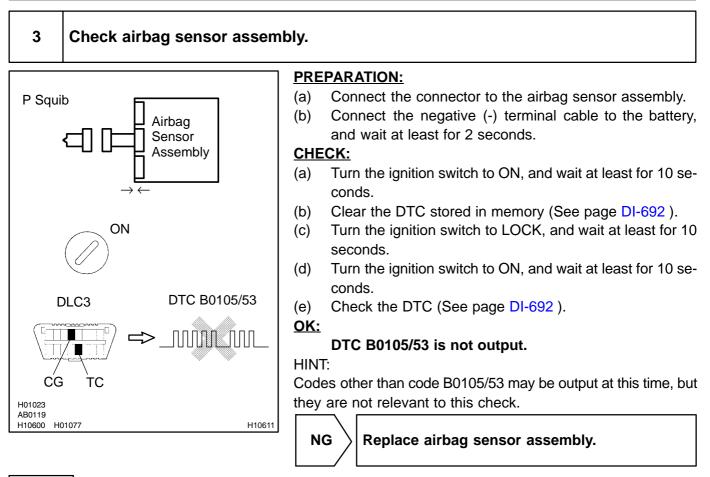
Check dash wire (P squib circuit).

PREPARATION:

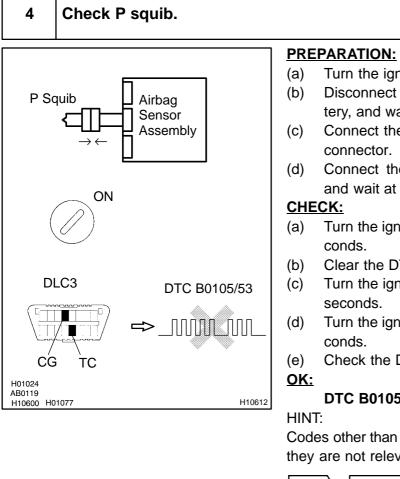
Release the airbag activation prevention mechanism built in the connector of the dash wire on the airbag sensor assembly side (See page DI-692).

CHECK:

Measure the resistance between P+ and P- of the dash wire connector on the front passenger airbag assembly (P squib) side.


<u>OK:</u>

NG


Repair or replace dash wire.

Resistance: 1 M Ω or Higher

ΟΚ

ОК

(a) Turn the ignition switch to LOCK.

- (b) Disconnect the negative (-) terminal cable from the battery, and wait at least for 90 seconds.
- (c) Connect the front passenger airbag assembly (P squib) connector.
- (d) Connect the negative (-) terminal cable to the battery, and wait at least for 2 seconds.
- (a) Turn the ignition switch to ON, and wait at least for 10 seconds.
- b) Clear the DTC stored in memory (See page DI-692).
- c) Turn the ignition switch to LOCK, and wait at least for 10 seconds.
- (d) Turn the ignition switch to ON, and wait at least for 10 seconds.
- e) Check the DTC (See page DI-692).

DTC B0105/53 is not output.

Codes other than code B0105/53 may be output at this time, but they are not relevant to this check.

Replace front passenger airbag assembly (P squib).

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

NG

DI6P8-14

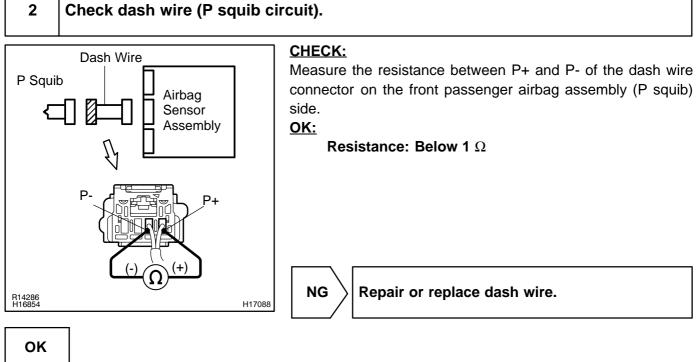
DTC

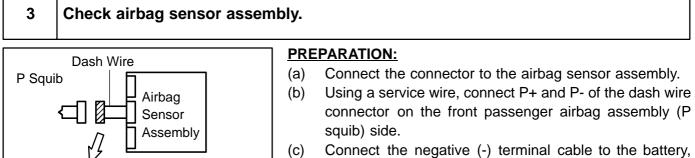
B0106/54

Open in P Squib Circuit

CIRCUIT DESCRIPTION

The P squib circuit consists of the airbag sensor assembly and the front passenger airbag assembly. It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS-3. DTC B0106/54 is recorded when an open is detected in the P squib circuit.


DTC No.	DTC Detecting Condition	Trouble Area
B0106/54	★Open in P squib circuit	★Front passenger airbag assembly (P squib)
	★P squib malfunction	★Airbag sensor assembly
	₩Airbag sensor assembly malfunction	★Dash wire


WIRING DIAGRAM

See page DI-732.

INSPECTION PROCEDURE

1	Prepare for inspection (See step 1 on page DI-923).
$\overline{}$	

and wait at least for 2 seconds.

CHECK:

ON

DTC B0106/54

- (a) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (b) Clear the DTC stored in memory (See page DI-692).
- (c) Turn the ignition switch to LOCK, and wait at least for 10 seconds.
- (d) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (e) Check the DTC (See page DI-692).

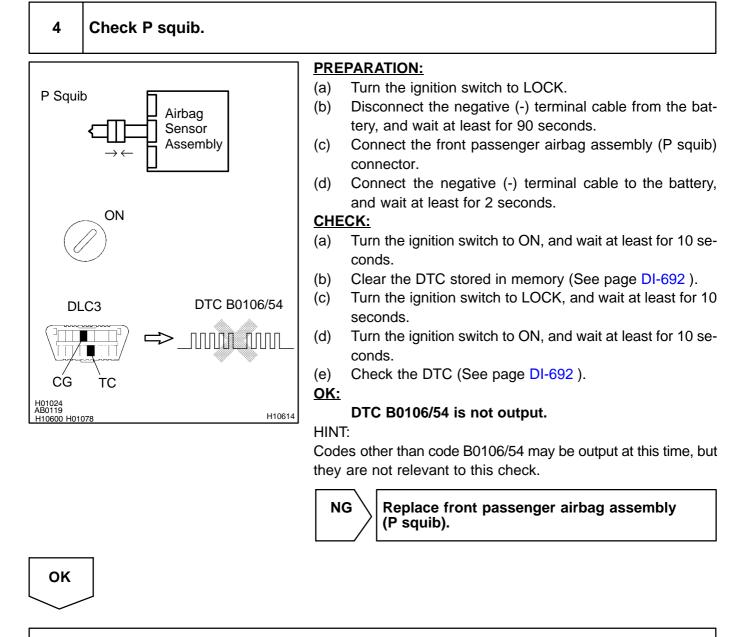
OK: DTC B0106/54 is not output.

HINT:

H17089

Codes other than code B0106/54 may be output at this time, but they are not relevant to this check.

NG


Replace airbag sensor assembly.

DLC3

CG

H01023 H16855 AB0119 H10600 H01078

ΤС

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DI6P9-14

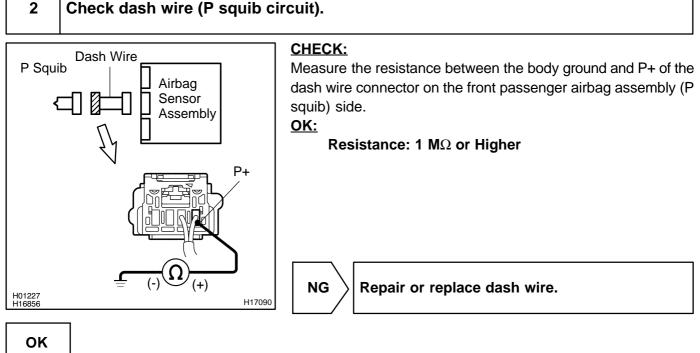
DTC

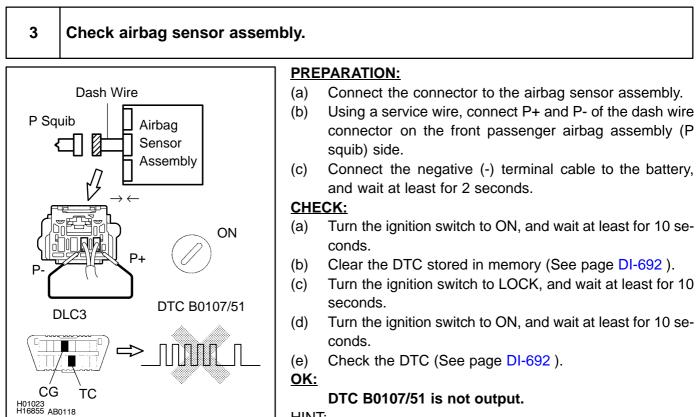
B0107/51

Short in P Squib Circuit (to Ground)

CIRCUIT DESCRIPTION

The P squib circuit consists of the airbag sensor assembly and the front passenger airbag assembly. It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS-3 . DTC B0107/51 is recorded when ground short is detected in the P squib circuit.


DTC No.	DTC Detecting Condition	Trouble Area
	₭Short in P squib circuit (to ground)	★ ront passenger airbag assembly (P squib)
B0107/51	★P squib malfunction	★Airbag sensor assembly
	Airbag sensor assembly malfunction	★Dash wire


WIRING DIAGRAM

See page DI-732.

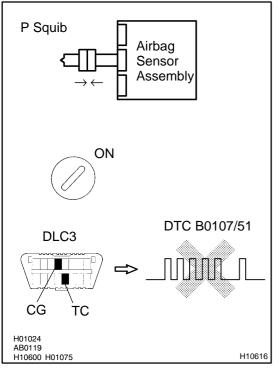
INSPECTION PROCEDURE

1	Prepare for inspection (See step 1 on page DI-923).	

HINT:

H17091

Codes other than code B0107/51 may be output at this time, but they are not relevant to this check.


NG

Replace airbag sensor assembly.

OK

H10600 H01075

PREPARATION:

(a) Turn the ignition switch to LOCK.

- (b) Disconnect the negative (-) terminal cable from the battery, and wait at least for 90 seconds.
- (c) Connect the front passenger airbag assembly (P squib) connector.
- (d) Connect the negative (-) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

- (a) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (b) Clear the DTC stored in memory (See page DI-692).
- (c) Turn the ignition switch to LOCK, and wait at least for 10 seconds.
- (d) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (e) Check the DTC (See page DI-692).

<u>OK:</u>

DTC B0107/51 is not output. HINT:

NG

Codes other than code B0107/51 may be output at this time, but they are not relevant to this check.

Replace front passenger airbag assembly (P squib).

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DI6PA-13

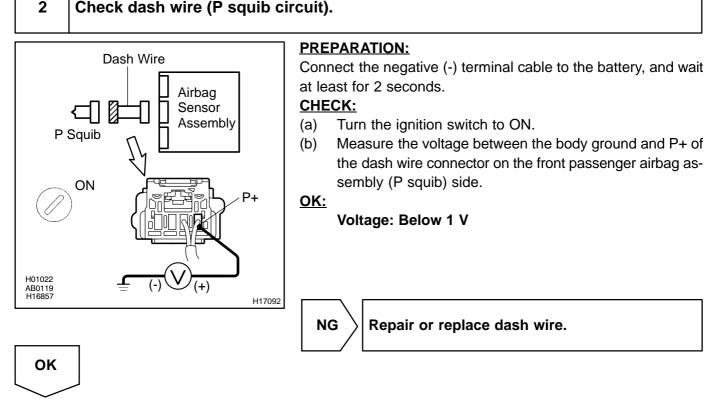
DTC

B0108/52

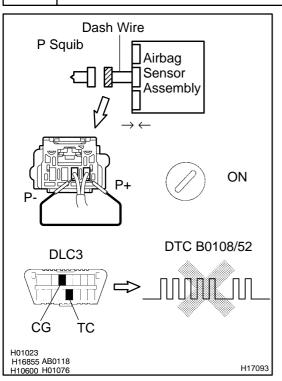
Short in P Squib Circuit (to B+)

CIRCUIT DESCRIPTION

The P squib circuit consists of the airbag sensor assembly and the front passenger airbag assembly. It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS-3. DTC B0108/52 is recorded when a B+ short is detected in the P squib circuit.


DTC No.	DTC Detecting Condition	Trouble Area
	★Short in P squib circuit (to B+)	★ ront passenger airbag assembly (P squib)
B0108/52	★P squib malfunction	★Airbag sensor assembly
	★Airbag sensor assembly malfunction	★Dash wire


WIRING DIAGRAM


See page DI-732.

INSPECTION PROCEDURE

1	Prepare for inspection (See step 1 on page DI-923).	
~		

PREPARATION:

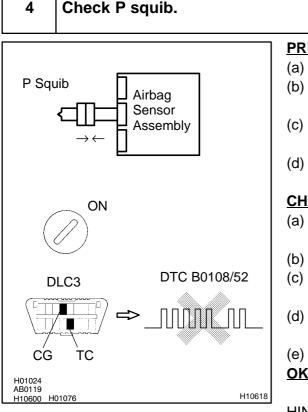
- (a) Turn the ignition switch to LOCK.
- (b) Disconnect the negative (-) terminal cable from the battery, and wait at least for 90 seconds.
- (c) Connect the connector to the airbag sensor assembly.
- Using a service wire, connect P+ and P- of the dash wire connector on the front passenger airbag assembly (P squib) side.
- (e) Connect the negative (-) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

- (a) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (b) Clear the DTC stored in memory (See page DI-692).
- (c) Turn the ignition switch to LOCK, and wait at least for 10 seconds.
- (d) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (e) Check the DTC (See page DI-692).

<u>OK:</u>

DTC B0108/52 is not output.


HINT:

Codes other than code B0108/52 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.

ОК

PREPARATION:

Turn the ignition switch to LOCK. (a)

- (b) Disconnect the negative (-) terminal cable from the battery, and wait at least for 90 seconds.
- Connect the front passenger airbag assembly (P squib) (c) connector.
- Connect the negative (-) terminal cable to the battery, (d) and wait at least for 2 seconds.

CHECK:

- (a) Turn the ignition switch to ON, and wait at least for 10 seconds.
- Clear the DTC stored in memory (See page DI-692).
- Turn the ignition switch to LOCK, and wait at least for 10 seconds.
- Turn the ignition switch to ON, and wait at least for 10 seconds.
- Check the DTC (See page DI-692).

<u>OK:</u>

DTC B0108/52 is not output.

HINT:

NG

Codes other than code B0108/52 may be output at this time, but they are not relevant to this check.

> Replace front passenger airbag assembly (P squib).

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

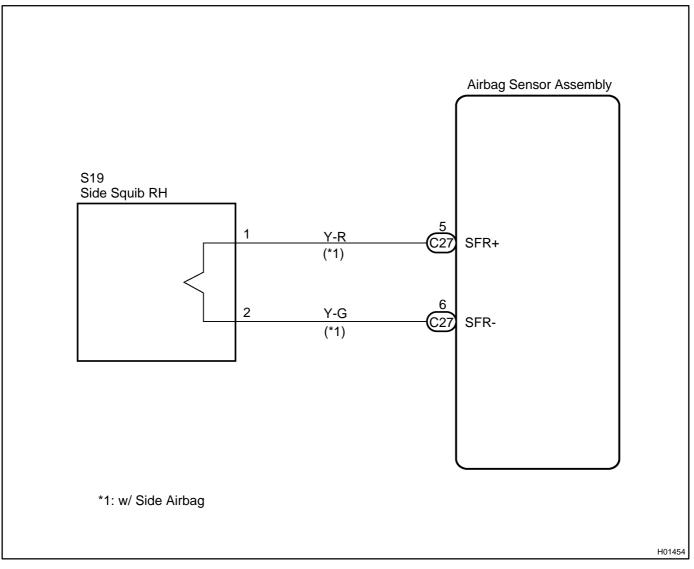
DI6PB-33

DTC

B0110/43

Short in Side Squib RH Circuit

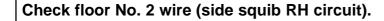
CIRCUIT DESCRIPTION

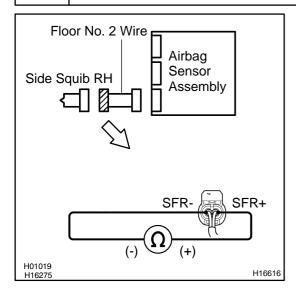

The side squib RH circuit consists of the airbag sensor assembly and the side airbag assembly RH. It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS-3. DTC B0110/43 is recorded when a short is detected in the side squib RH circuit.

DTC No.	DTC Detecting Condition	Trouble Area
	★Short in side squib RH circuit	★Side airbag assembly RH (Side squib RH)
B0110/43	★Side squib RH malfunction	★Airbag sensor assembly
	Airbag sensor assembly malfunction	★Floor No. 2 wire

HINT:

DTC B0110/43 is indicated only for the vehicle equipped with the side airbag.


WIRING DIAGRAM



INSPECTION PROCEDURE

1 Prepare for inspection (See step 1 on page DI-923).

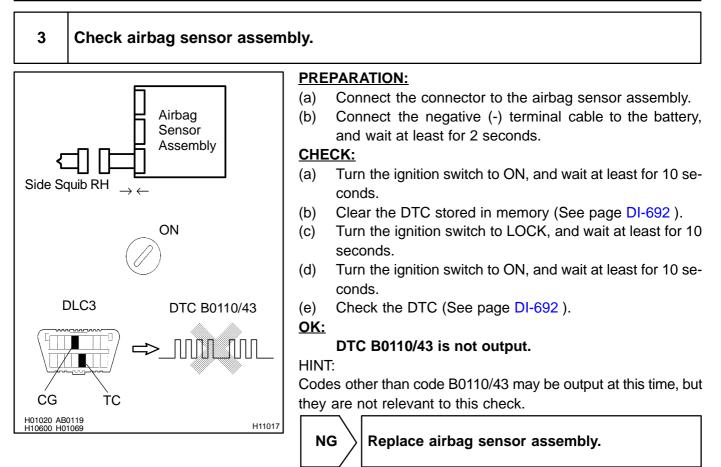
2

PREPARATION:

Release the airbag activation prevention mechanism built in the connector of the floor No. 2 wire on the airbag sensor assembly side (See page DI-692).

CHECK:

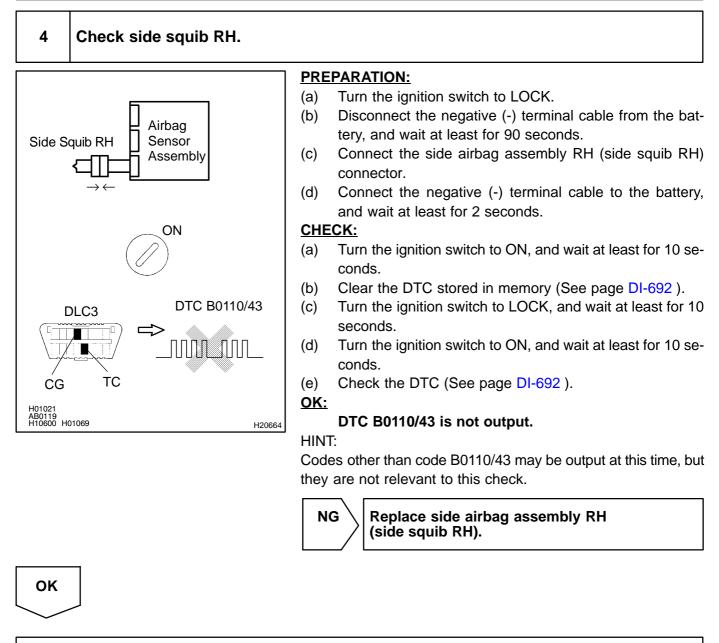
Measure the resistance between SFR+ and SFR- of the floor No. 2 wire connector on the side airbag assembly RH (side squib RH) side.


<u> 0K:</u>

Resistance: 1 M Ω or Higher

NG

Repair or replace floor No. 2 wire.


OK

OK

DI-747

DI-748

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DI6PC-20

DTC

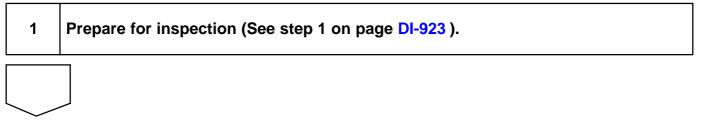
B0111/44

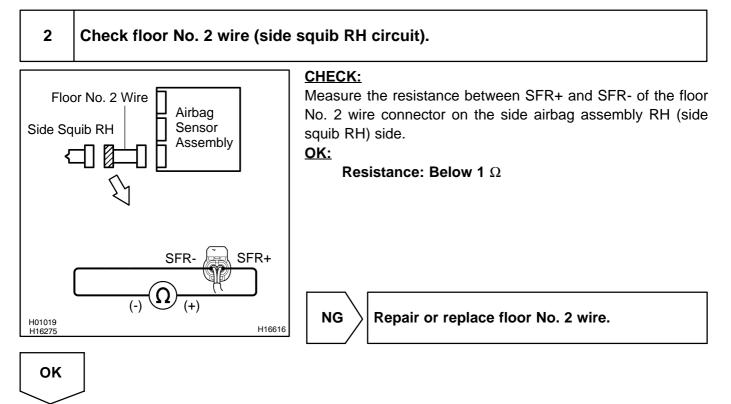
Open in Side Squib RH Circuit

CIRCUIT DESCRIPTION

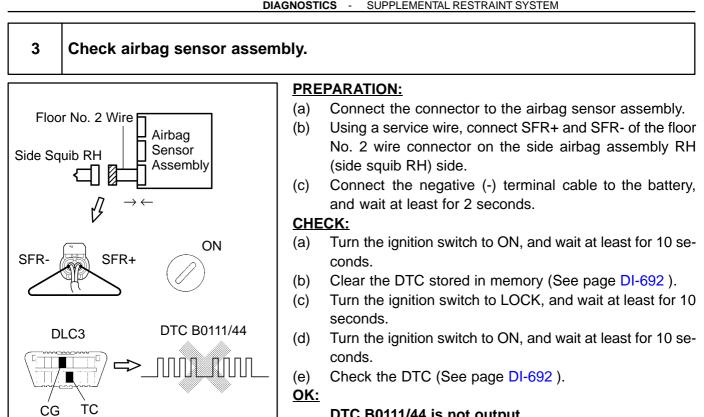
The side squib RH circuit consists of the airbag sensor assembly and the side airbag assembly RH. It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS-3. DTC B0111/44 is recorded when an open is detected in the side squib RH circuit.

DTC No.	DTC Detecting Condition	Trouble Area
B0111/44	*Open in side squib RH circuit	★Side airbag assembly RH (Side squib RH)
B0111/44	 ★Side squib RH malfunction ★Airbag sensor assembly malfunction 	 ★Airbag sensor assembly ★Floor No. 2 wire


HINT:


DTC B0111/44 is indicated only for the vehicle equipped with the side airbag.

WIRING DIAGRAM


See page DI-745.

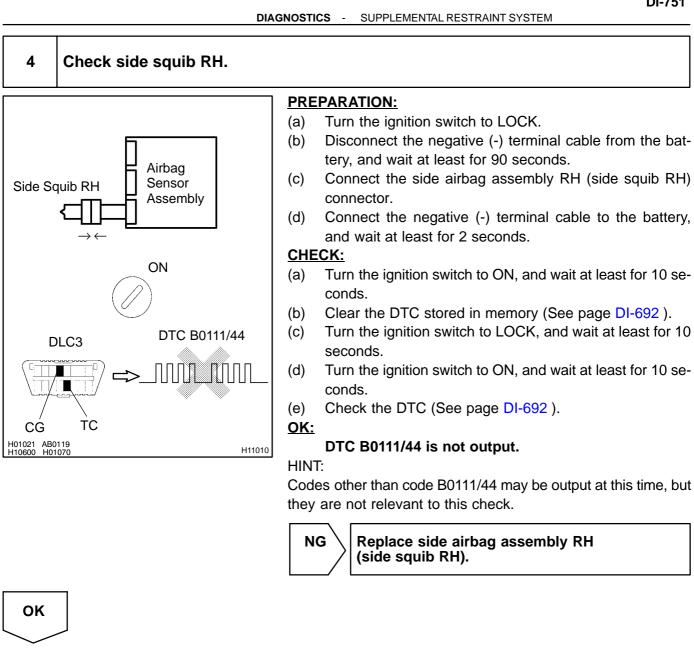
INSPECTION PROCEDURE

DI-750

DTC B0111/44 is not output.

HINT:

H16617


Codes other than code B0111/44 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.

OK

H01020 H16278 AB0119

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DI6PD-21

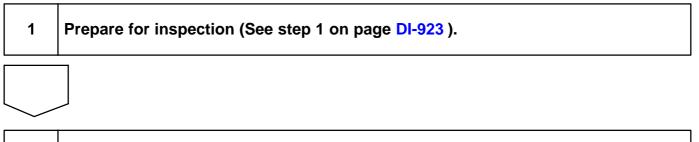
DTC B0112/41 Short in Side Squib RH Circuit (to Ground)

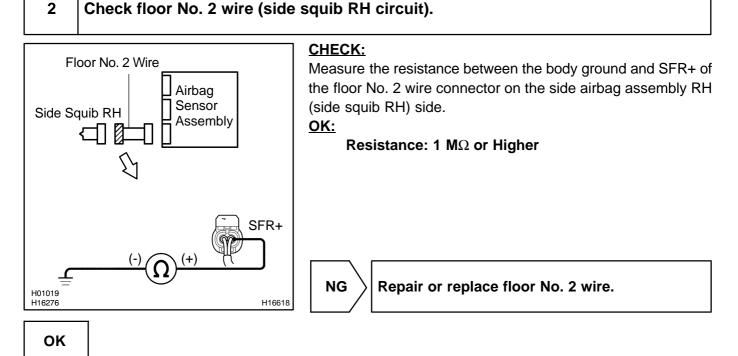
CIRCUIT DESCRIPTION

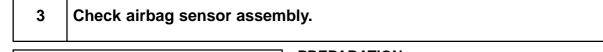
The side squib RH circuit consists of the airbag sensor assembly and the side airbag assembly RH. It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS-3.

DTC B0112/41 is recorded when ground short is detected in the side squib RH circuit.

DTC No.	DTC Detecting Condition	Trouble Area
B0112/41	 ★Short in side squib RH circuit (to ground) ★Side squib RH malfunction ★Airbag sensor assembly malfunction 	★Side airbag assembly RH (Side squib RH) ★Airbag sensor assembly ★Floor No. 2 wire


HINT:


DTC B0112/41 is indicated only for the vehicle equipped with the side airbag.


WIRING DIAGRAM

See page DI-745.

INSPECTION PROCEDURE

Floor No. 2 Wire Airbag Side Squib RH Sensor Assembly $\rightarrow \leftarrow$ ON SFR-SFR+ DTC B0112/41 DLC3 CG TC H01020 H16278 AB0119 H16619

PREPARATION:

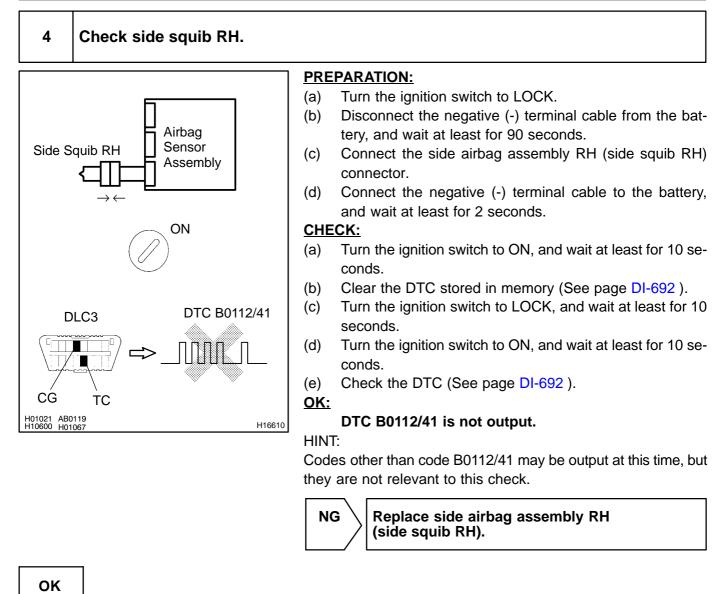
- (a) Connect the connector to the airbag sensor assembly.
- (b) Using a service wire, connect SFR+ and SFR- of the floor No. 2 wire connector on the side airbag assembly RH (side squib RH) side.
- (c) Connect the negative (-) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

- (a) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (b) Clear the DTC stored in memory (See page DI-692).
- (c) Turn the ignition switch to LOCK, and wait at least for 10 seconds.
- (d) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (e) Check the DTC (See page DI-692).

DTC B0112/41 is not output.

HINT:


OK:

Codes other than code B0112/41 may be output at this time, but they are not relevant to this check.

Replace airbag sensor assembly.

OK

DI-754

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DI6PE-22

DTC

B0113/42

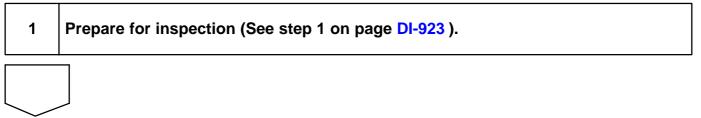
Short in Side Squib RH Circuit (to B+)

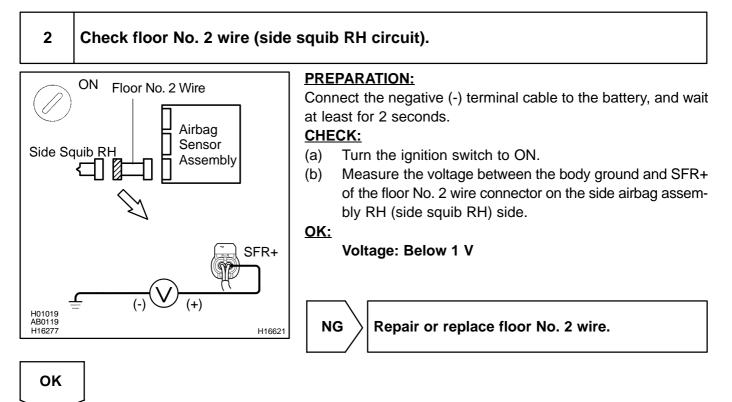
CIRCUIT DESCRIPTION

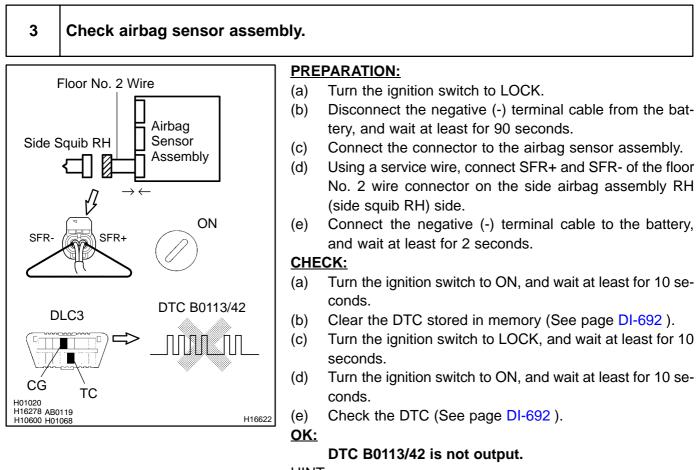
The side squib RH circuit consists of the airbag sensor assembly and the side airbag assembly RH. It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS-3.

DTC B0113/42 is recorded when a B+ short is detected in the side squib RH circuit.

DTC No.	DTC Detecting Condition	Trouble Area
	★Short in side squib RH circuit (to B+)	★Side airbag assembly RH (Side squib RH)
B0113/42	★Side squib RH malfunction	★Airbag sensor assembly
	★Airbag sensor assembly malfunction	★Floor No. 2 wire

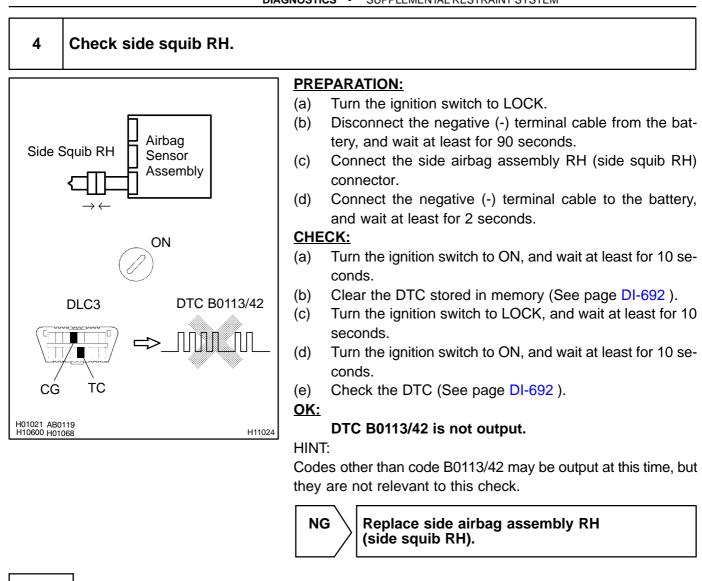

HINT:


DTC B0113/42 is indicated only for the vehicle equipped with the side airbag.


WIRING DIAGRAM

See page DI-745.

INSPECTION PROCEDURE


HINT:

Codes other than code B0113/42 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.

ΟΚ

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be

detected by the simulation method, replace all SRS components including the wire harness.

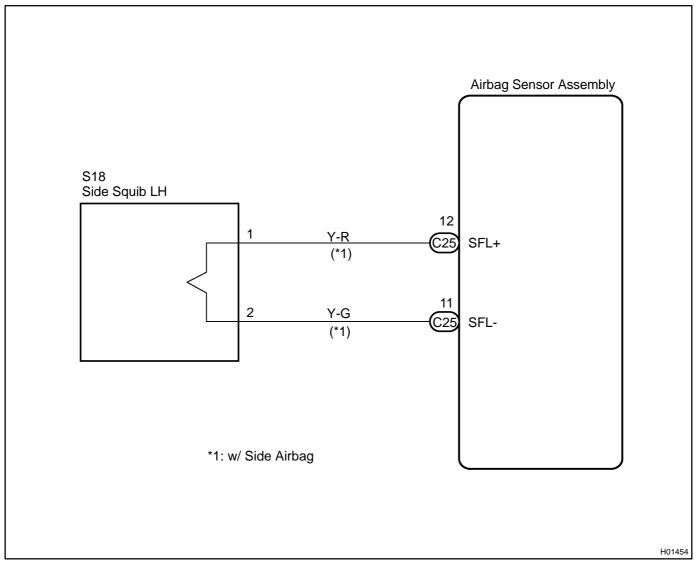
DI6PF-34

DTC

B0115/47

Short in Side Squib LH Circuit

CIRCUIT DESCRIPTION

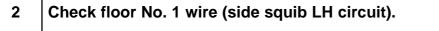

The side squib LH circuit consists of the airbag sensor assembly and the side airbag assembly LH. It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS-3. DTC B0115/47 is recorded when a short is detected in the side squib LH circuit.

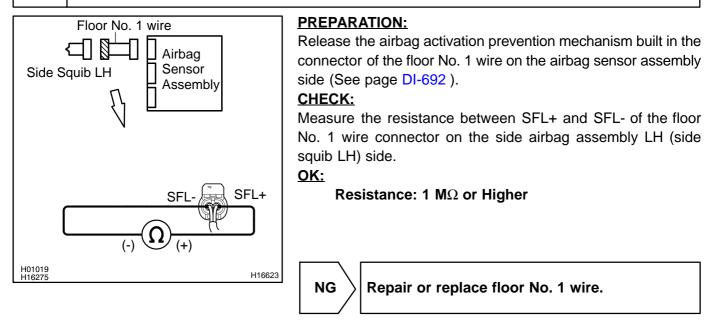
DTC No.	DTC Detecting Condition	Trouble Area
	★Short in side squib LH circuit	★Side airbag assembly LH (Side squib LH)
B0115/47	★Side squib LH malfunction	★Airbag sensor assembly
	★Airbag sensor assembly malfunction	★Floor No. 1 wire

HINT:

DTC B0115/47 is indicated only for the vehicle equipped with the side airbag.

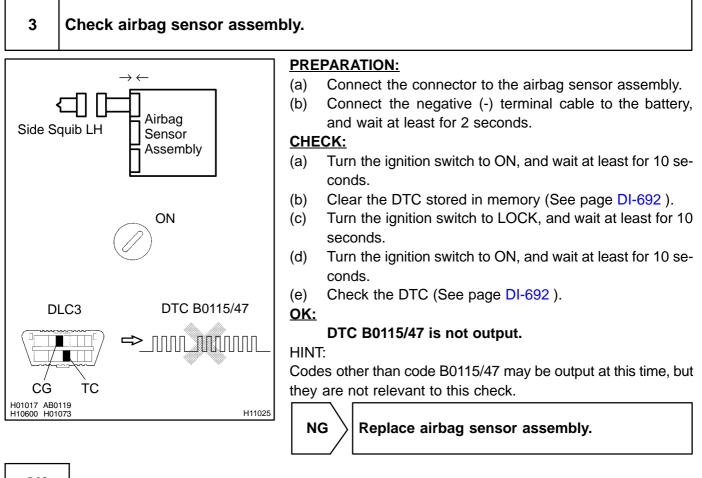
WIRING DIAGRAM

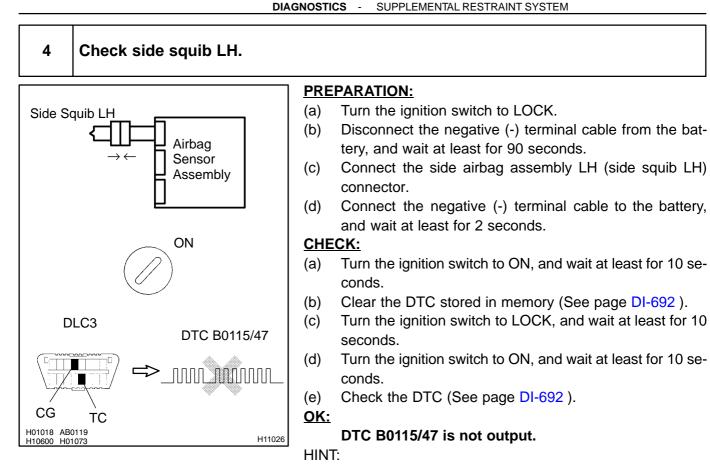



INSPECTION PROCEDURE

1 Prepare for inspection (See step 1 on page DI-923).

Prepare for inspection (See Step 1 on page DI-92


 \checkmark



ОК

DI-760

OK

Codes other than code B0115/47 may be output at this time, but they are not relevant to this check.

NG

Replace side airbag assembly LH (side squib LH).

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DI6PG-21

DTC

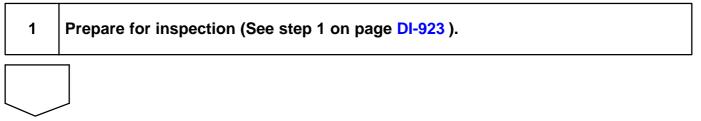
B0116/48

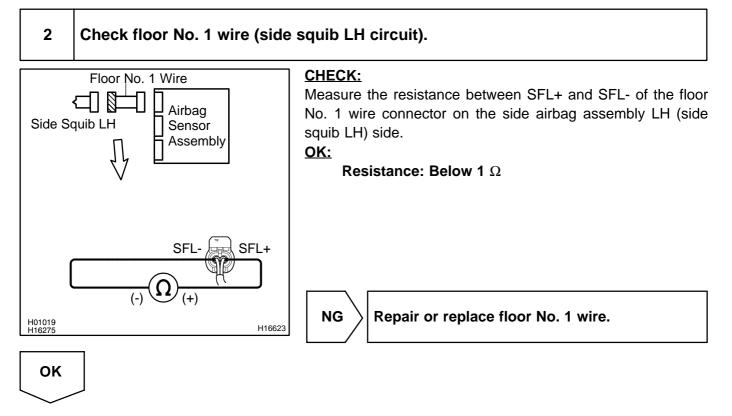
Open in Side Squib LH Circuit

CIRCUIT DESCRIPTION

The side squib LH circuit consists of the airbag sensor assembly and the side airbag assembly LH. It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS-3. DTC B0116/48 is recorded when an open is detected in the side squib LH circuit.

DTC No.	DTC Detecting Condition	Trouble Area
	★Open in side squib LH circuit	★Side airbag assembly LH (Side squib LH)
B0116/48	★Side squib LH malfunction	★Airbag sensor assembly
	₩Airbag sensor assembly malfunction	⊀ Floor No. 1 wire


HINT:


DTC B0116/48 is indicated only for the vehicle equipped with the side airbag.

WIRING DIAGRAM

See page DI-758.

INSPECTION PROCEDURE

- (a) Connect the connector to the airbag sensor assembly.
- (b) Using a service wire, connect SFL+ and SFL- of the floor No. 1 wire connector on the side airbag assembly LH (side squib LH) side.

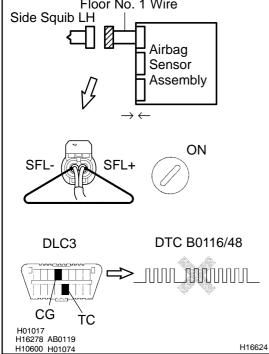
DI-763

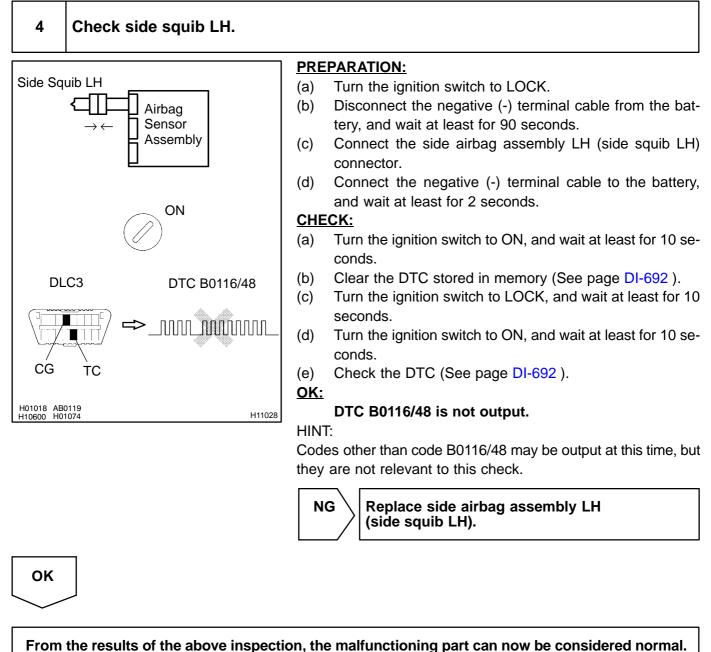
(c) Connect the negative (-) terminal cable to the battery, and wait at least 2 seconds.

CHECK:

- (a) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (b) Clear the DTC stored in memory (See page DI-692).
- (c) Turn the ignition switch to LOCK, and wait at least for 10 seconds.
- (d) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (e) Check the DTC (See page DI-692).

DTC B0116/48 is not output.


HINT:


NG

OK:

Codes other than code B0116/48 may be output at this time, but they are not relevant to this check.

 \rangle Replace airbag sensor assembly.

To make sure of this, use the simulation method to check.

DI-765

DI6PH-21

B0117/45 Short in Side Squib LH Circuit (to Ground)

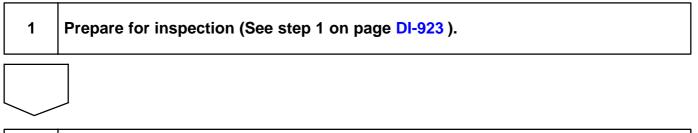
CIRCUIT DESCRIPTION

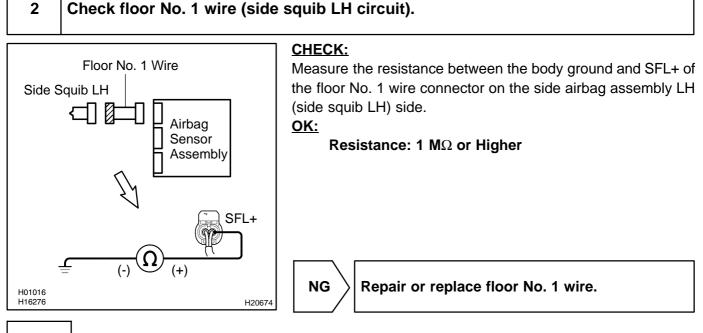
The side squib LH circuit consists of the airbag sensor assembly and the side airbag assembly LH. It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS-3.

DTC B0117/45 is recorded when ground short is detected in the side squib LH circuit.

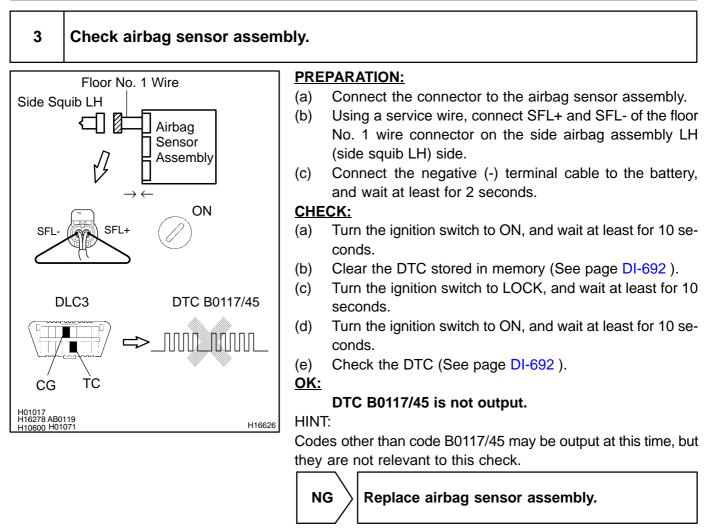
DTC No.	DTC Detecting Condition	Trouble Area
B0117/45		★Side airbag assembly LH (Side squib LH) ★Airbag sensor assembly
	Airbag sensor assembly malfunction	⊀F loor No. 1 wire

HINT:

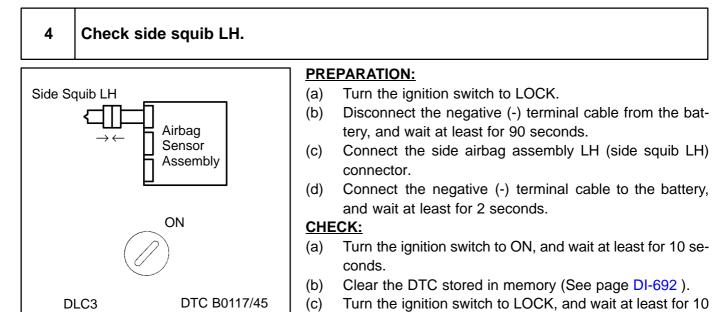

DTC


DTC B0117/45 is indicated only for the vehicle equipped with the side airbag.

WIRING DIAGRAM


See page DI-758.

INSPECTION PROCEDURE



ΟΚ

ОК

- seconds.(d) Turn the ignition switch to ON, and wait at least for 10 se-
- conds. (e) Check the DTC (See page DI-692).
- (e) Check the DTC (See page DI-692). OK:

DTC B0117/45 is not output.

HINT:

NG

H11030

Codes other than code B0117/45 may be output at this time, but they are not relevant to this check.

Replace side airbag assembly LH (side squib LH).

CG

H01018 AB0119 H10600 H01071 TC

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness. DTC

B0118/46

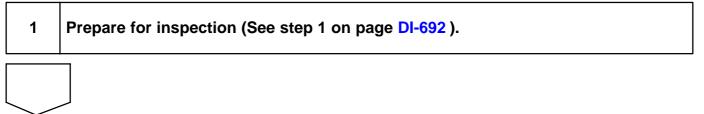
Short in Side Squib LH Circuit (to B+)

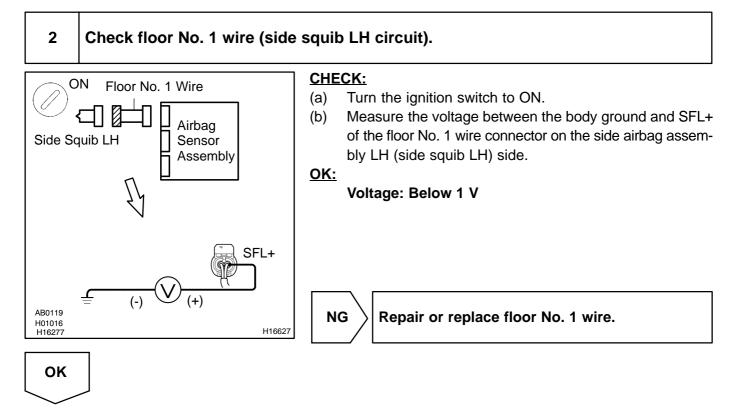
DI6PI-21

CIRCUIT DESCRIPTION

The side squib LH circuit consists of the airbag sensor assembly and the side airbag assembly LH. It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS-3. DTC B0118/46 is recorded when a B+ short is detected in the side squib LH circuit.

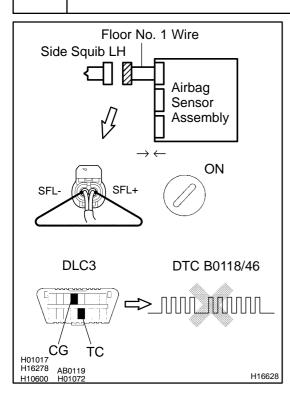
DTC No.	DTC Detecting Condition	Trouble Area
	★Short in side squib LH circuit (to B+)	★Side airbag assembly LH (Side squib LH)
B0118/46	★Side squib LH malfunction	★Airbag sensor assembly
	Airbag sensor assembly malfunction	⊀ Floor No. 1 wire


HINT:


DTC B0118/46 is indicated only for the vehicle equipped with the side airbag.

WIRING DIAGRAM

See page DI-692.


INSPECTION PROCEDURE

3 Chec

PREPARATION:

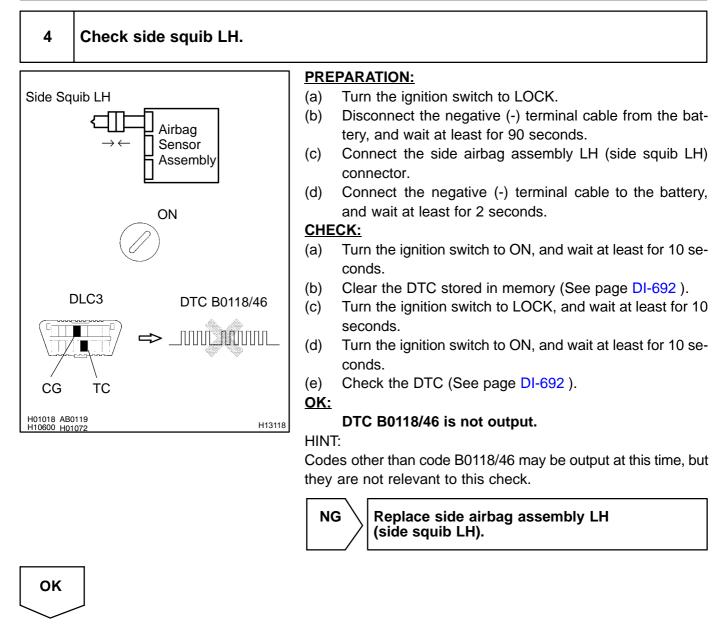
- (a) Turn the ignition switch to LOCK.
- (b) Disconnect the negative (-) terminal cable from the battery, and wait at least for 90 seconds.
- (c) Connect the connector to the airbag sensor assembly.
- (d) Using a service wire, connect SFL+ and SFL- of the floor No. 1 wire connector on the side airbag assembly LH (side squib LH) side.
- (e) Connect the negative (-) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

- (a) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (b) Clear the DTC stored in memory (See page DI-692).
- (c) Turn the ignition switch to LOCK, and wait at least for 10 seconds.
- (d) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (e) Check the DTC (See page DI-692).

<u>OK:</u>

DTC B0118/46 is not output.


HINT:

Codes other than code B0118/46 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.

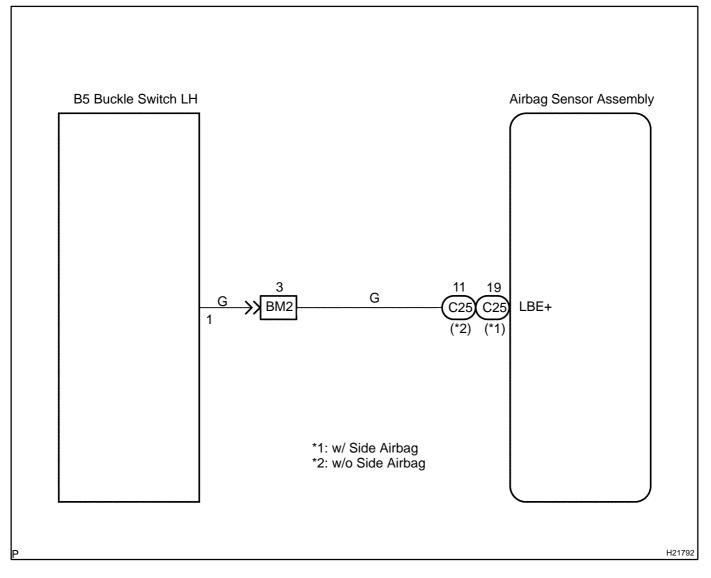
OK

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DIB3R-01

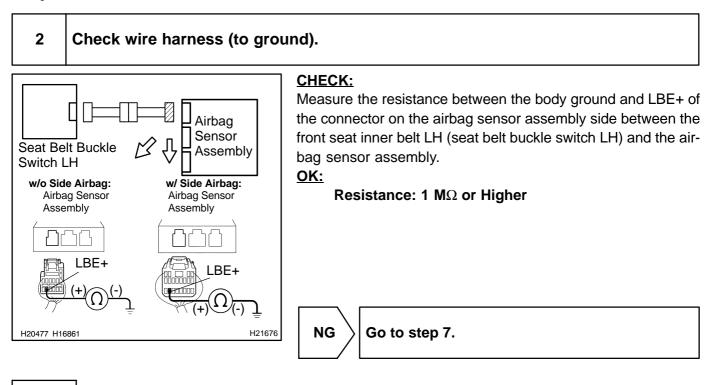
DTC B0126/B0127/27 Seat Belt Buckle Switch LH Malfunction

CIRCUIT DESCRIPTION


The seat belt buckle switch LH malfunction circuit consists of the airbag sensor assembly and the front seat inner belt LH (seat belt buckle switch LH).

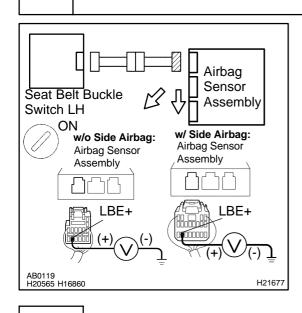
For details of the function of each component, see OPERATION on page RS-3.

DTC B0126/B0127/27 is recorded when a malfunction is detected in the seat belt buckle switch LH circuit.


DTC No.	DTC Detecting Condition	Trouble Area
B0126/B0127/27	Seat belt buckle switch LH circuit malfunction	 ★Front seat inner belt LH (Seat belt buckle switch LH) ★Airbag sensor assembly ★Floor No. 1 wire ★Front seat wire LH

WIRING DIAGRAM

INSPECTION PROCEDURE


1 Prepare for inspection (See step 1 on page DI-692).

ок

3

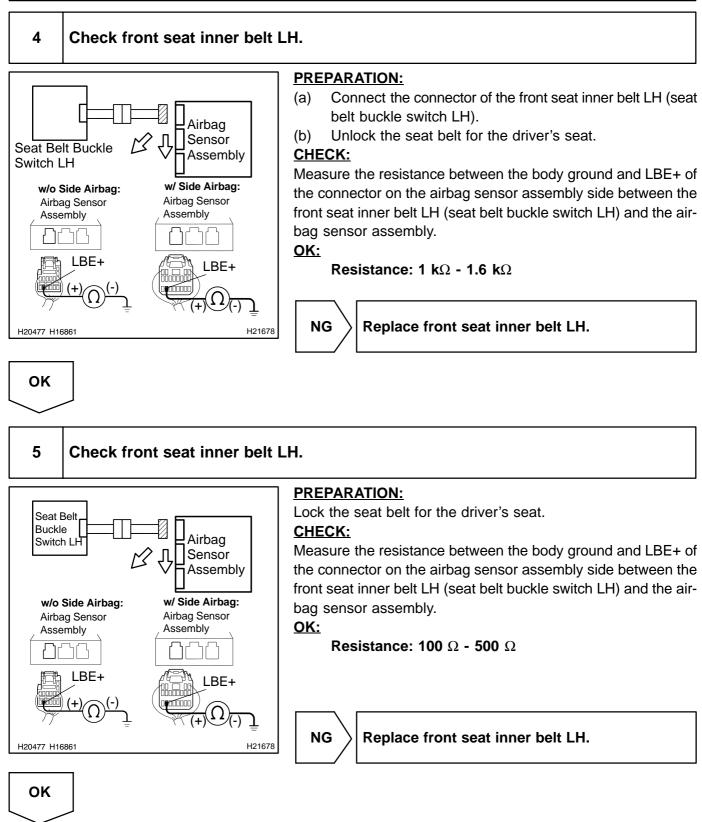
Check wire harness (to B+).

PREPARATION:

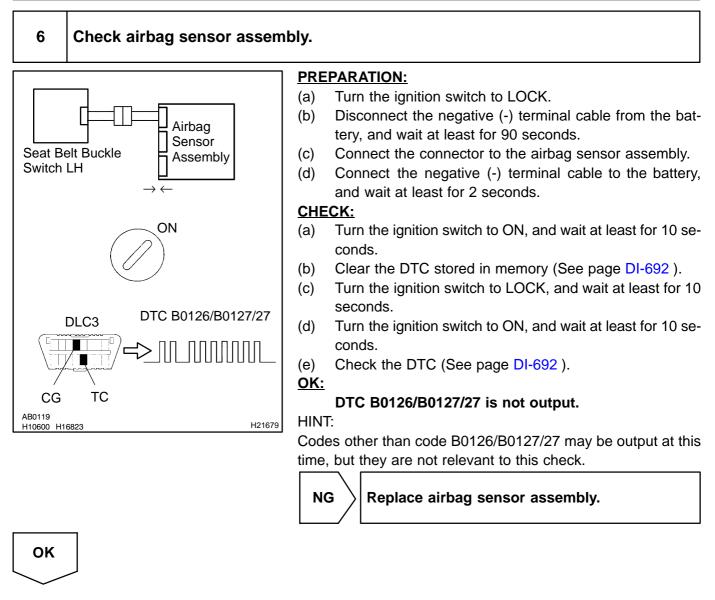
Connect the negative (-) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

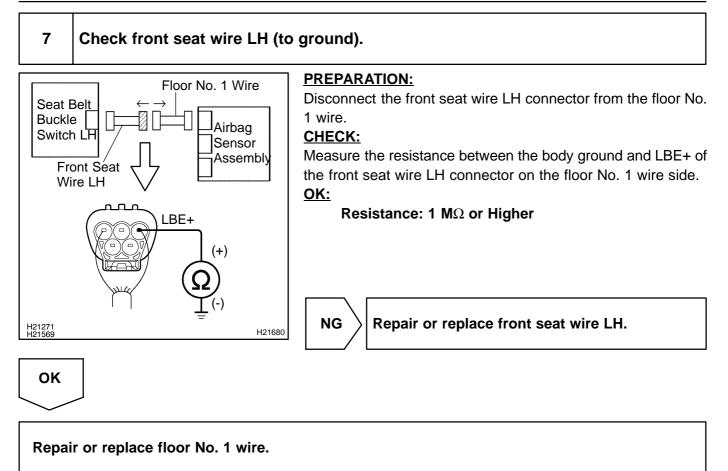
- (a) Turn the ignition switch to ON.
- (b) Measure the voltage between the body ground and LBE+ of the connector on the airbag sensor assembly side between the front seat inner belt LH (seat belt buckle switch LH) and the airbag sensor assembly.

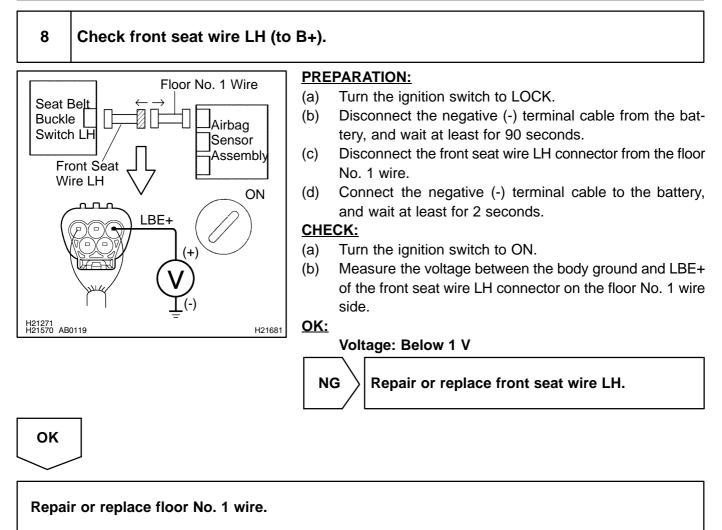

<u>OK:</u>

NG


Voltage: Below 1 V

 \rangle Go to step 8.


OK 2004 LAND CRUISER (RM1071U)


DI-773

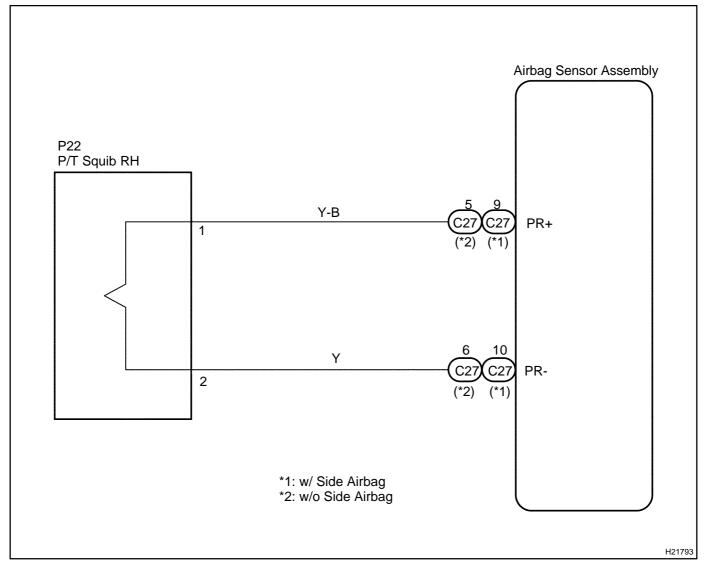
From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DI-776

DI6PJ-26

DTC

B0130/63

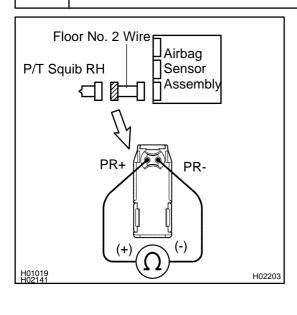

Short in P/T Squib RH Circuit

CIRCUIT DESCRIPTION

The P/T squib RH circuit consists of the airbag sensor assembly and the seat belt pretensioner RH. It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS-3. DTC B0130/63 is recorded when a short is detected in the P/T squib RH circuit.

DTC No.	DTC Detecting Condition	Trouble Area
	★Short in P/T squib RH circuit	★Seat belt pretensioner RH (P/T squib RH)
B0130/63	★P/T squib RH malfunction	★Airbag sensor assembly
	★Airbag sensor assembly malfunction	★Floor No. 2 wire

WIRING DIAGRAM



INSPECTION PROCEDURE

1 Prepare for inspection (See step 1 on page DI-923).

2

Check floor No. 2 wire (P/T squib RH circuit).

PREPARATION:

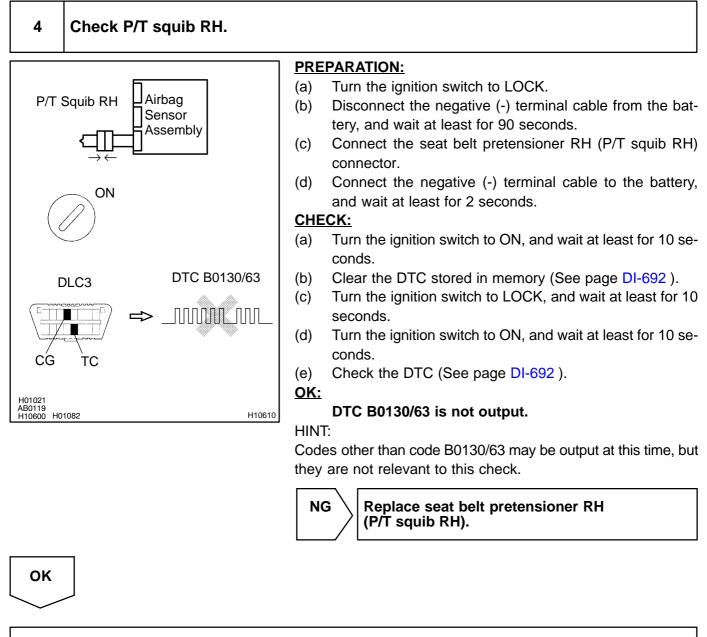
Release the airbag activation prevention mechanism built in the connector of the floor No. 2 wire on the airbag sensor assembly side (See page DI-692).

CHECK:

Measure the resistance between PR+ and PR- of the floor No. 2 wire connector on the seat belt pretensioner RH (P/T squib RH) side.

<u>OK:</u>




NG

Repair or replace floor No. 2 wire.

Resistance: 1 M Ω or Higher

ОК

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DI6PK-16

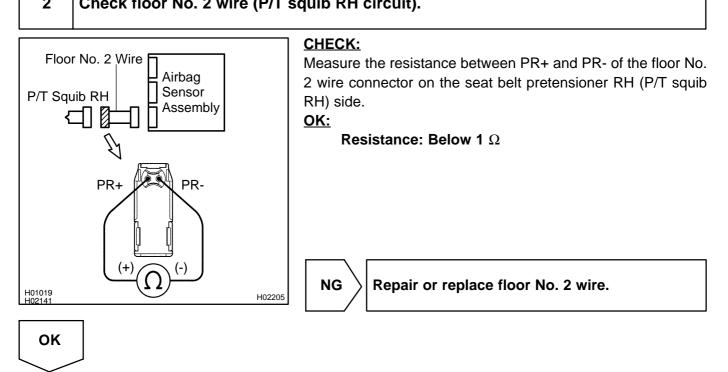
DTC

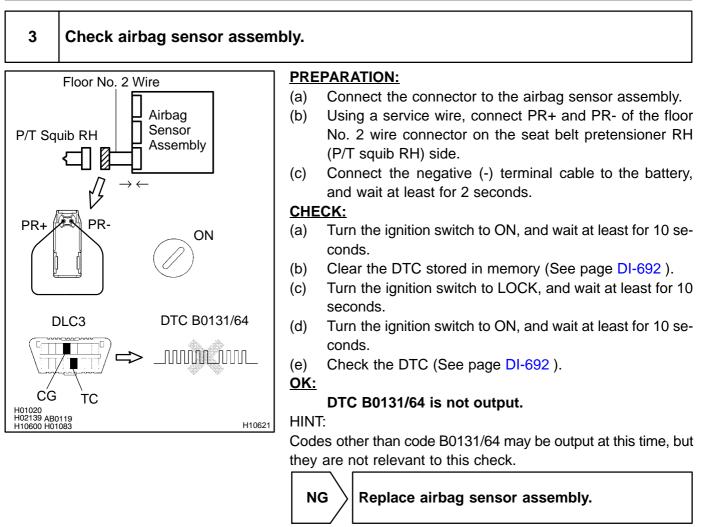
B0131/64

Open in P/T Squib RH Circuit

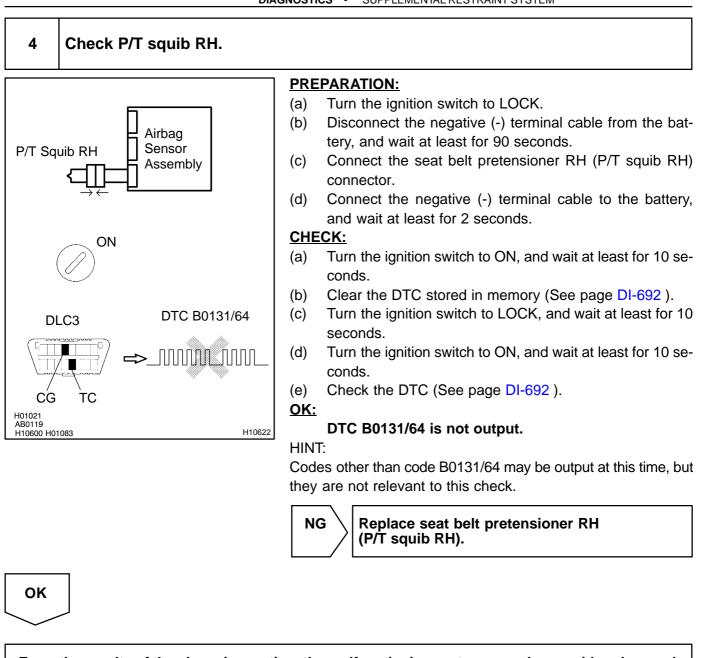
CIRCUIT DESCRIPTION

The P/T squib RH circuit consists of the airbag sensor assembly and the seat belt pretensioner RH. It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS-3. DTC B0131/64 is recorded when an open is detected in the P/T squib RH circuit.


DTC No.	DTC Detecting Condition	Trouble Area
	★Open in P/T squib RH circuit	★Seat belt pretensioner RH (P/T squib RH)
B0131/64	★P/T squib RH malfunction	★Airbag sensor assembly
	★Airbag sensor assembly malfunction	★Floor No. 2 wire


WIRING DIAGRAM

See page DI-777.


INSPECTION PROCEDURE

1	Prepare for inspection (See step 1 on page DI-923).
2	Check floor No. 2 wire (P/T squib RH circuit)

ОК

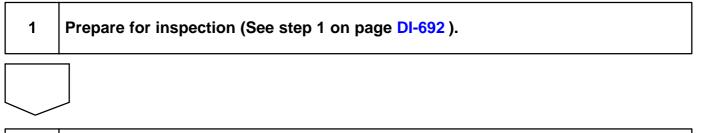
From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

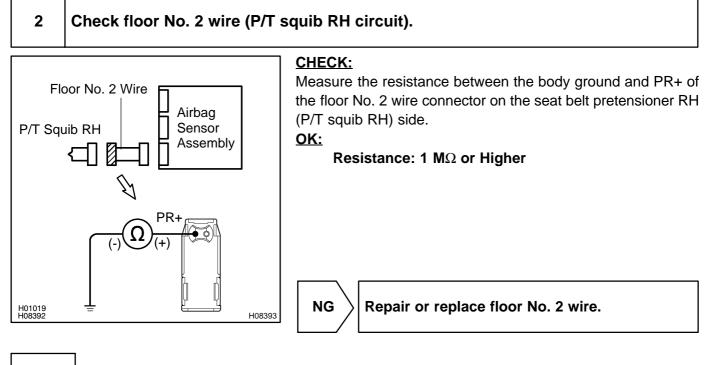
DI6PL-16

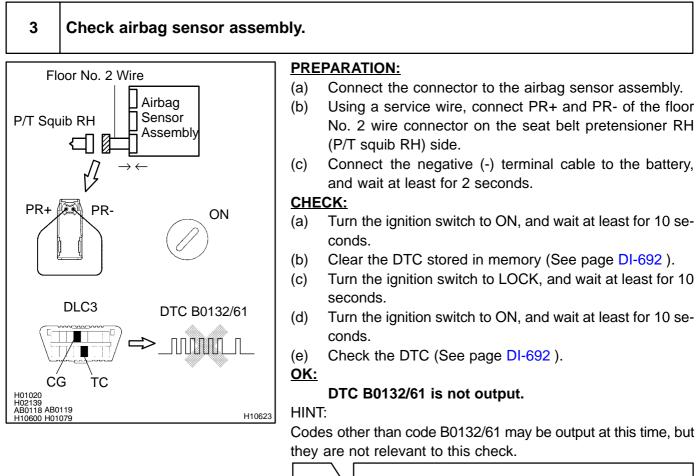
DTC B0132/61 Short in P/T Squib RH Circuit (to Ground)

CIRCUIT DESCRIPTION

The P/T squib RH circuit consists of the airbag sensor assembly and the seat belt pretensioner RH. It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS-3.

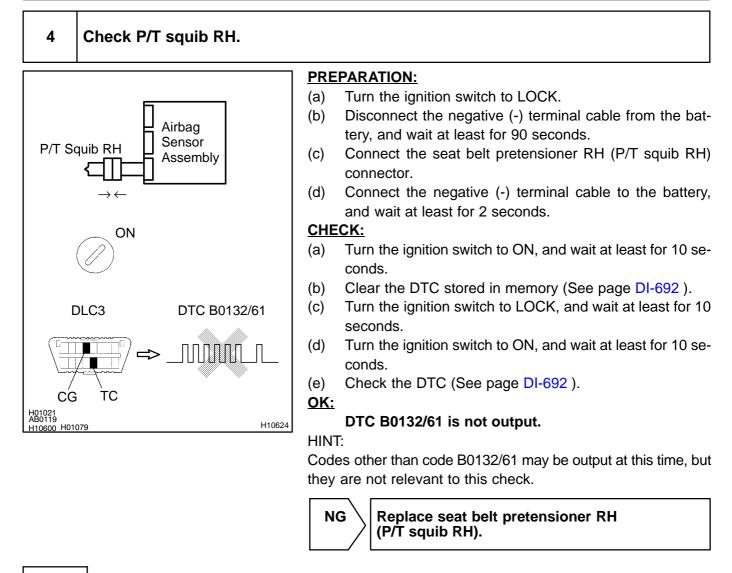

DTC B0132/61 is recorded when a ground short is detected in the P/T squib RH circuit.


DTC No.	DTC Detecting Condition	Trouble Area
	★Short in P/T squib RH circuit (to ground)	★Seat belt pretensioner RH (P/T squib RH)
B0132/61	★P/T squib RH malfunction	★Airbag sensor assembly
	*Airbag sensor assembly malfunction	★Floor No. 2 wire


WIRING DIAGRAM

See page DI-692.

INSPECTION PROCEDURE



NG

Replace airbag sensor assembly.

DI-786

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

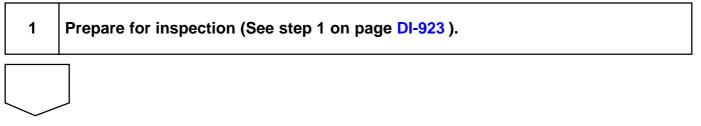
DI6PM-16

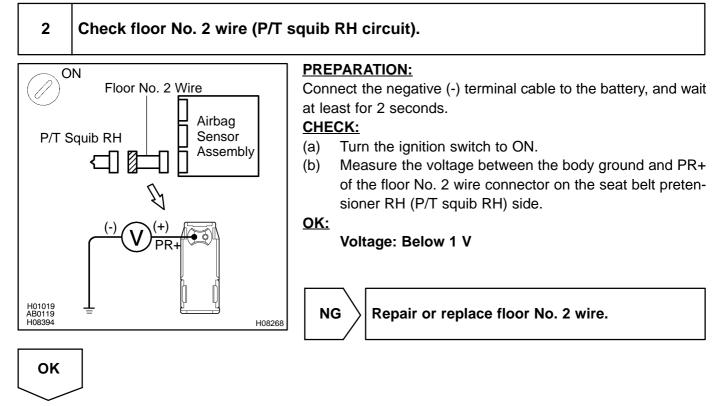
DTC

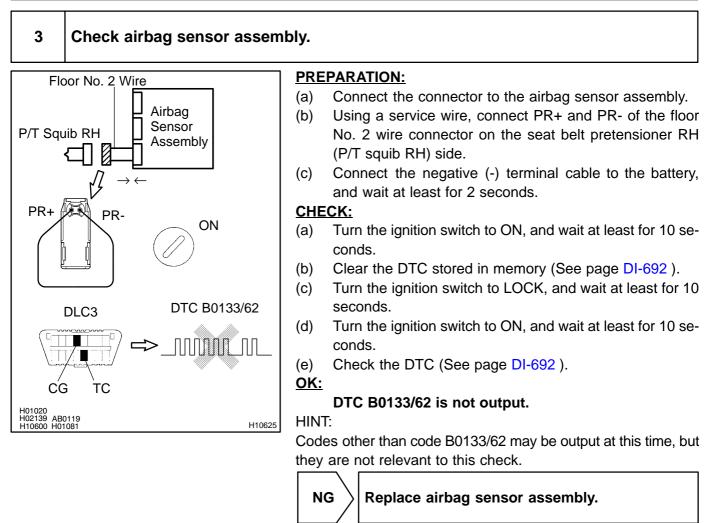
B0133/62

Short in P/T Squib RH Circuit (to B+)

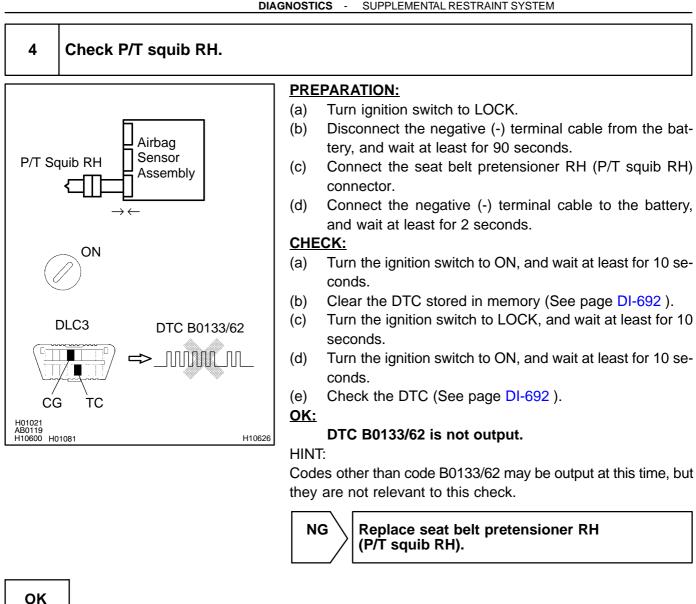
CIRCUIT DESCRIPTION


The P/T squib RH circuit consists of the airbag sensor assembly and the seat belt pretensioner RH. It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS-3. DTC B0133/62 is recorded when a B+ short is detected in the P/T squib RH circuit.


DTC No.	DTC Detecting Condition	Trouble Area
B0133/62	★Short in P/T squib RH circuit (to B+) ★P/T squib RH malfunction ★Airbag sensor assembly malfunction	★Seat belt pretensioner RH (P/T squib RH) ★Airbag sensor assembly ★Floor No. 2 wire ★Dash wire (Bench seat)


WIRING DIAGRAM

See page DI-777 .


INSPECTION PROCEDURE

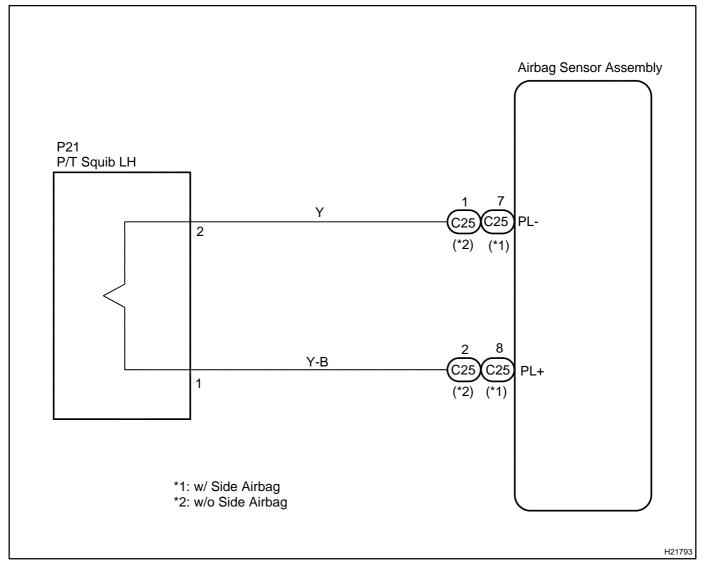
ОК

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DI6PN-26

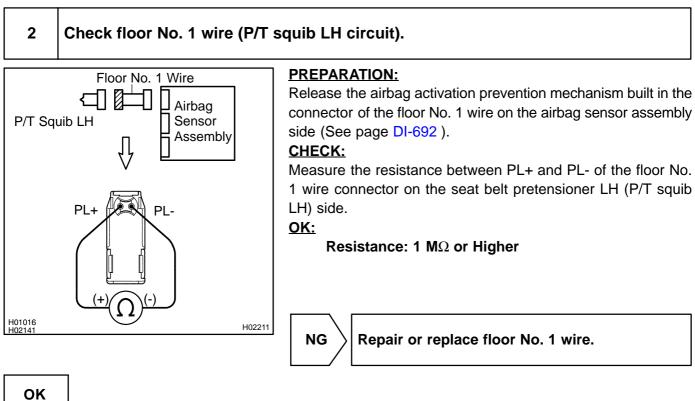
DTC

B0135/73

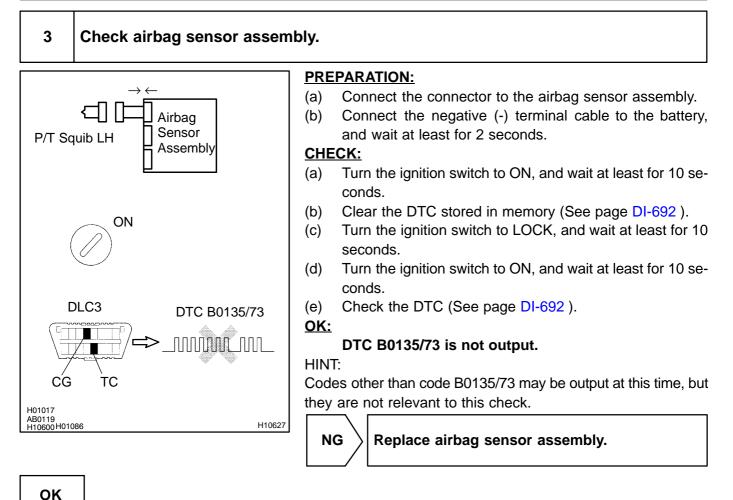

Short in P/T Squib LH Circuit

CIRCUIT DESCRIPTION

The P/T squib LH circuit consists of the airbag sensor assembly and the seat belt pretensioner LH. It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS-3. DTC B0135/73 is recorded when a short is detected in the P/T squib LH circuit.

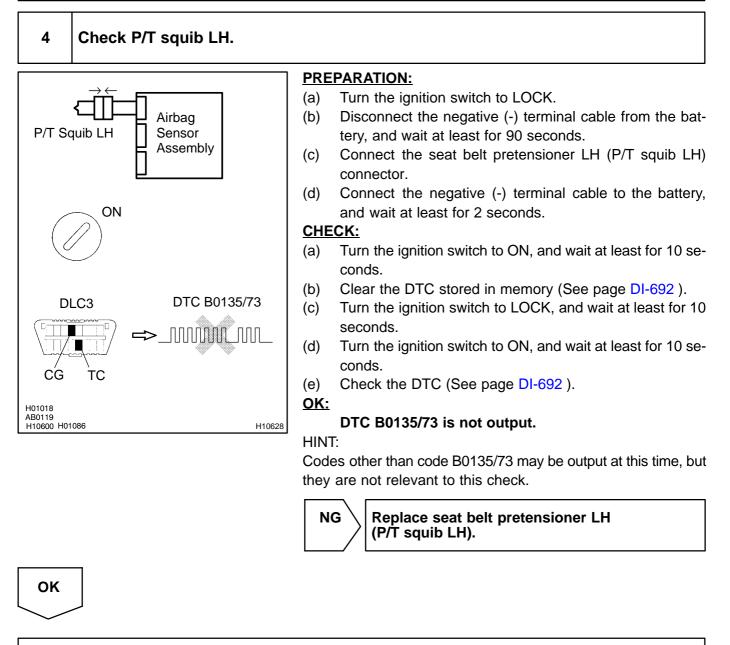

DTC No.	DTC Detecting Condition	Trouble Area
	★Short in P/T squib LH circuit	★Seat belt pretensioner LH (P/T squib LH)
B0135/73	₩P/T squib LH malfunction	★Airbag sensor assembly
	★Airbag sensor assembly malfunction	★Floor No. 1 wire

WIRING DIAGRAM



INSPECTION PROCEDURE

1 Prepare for inspection (See step 1 on page DI-923).



DI-792

2004 LAND CRUISER (RM1071U)

DIAGNOSTICS - SUPPLEMENTAL RESTRAINT SYSTEM

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DI6PO-16

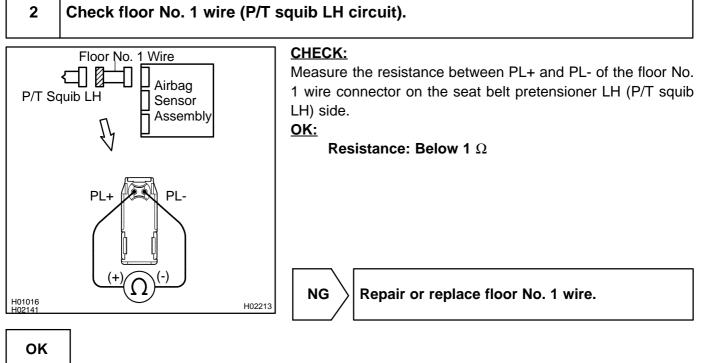
DTC

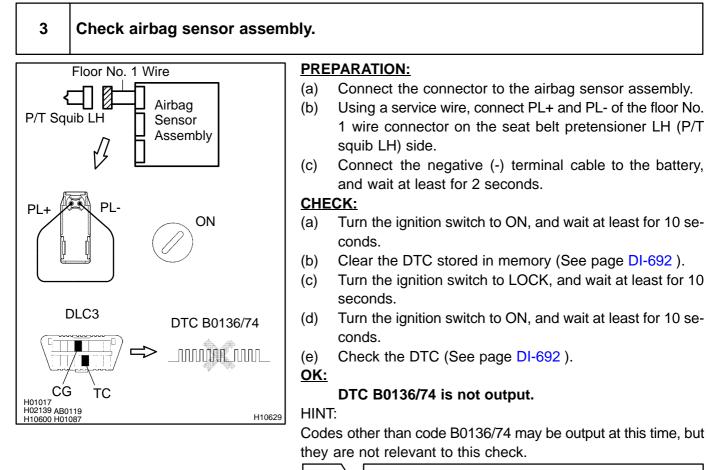
B0136/74

Open in P/T Squib LH Circuit

CIRCUIT DESCRIPTION

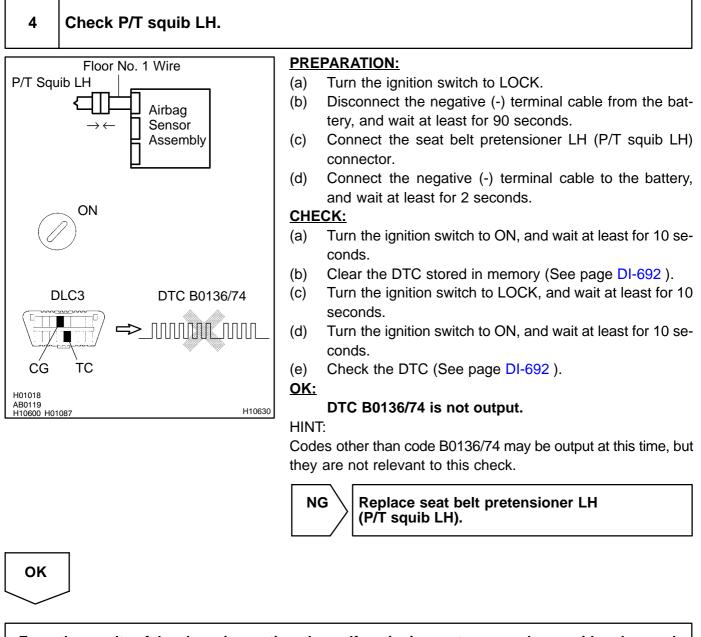
The P/T squib LH circuit consists of the airbag sensor assembly and the seat belt pretensioner LH. It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS-3. DTC B0136/74 is recorded when an open is detected in the P/T squib LH circuit.


DTC No.	DTC Detecting Condition	Trouble Area
	★Open in P/T squib LH circuit	★Seat belt pretensioner LH (P/T squib LH)
B0136/74	★P/T squib LH malfunction	★Airbag sensor assembly
	₩Airbag sensor assembly malfunction	★Floor No. 1 wire


WIRING DIAGRAM

See page DI-790.

INSPECTION PROCEDURE


1	Prepare for inspection (See step 1 on page DI-923).

NG

Replace airbag sensor assembly.

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DI-797

DI6PP-16

Short in P/T Squib LH Circuit (to Ground)

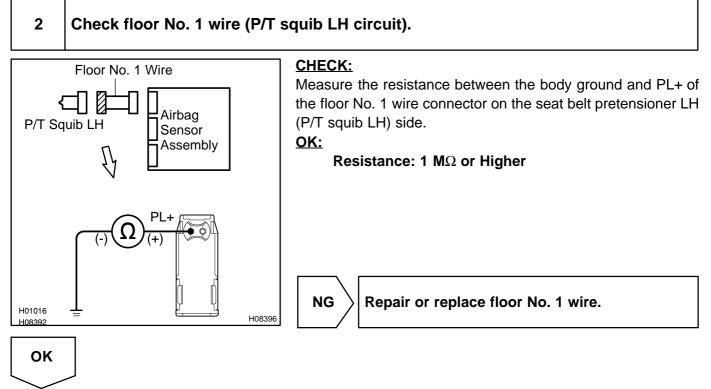
CIRCUIT DESCRIPTION

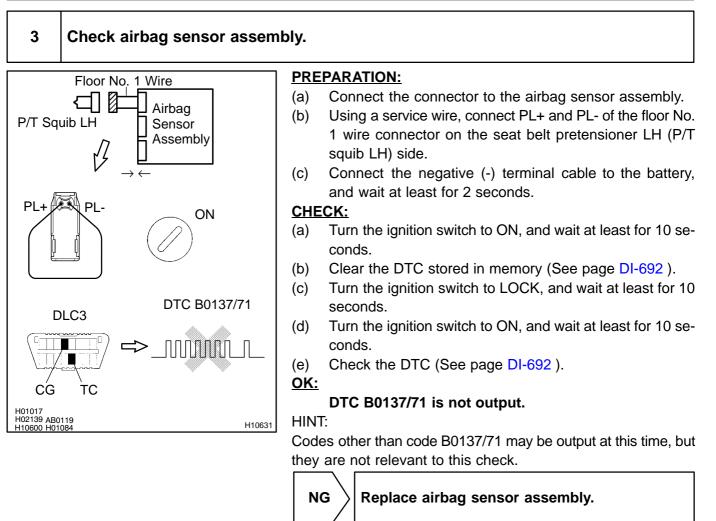
B0137/71

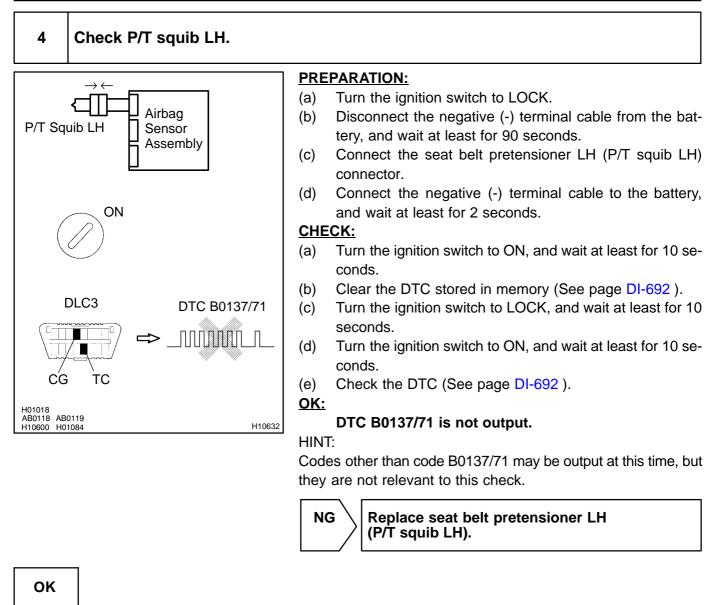
The P/T squib LH circuit consists of the airbag sensor assembly and the seat belt pretensioner LH. It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS-3.

DTC B0137/71 is recorded when a ground short is detected in the P/T squib LH circuit.


DTC No.	DTC Detecting Condition	Trouble Area
	★Short in P/T squib LH circuit (to ground)	★Seat belt pretensioner LH (P/T squib LH)
B0137/71	₩P/T squib LH malfunction	★Airbag sensor assembly
	★Airbag sensor assembly malfunction	★Floor No. 1 wire


WIRING DIAGRAM


See page DI-790.


DTC

INSPECTION PROCEDURE

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness. DTC

B0138/72

Short in P/T Squib LH Circuit (to B+)

DI6PQ-16

CIRCUIT DESCRIPTION

The P/T squib LH circuit consists of the airbag sensor assembly and seat belt pretensioner LH. It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS-3. DTC B0138/72 is recorded when a B+ short is detected in the P/T squib LH circuit.

DTC No.	DTC Detecting Condition	Trouble Area
	★Short in P/T squib LH circuit (to B+)	★Seat belt pretensioner LH (P/T squib LH)
B0138/72	★P/T squib LH malfunction	★Airbag sensor assembly
	★Airbag sensor assembly malfunction	★Floor No. 1 wire

WIRING DIAGRAM

See page DI-790.

ON

P/T Squib LH

Ĩ

AB0119 H01016 H08394

OK

INSPECTION PROCEDURE

Floor No. 1 Wire

Airbag

Sensor Assembly

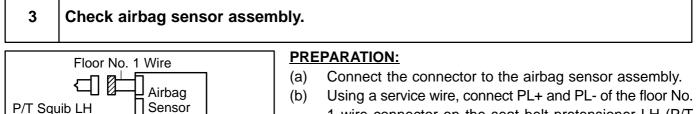
1	Prepare for inspection (See step 1 on page DI-923).
2	Check floor No. 1 wire (P/T squib LH circuit).

PREPARATION:

Connect the negative (-) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

- (a) Turn the ignition switch to ON.
- (b) Measure the voltage between the body ground and PL+ of the floor No. 1 wire connector on the seat belt pretensioner LH (P/T squib LH) side.


<u>OK:</u>

NG

H08269

Voltage: Below 1 V

 \rangle Repair or replace floor No. 1 wire.

1 wire connector on the seat belt pretensioner LH (P/T squib LH) side.

DI-801

(c) Connect the negative (-) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

Assembly

ON

DTC B0138/72

H10633

ուսու

- (a) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (b) Clear the DTC stored in memory (See page DI-692).
- (c) Turn the ignition switch to LOCK, and wait at least for 10 seconds.
- (d) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (e) Check the DTC (See page DI-692).

DTC B0138/72 is not output.

HINT:

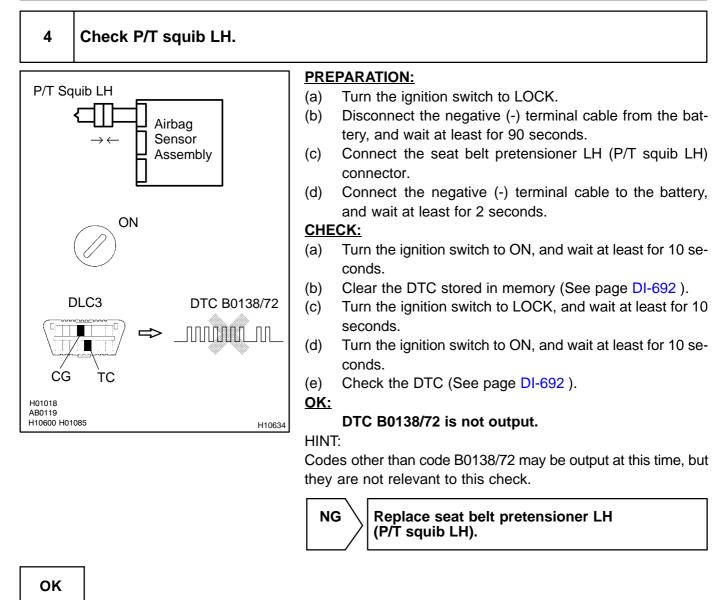
OK:

Codes other than code B0138/72 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.

OK


PL+

DLC3

TC

CG

H01017 H02139 AB0119 H10600 H01085 PL-

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DI6PR-15

DTC

B1100/31

Airbag Sensor Assembly Malfunction

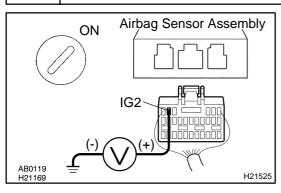
CIRCUIT DESCRIPTION

The airbag sensor assembly consists of the airbag sensor, safing sensor, drive circuit, diagnosis circuit and ignition control, etc.

It receives signals from the airbag sensor, judges whether or not the SRS must be activated, and detects diagnosis system malfunction.

DTC B1100/31 is recorded when occurrence of a malfunction in the airbag sensor assembly is detected.

DTC No.	DTC Detecting Condition	Trouble Area
B1100/31	Airbag sensor assembly malfunction	₩Airbag sensor assembly


INSPECTION PROCEDURE

HINT:

When a malfunction code other than code B1100/31 is displayed at the same time, first repair the malfunction indicated by the malfunction code other than code B1100/31.

1	Prepare for inspection (See step 1 on page DI-923).		

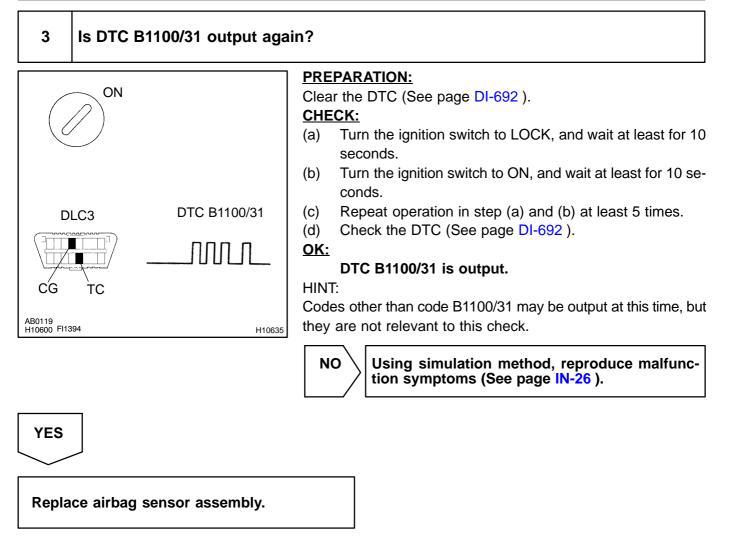
2 Check airbag sensor assembly.

PREPARATION:

Connect the negative (-) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

- (a) Turn the ignition switch to ON.
- (b) Measure the voltage between the body ground and IG2 of the dash wire connector on the airbag sensor assembly side.


<u>OK:</u>

Voltage: 10 - 14 V

NG

Check that an abnormality occurs on the battery and charging system.

DI-804

DIB3S-01

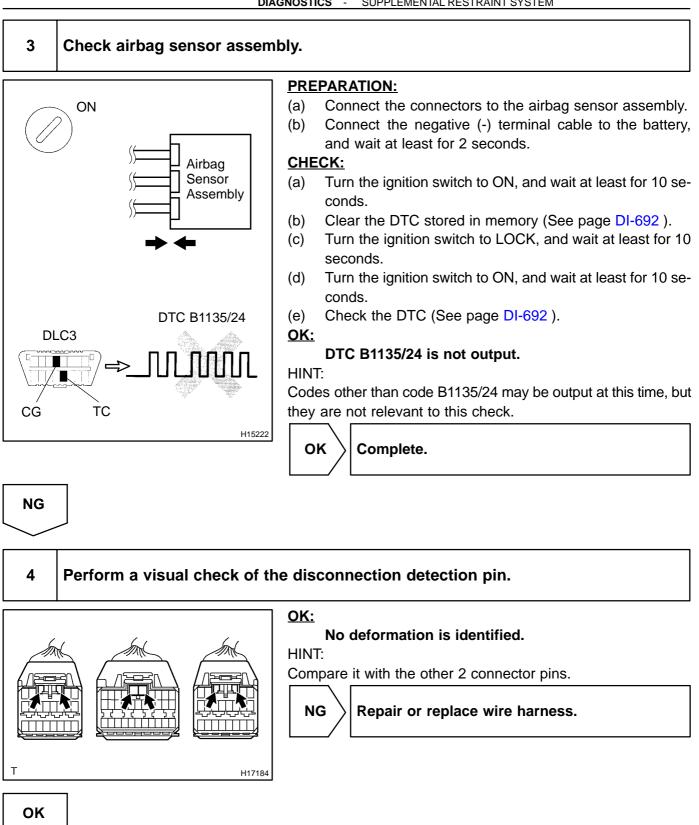
DTC		Half Connection in Airbag Sensor Assembly Connector
-----	--	---

CIRCUIT DESCRIPTION

The airbag sensor assembly detects partial connection of connector.

For details of the function of each component, see OPERATION on page RS-3.


DTC B1135/24 is recorded when the airbag sensor assembly detects an open in the electrical connection check mechanism of the airbag sensor connector or in the airbag sensor circuit.


DTC No.	DTC Detecting Condition	Trouble Area
B1135/24	 ★Malfunction of electrical connection check mechanism of airbag sensor assembly connector ★Airbag sensor assembly malfunction 	Ælectrical connection check mechanism ₩irbag sensor assembly

INSPECTION PROCEDURE

1	Are connectors of airbag sensor assembly properly connected?
---	--

Replace airbag sensor assembly.

DIB3T-01

DTC

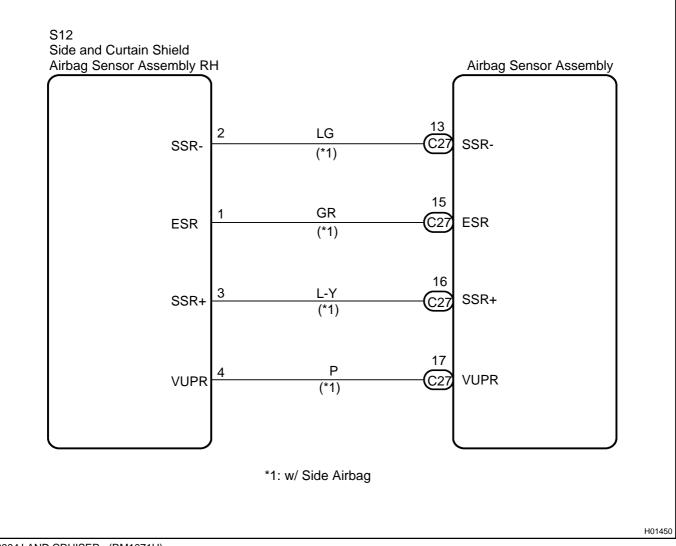
B1140/32

Side and Curtain Shield Airbag Sensor Assembly RH Malfunction

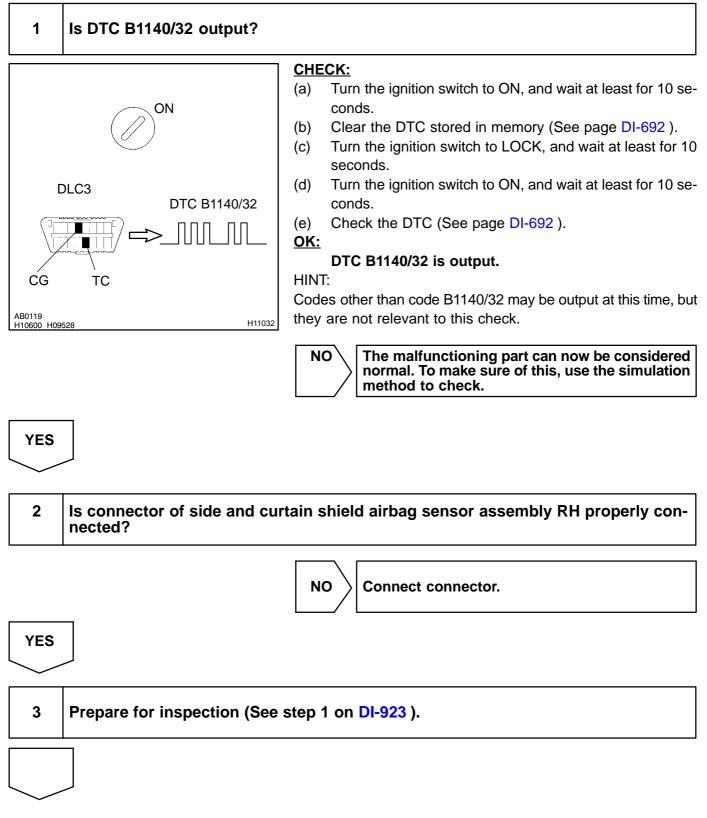
CIRCUIT DESCRIPTION

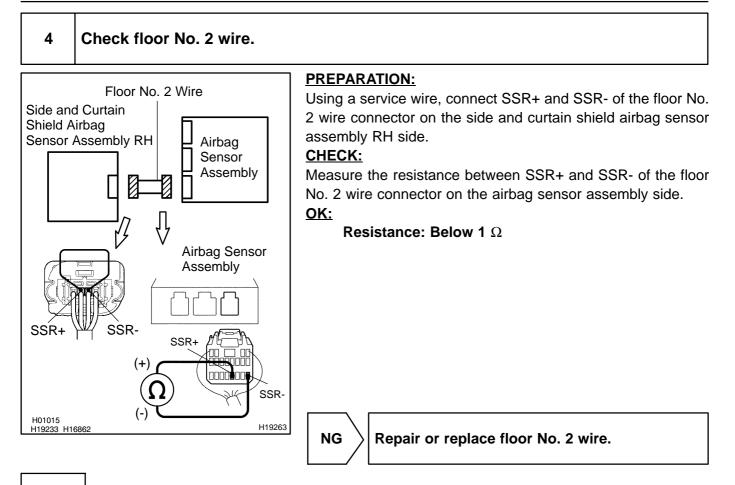
The side and curtain shield airbag sensor assembly RH consists of the safing sensor, diagnosis circuit and lateral deceleration sensor, etc.

It receives signals from the lateral deceleration sensor, judges whether or not the SRS must be activated, and detects diagnosis system malfunction.

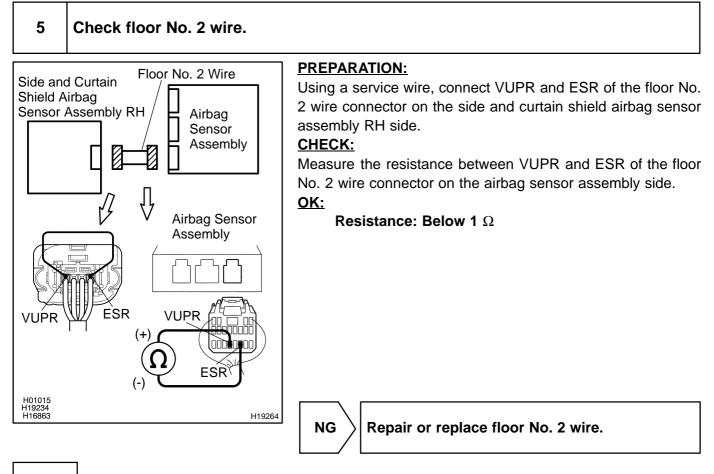

DTC B1140/32 is recorded when occurrence of a malfunction in the side and curtain shield airbag sensor assembly RH is detected.

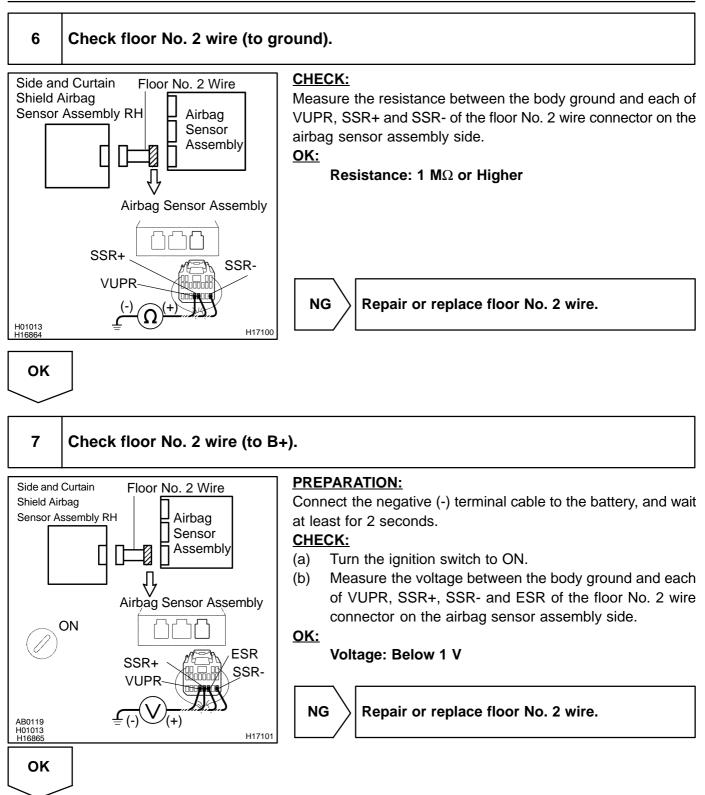
DTC No.	DTC Detecting Condition	Trouble Area
B1140/32	★Side and curtain shield airbag sensor assembly RH mal- function	★Side and curtain shield airbag sensor assembly RH ★Floor No. 2 wire ★Airbag sensor assembly

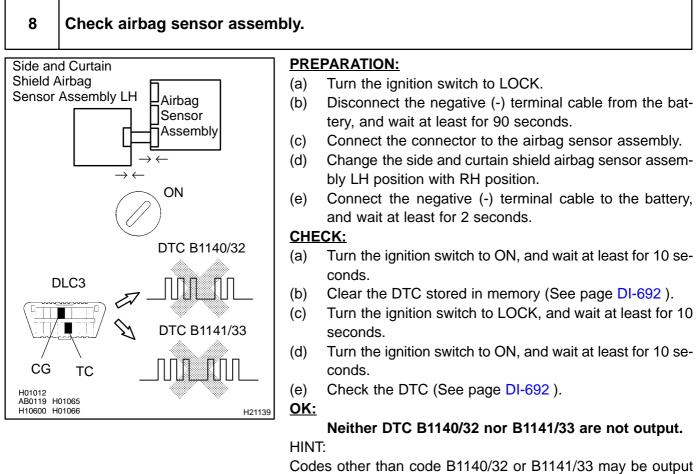

HINT:


DTC B1140/32 is indicated only for the vehicle equipped with the side airbag.

WIRING DIAGRAM


INSPECTION PROCEDURE





ΟΚ

DI-810

Codes other than code B1140/32 or B1141/33 may be output at this time, but they are not relevant to this check.

Replace airbag sensor assembly (DTC B1140/32 is output).

NG Replace side and curtain shield airbag sensor assembly RH (DTC B1141/33 is output).

ΟΚ

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

NG

DIB3U-01

DTC

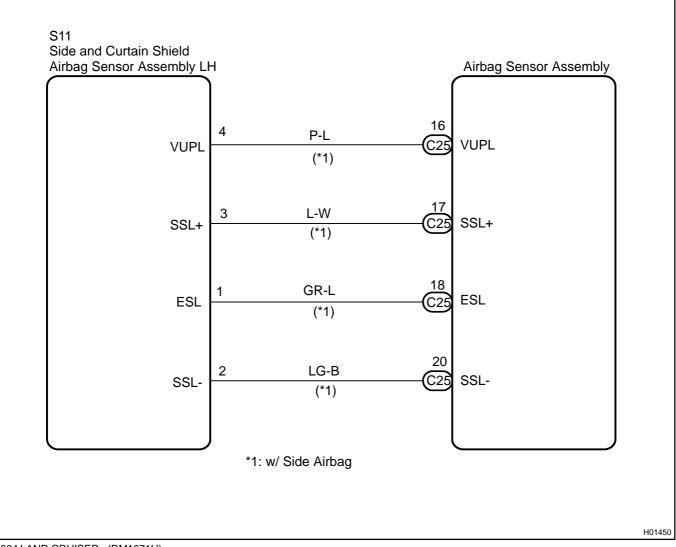
B1141/33

Side and Curtain Shield Airbag Sensor Assembly LH Malfunction

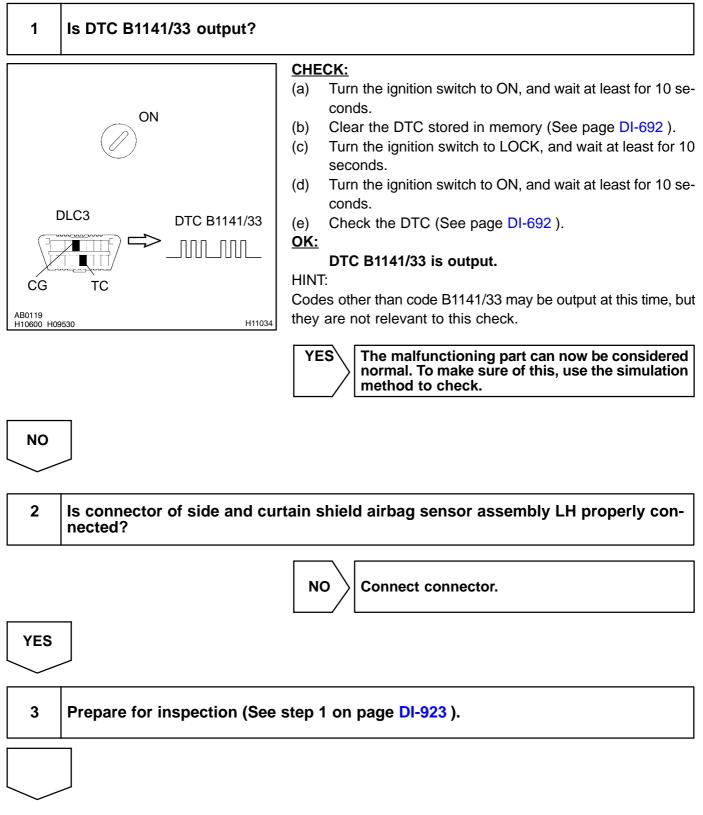
CIRCUIT DESCRIPTION

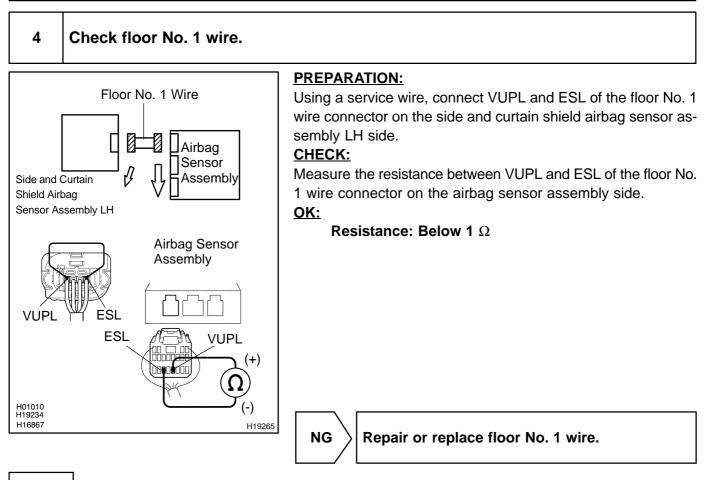
The side and curtain shield airbag sensor assembly LH consists of the safing sensor, diagnosis circuit and lateral deceleration sensor, etc.

It receives signals from the lateral deceleration sensor, judges whether or not the SRS must be activated, and detects diagnosis system malfunction.

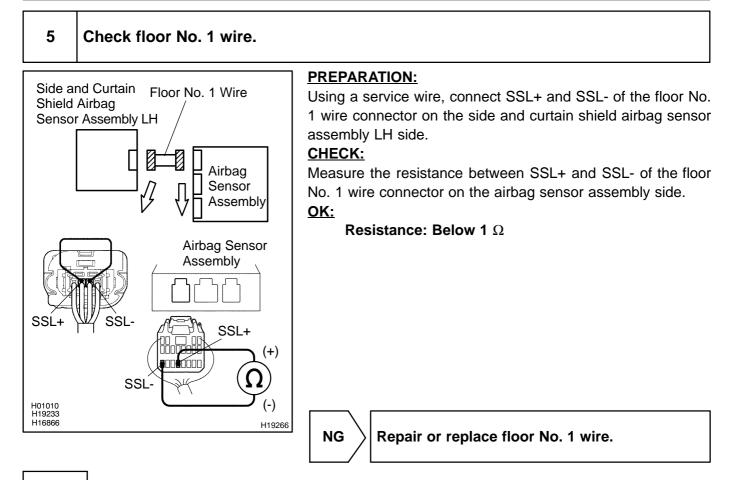

DTC B1141/33 is recorded when occurrence of a malfunction in the side and curtain shield airbag sensor assembly LH is detected.

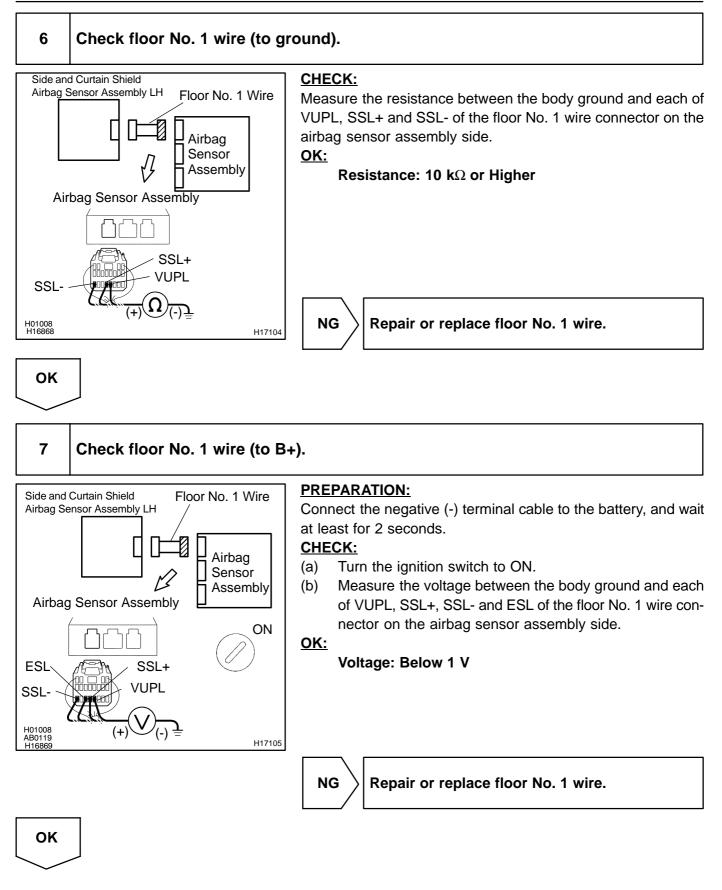
DTC No.	DTC Detecting Condition	Trouble Area
B1141/33	★Side and curtain shield airbag sensor assembly LH mal- function	★Side and curtain shield airbag sensor assembly LH ★Floor No. 1 wire ★Airbag sensor assembly

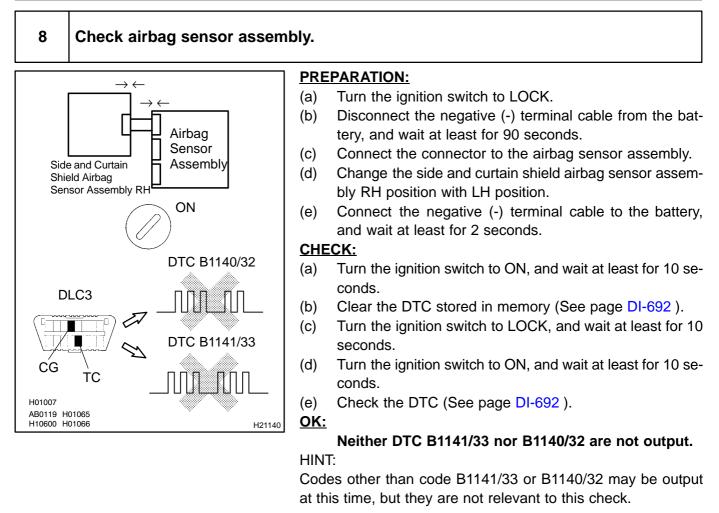

HINT:


DTC B1141/33 is indicated only for the vehicle equipped with the side airbag.

WIRING DIAGRAM


INSPECTION PROCEDURE




ΟΚ

DI-815

ΟΚ

Replace airbag sensor assembly (DTC B1141/33 is output).

NG Replace side and curtain shield airbag sensor assembly LH (DTC B1140/32 is output).

ΟΚ

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

NG

DIB3V-01

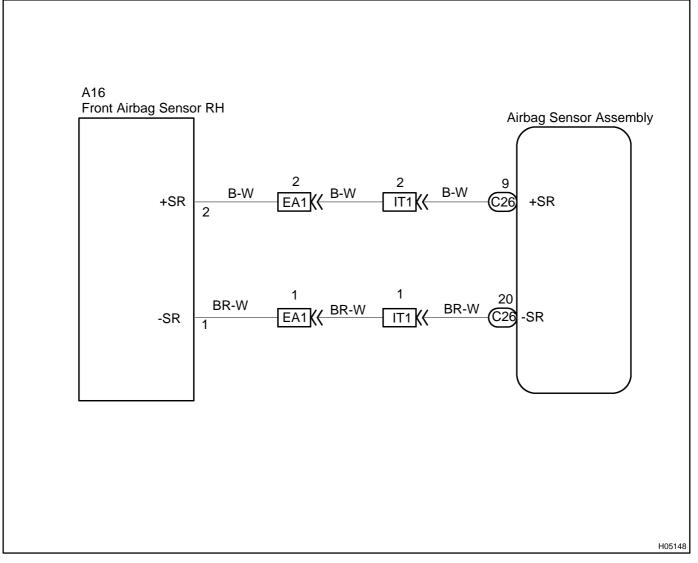
DTC

B1148/36

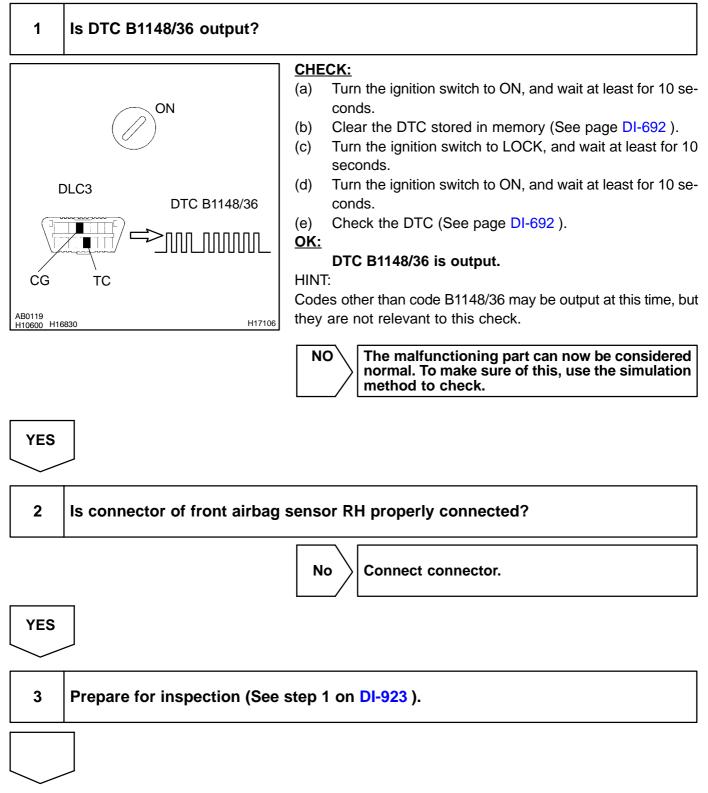
Front Airbag Sensor RH Malfunction

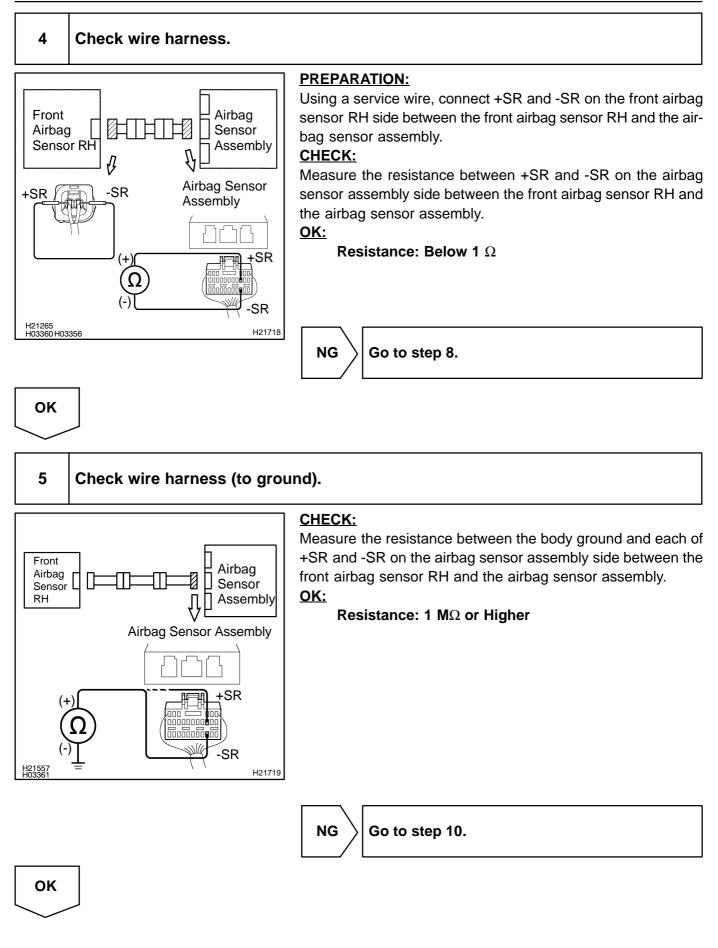
CIRCUIT DESCRIPTION

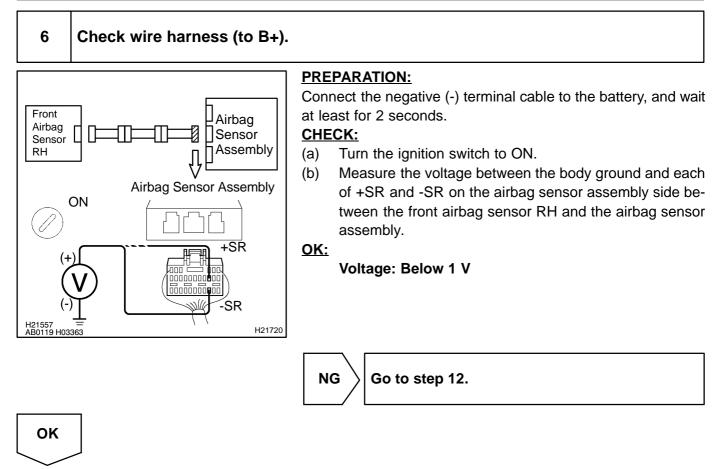
The front airbag sensor RH circuit consists of the diagnosis circuit and frontal deceleration sensor, etc. If receives signals from the frontal deceleration sensor, judges whether or not the SRS must be activated, and detects diagnosis system malfunction.

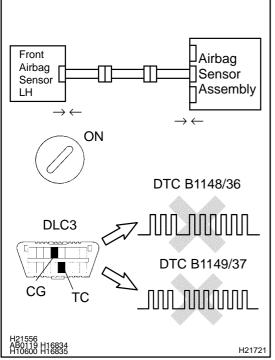

DTC B1148/36 is recorded when occurrence of a malfunction in the front airbag sensor RH is detected.

DTC No.	DTC Detecting Condition	Trouble Area
B1148/36	₩ ront airbag sensor RH malfunction	 ★Front airbag sensor RH ★Airbag sensor assembly ★Dash wire ★Engine room No. 2 wire ★Engine room main wire


HINT:


DTC B1148/36 is indicated only for the vehicle equipped with the side airbag and without the side airbag (dual stage airbag).


WIRING DIAGRAM


INSPECTION PROCEDURE

7 Check airbag sensor assembly.

PREPARATION:

(a) Turn the ignition switch to LOCK.

- (b) Disconnect the negative (-) terminal cable from the battery, and wait at least for 90 seconds.
- (c) Connect the connector to the airbag sensor assembly.
- (d) Change the front airbag sensor LH position with RH position.
- (e) Connect the negative (-) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

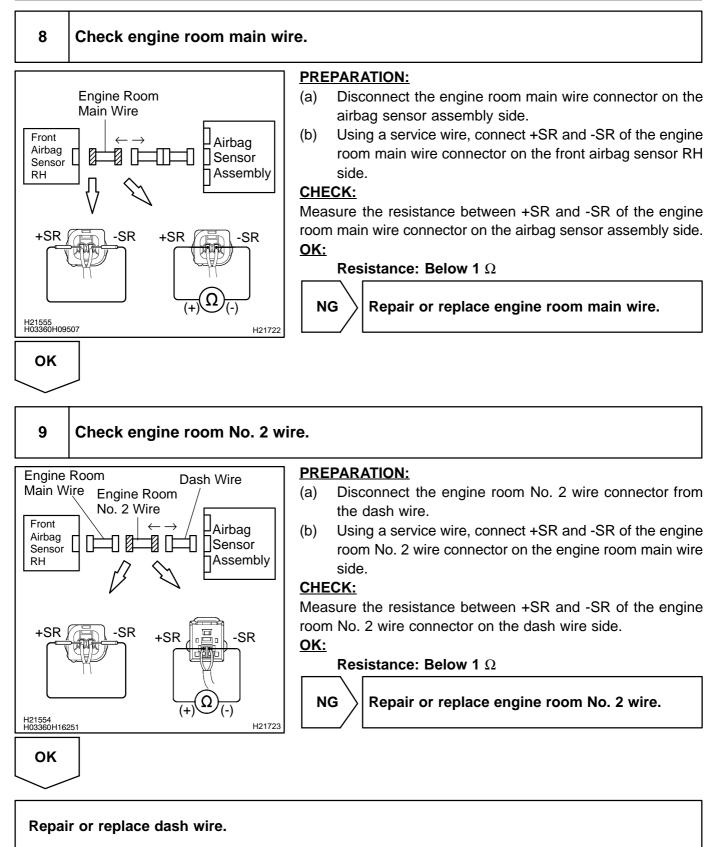
- (a) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (b) Clear the DTC stored in memory (See page DI-692).
- (c) Turn the ignition switch to LOCK, and wait at least for 10 seconds.
- (d) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (e) Check the DTC (See page DI-692).

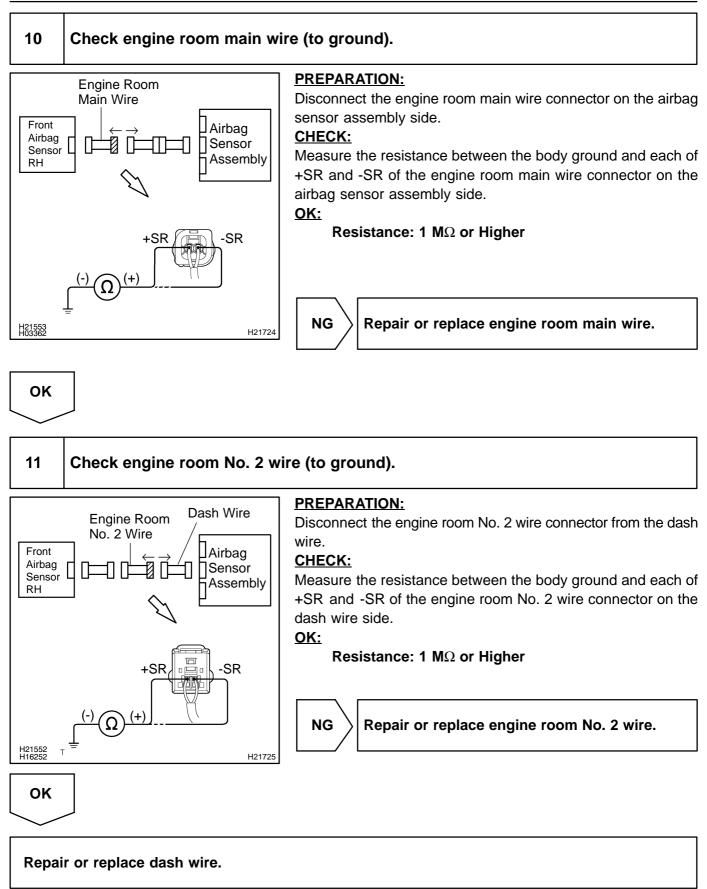
<u>OK:</u>

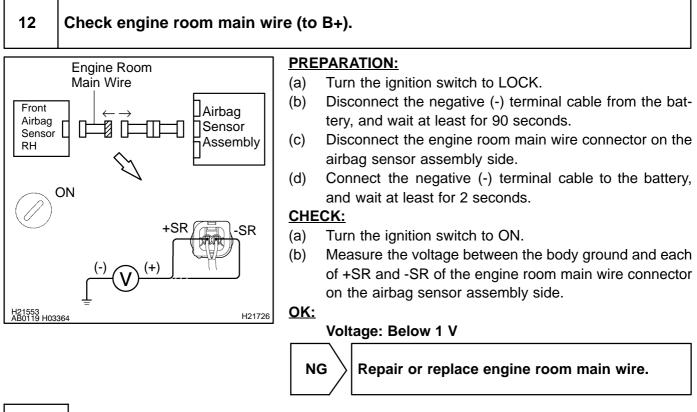
NG

NG

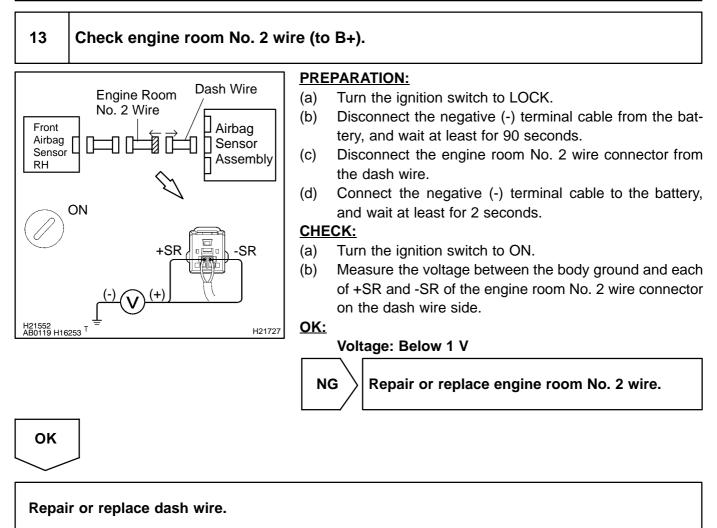
Neither DTC B1148/36 nor B1149/37 are not output. HINT:


Codes other than code B1148/36 or B1149/37 may be output at this time, but they are not relevant to this check.


Replace airbag sensor assembly (DTC B1148/36 is output).


Replace front airbag sensor RH (DTC B1149/37 is output).

ΟΚ


From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

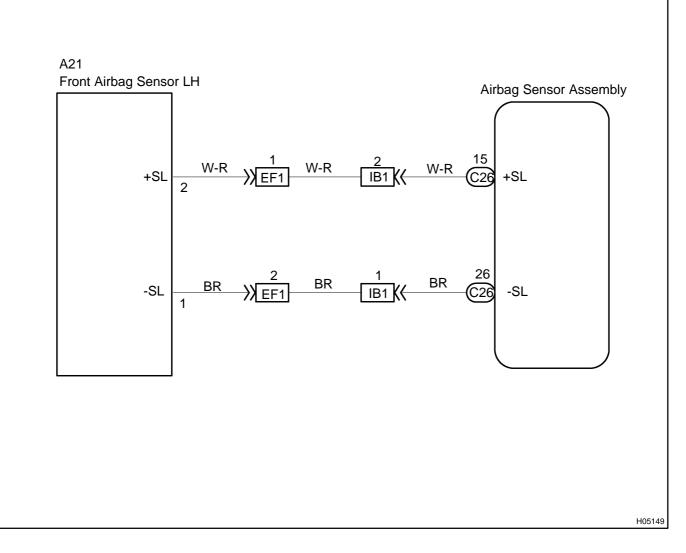
OK

Front Airbag Sensor LH Malfunction

CIRCUIT DESCRIPTION

B1149/37

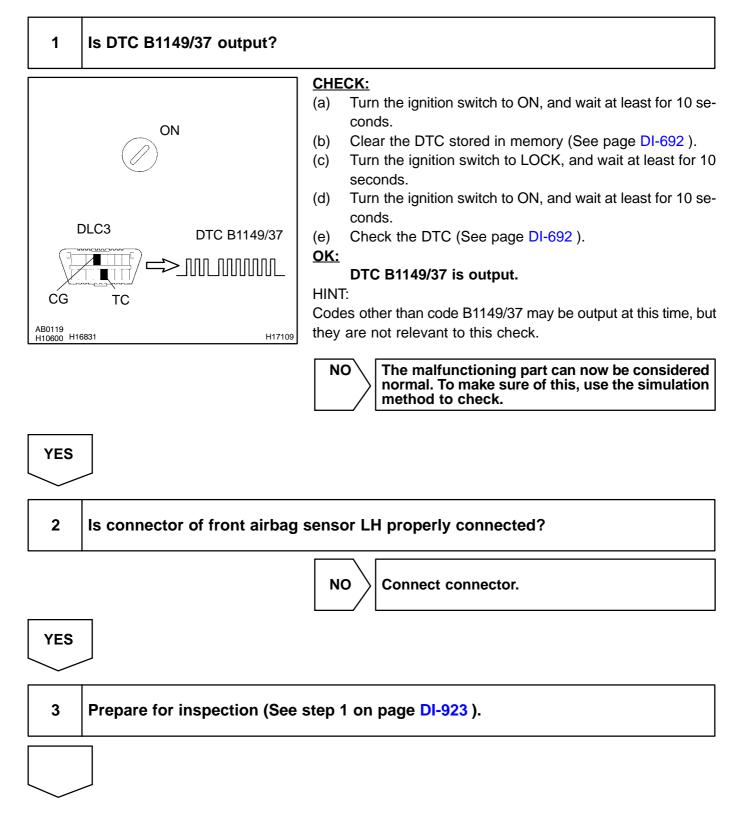
The front airbag sensor LH circuit consists of the diagnosis circuit and frontal deceleration sensor, etc. If receives signals from the frontal deceleration sensor, judges whether or not the SRS must be activated, and detects diagnosis system malfunction.

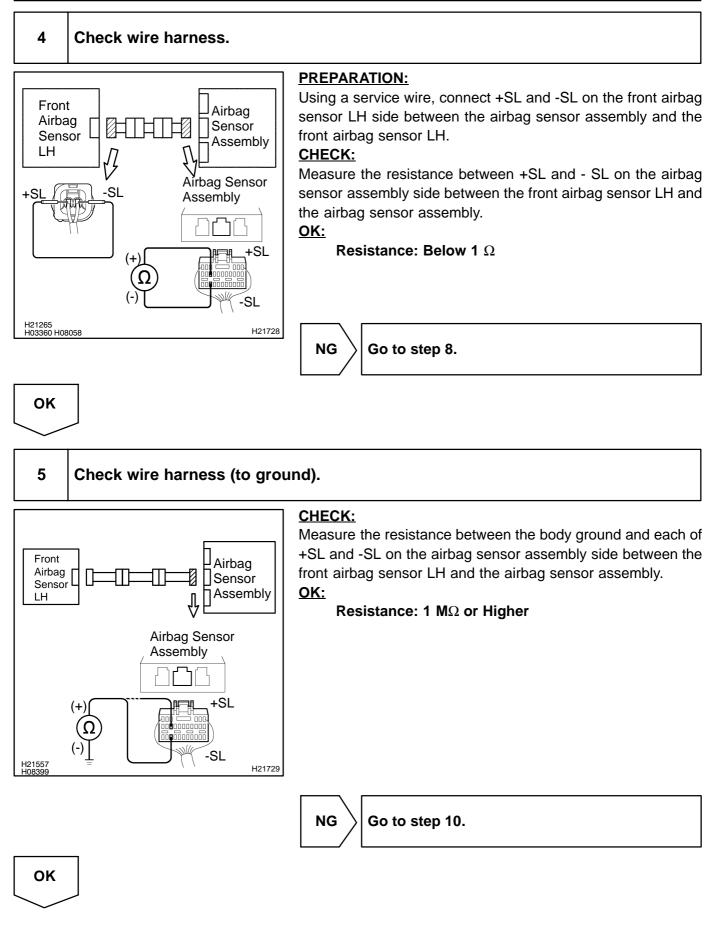

DTC B1149/37 is recorded when malfunction is detected in the front airbag sensor LH circuit.

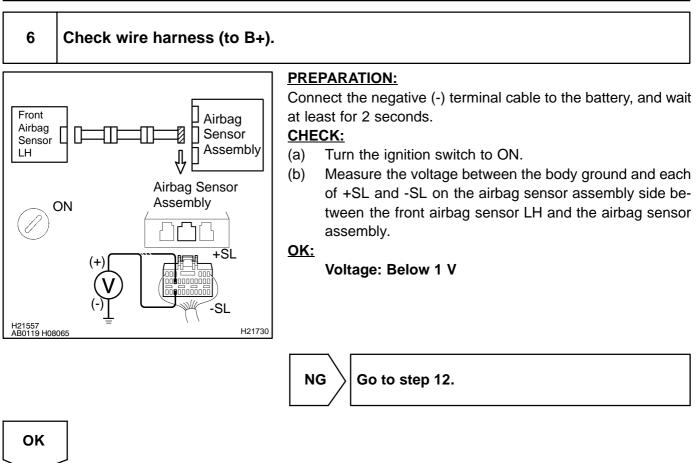
DTC No.	DTC Detecting Condition	Trouble Area
B1149/37	★Front airbag sensor LH malfunction	 ★Front airbag sensor LH ★Airbag sensor assembly ★Dash wire ★Engine room No. 2 wire ★Engine room main wire

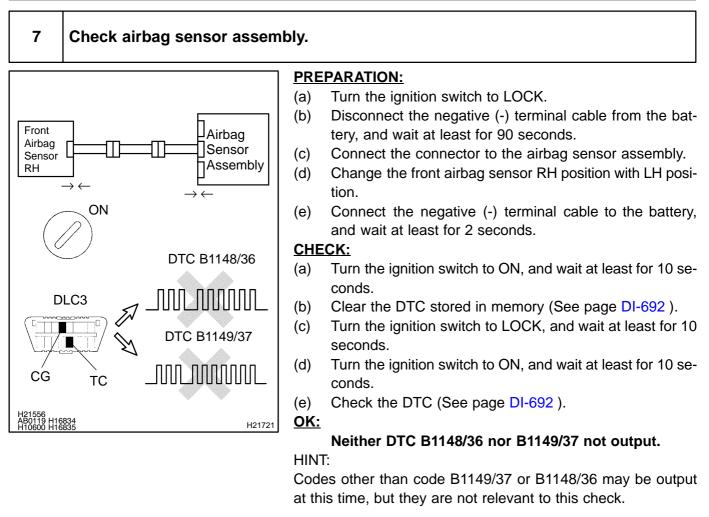
HINT:

DTC B1149/37 is indicated only for the vehicle equipped with the side airbag and without the side airbag (dual stage airbag).

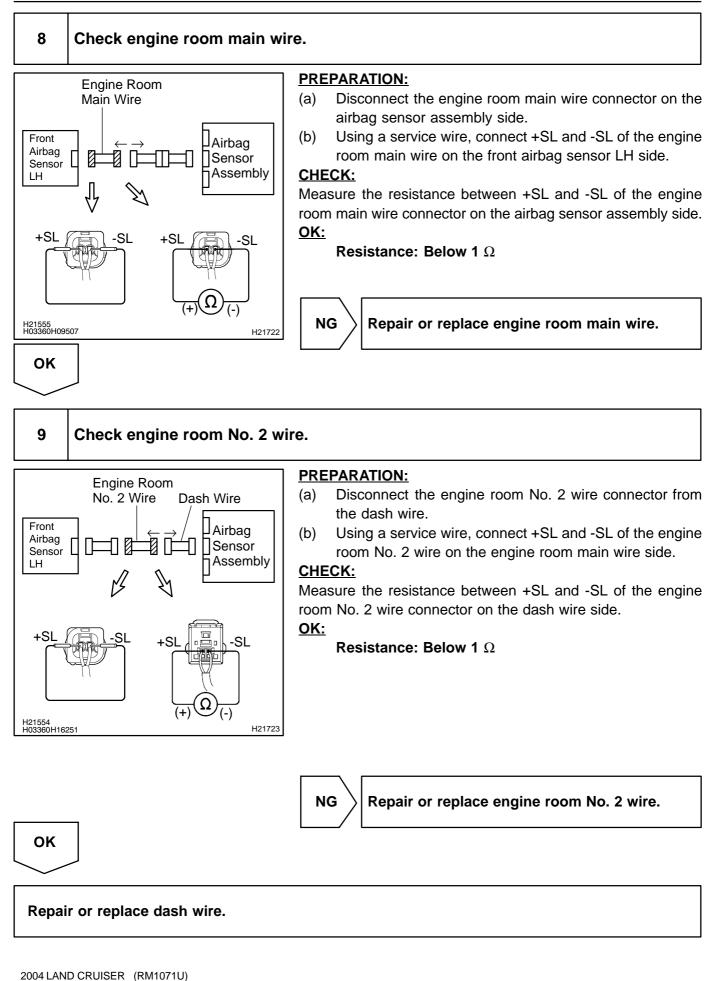

WIRING DIAGRAM




DTC


DIB3W-01

INSPECTION PROCEDURE

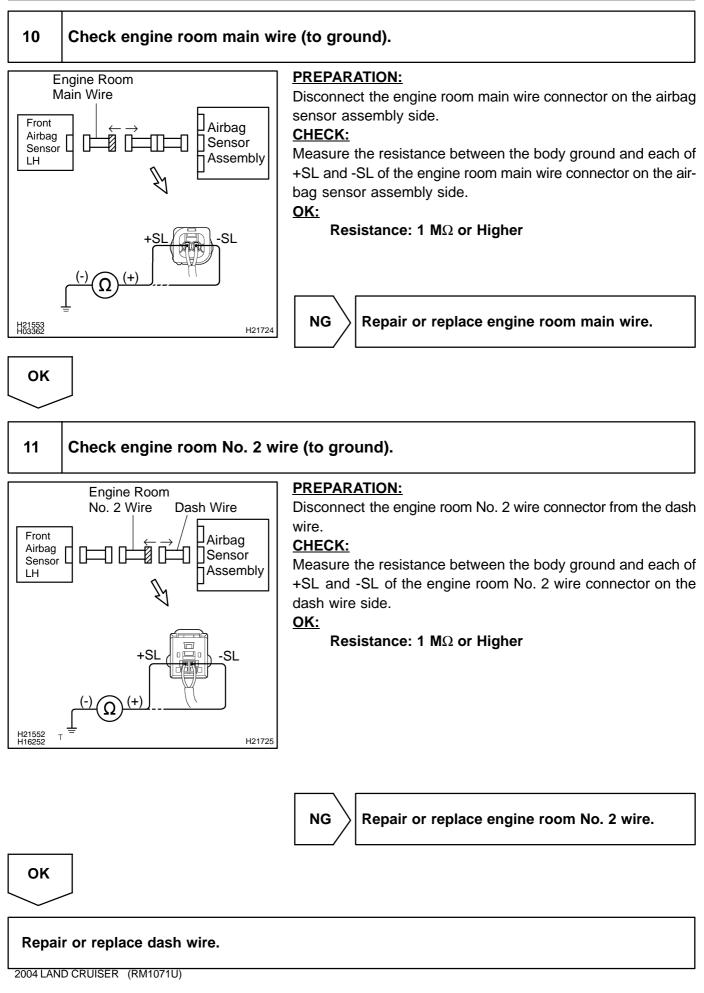

Replace airbag sensor assembly (DTC B1149/37 is output).

NG Replace front airbag sensor LH (DTC B1148/36 is output).

οκ

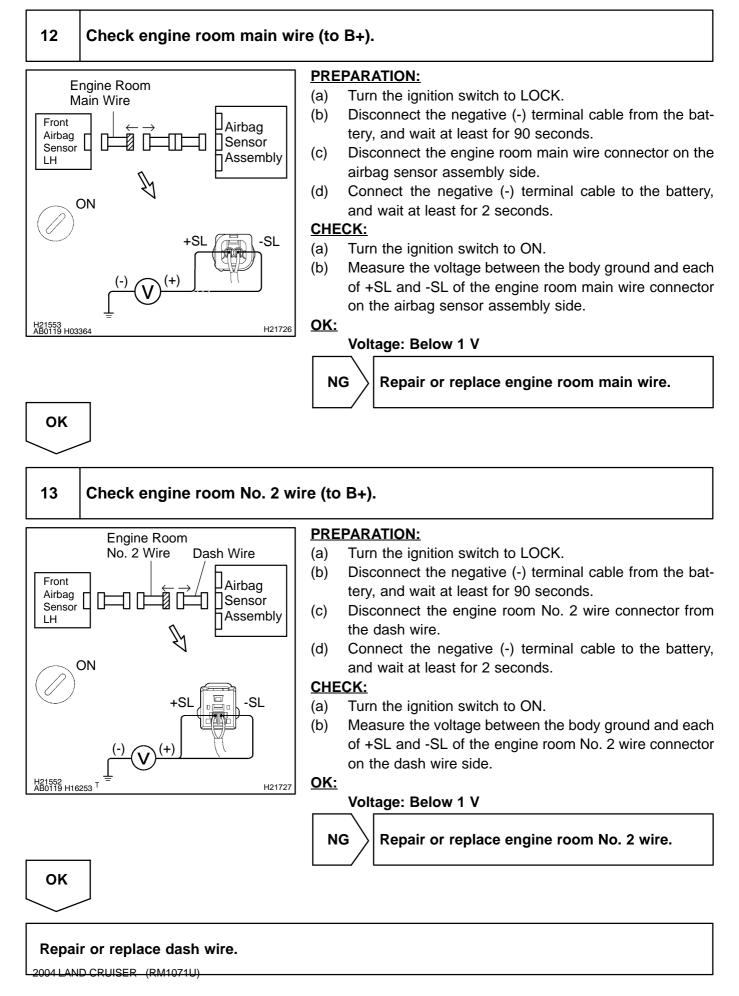
From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

NG



1026

DI-833


Author :

Date :

Date :

1027

Date :

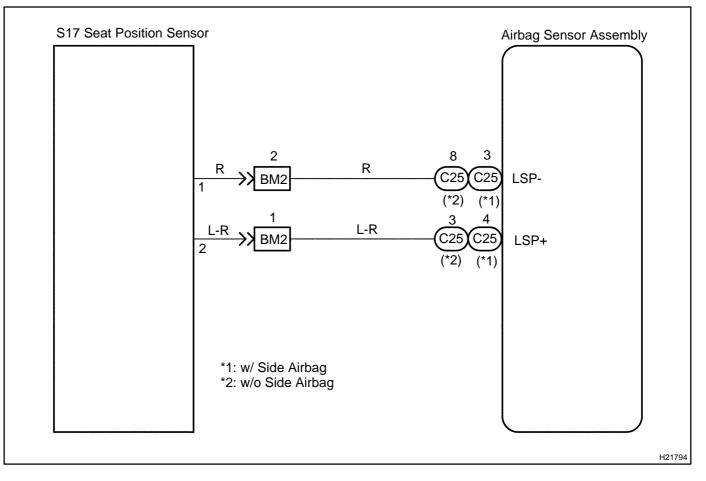
DIB3X-01

DTC	B1153/25	Seat Position Sensor Assembly Mal-
		function

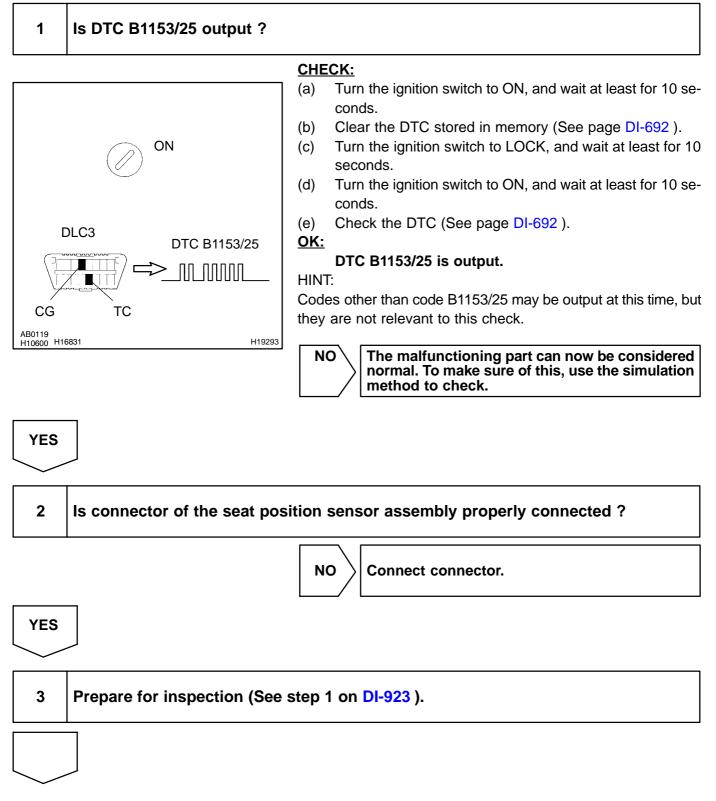
CIRCUIT DESCRIPTION

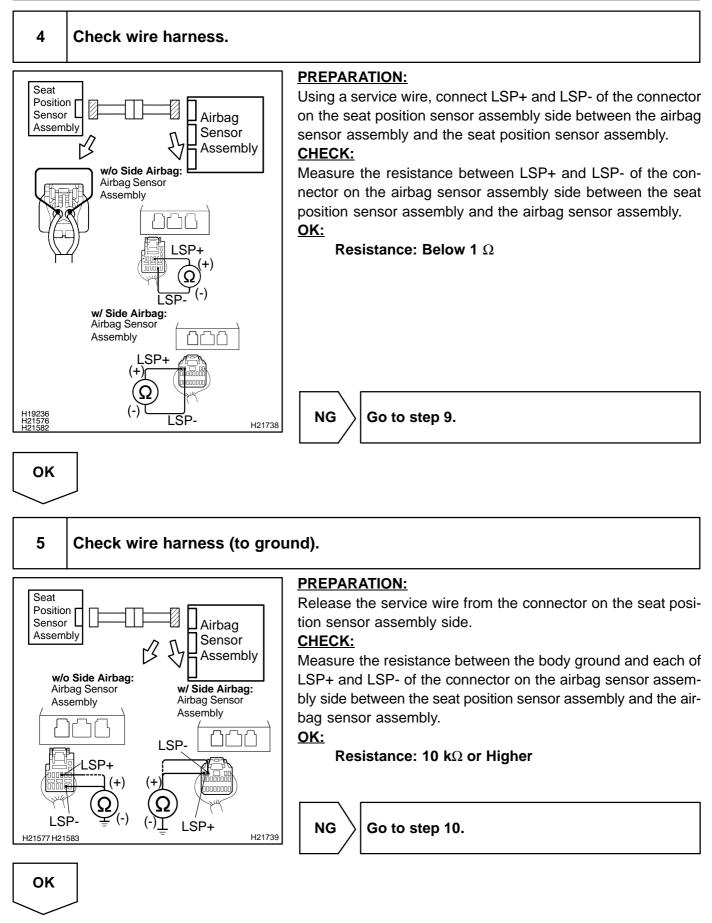
The seat position sensor circuit consists of the airbag sensor assembly and the seat position sensor assembly.

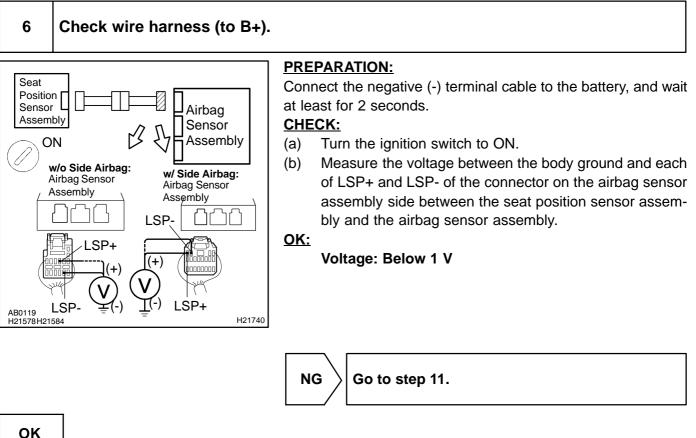
For details of the function of each components, see OPERATION on page RS-3.

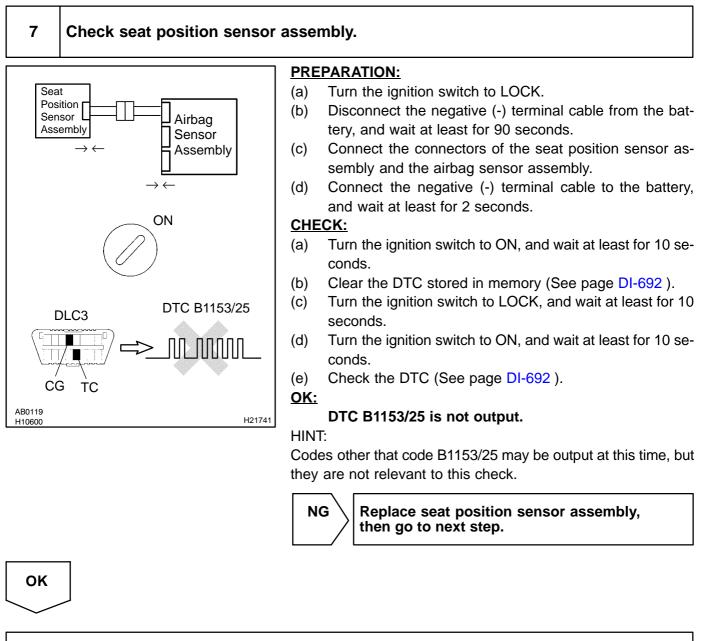

B1153/25 is recorded when a malfunction is detected in the seat position sensor circuit.

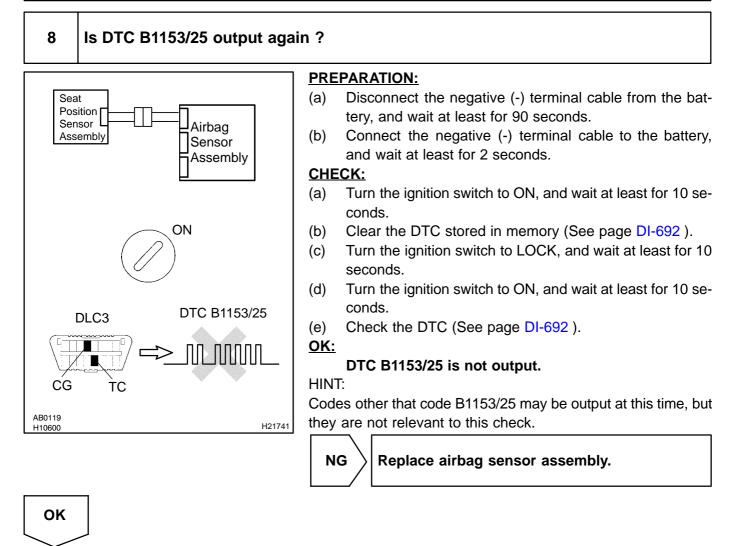
DTC No.	DTC Detecting Condition	Trouble Area
B1153/25	★Seat position sensor assembly malfunction	★Seat position sensor assembly ★Airbag sensor assembly ★Floor No. 1 wire ★Front seat wire LH

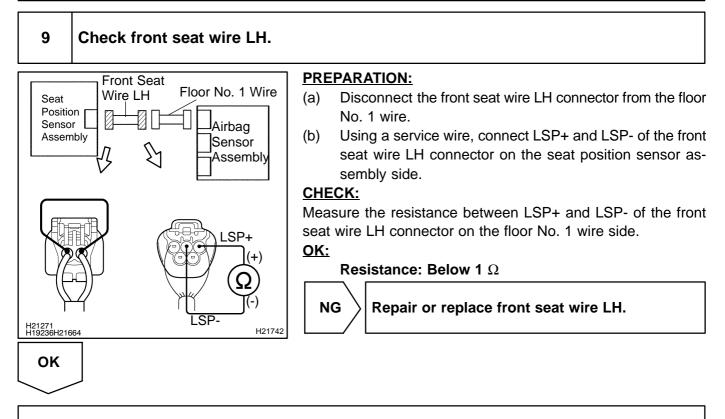

HINT:

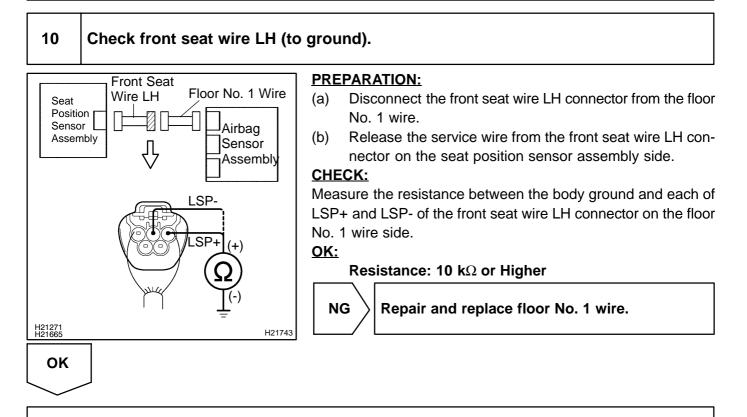

DTC B1153/25 is indicated only for the vehicle equipped with the side airbag and without the side airbag (dual stage airbag).

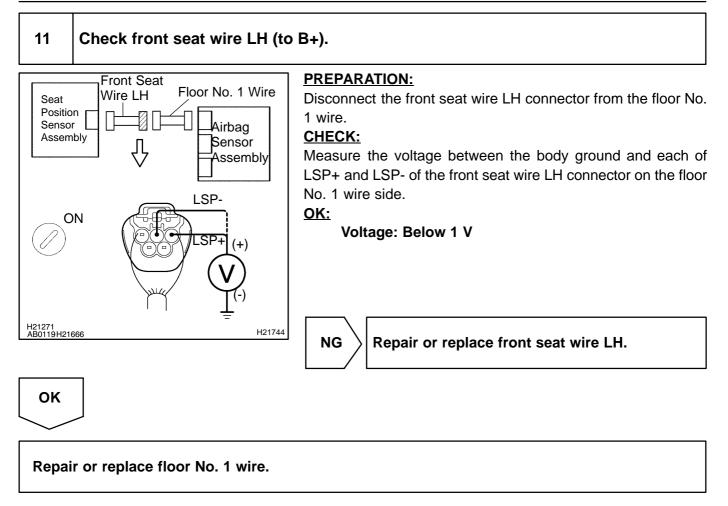

WIRING DIAGRAM


INSPECTION PROCEDURE




OK


From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.


From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

Repair or replace floor No. 1 wire.

Repair and replace floor No. 1 wire.

DIB3Y-01

DTC

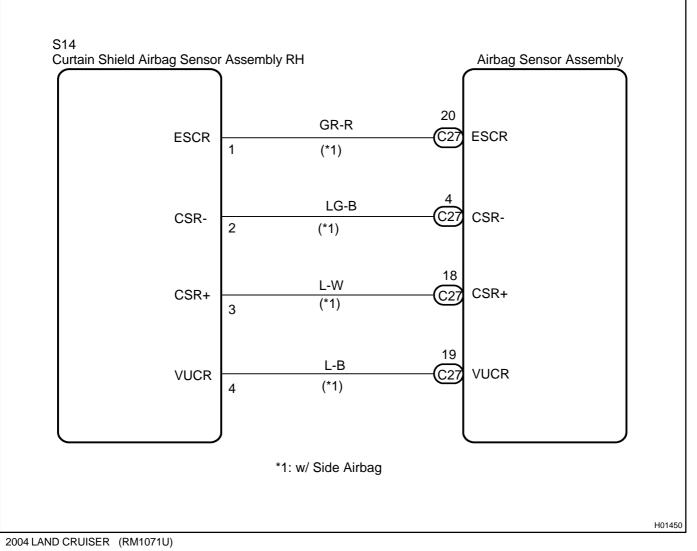
B1154/38

Curtain Shield Airbag Sensor Assembly RH Malfunction

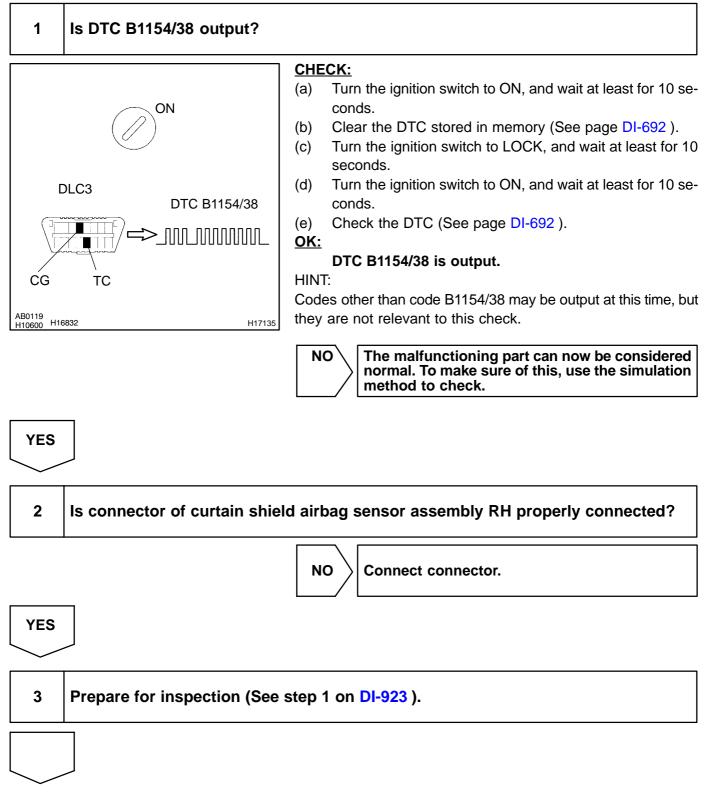
CIRCUIT DESCRIPTION

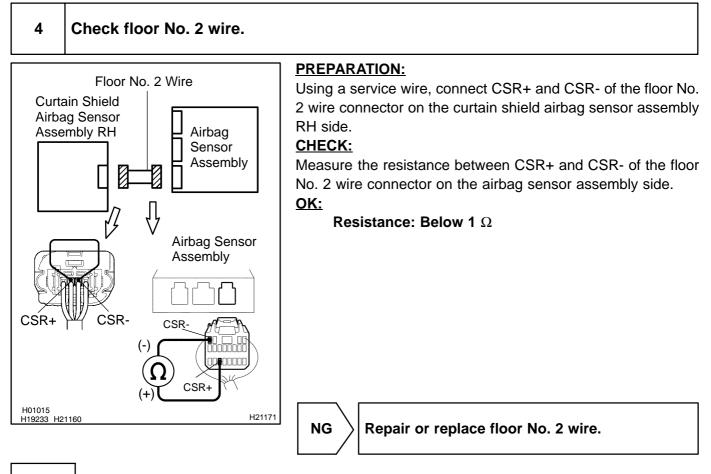
The curtain shield airbag sensor assembly RH consists of the safing sensor, diagnosis circuit and lateral deceleration sensor, etc.

It receives signals from the lateral deceleration sensor, judges whether or not the SRS must be activated, and detects diagnosis system malfunction.

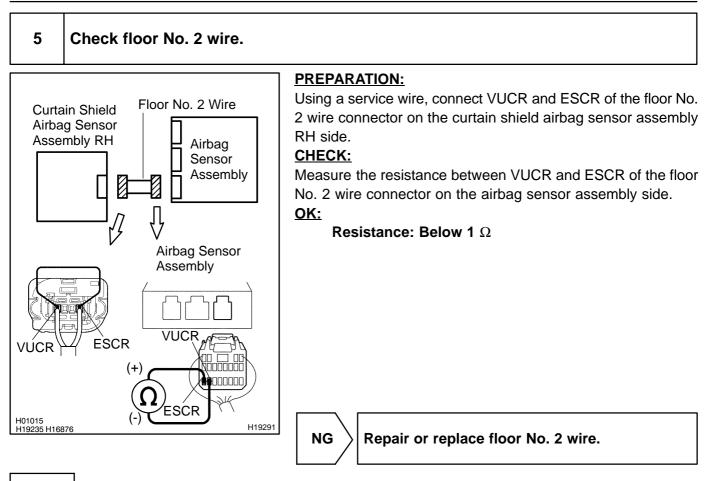

DTC B1154/38 is recorded when occurrence of a malfunction in the curtain shield airbag sensor assembly RH is detected.

DTC No.	DTC Detecting Condition	Trouble Area
B1154/38	★Curtain shield airbag sensor assembly RH malfunction	★Curtain shield airbag sensor assembly RH ★Floor No. 2 wire ★Airbag sensor assembly

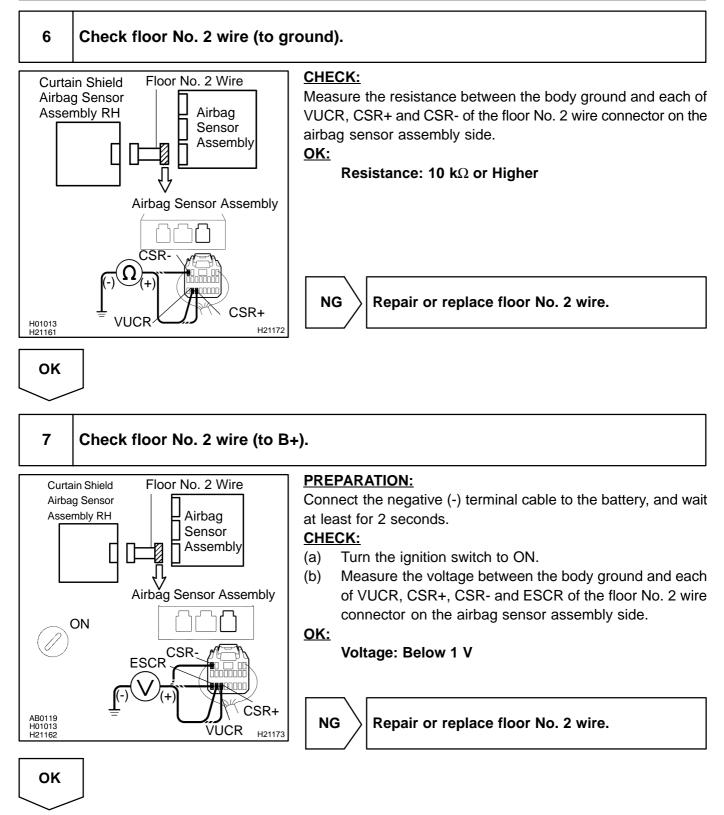

HINT:

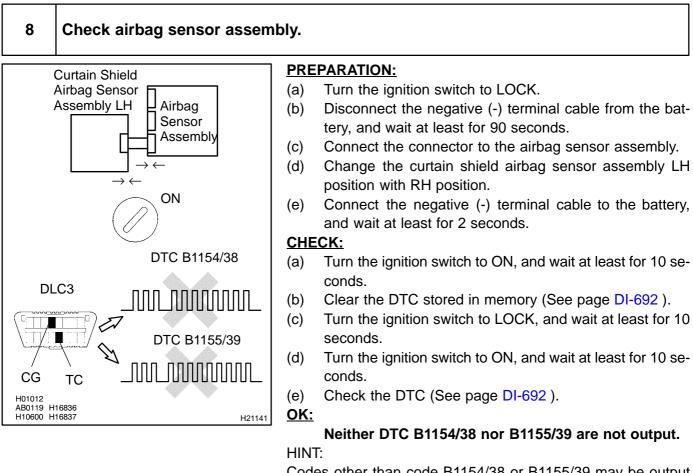

DTC B1154/38 is indicated only for the vehicle equipped with the side airbag.

WIRING DIAGRAM



INSPECTION PROCEDURE


OK



ΟΚ

DI-847

DI-848

Codes other than code B1154/38 or B1155/39 may be output at this time, but they are not relevant to this check.

Replace airbag sensor assembly (DTC B1154/38 is output).

NG Replace curtain shield airbag sensor assembly RH (DTC B1155/39 is output).

οκ

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

NG

DIB3Z-01

DTC B1155/39 Curtain Shield Airbag Sensor Assembly LH Malfunction

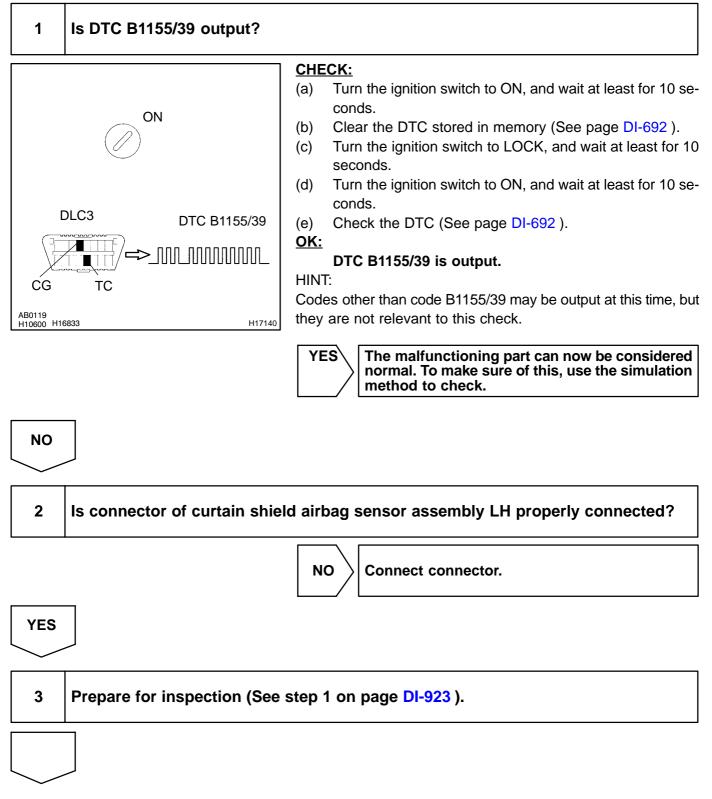
CIRCUIT DESCRIPTION

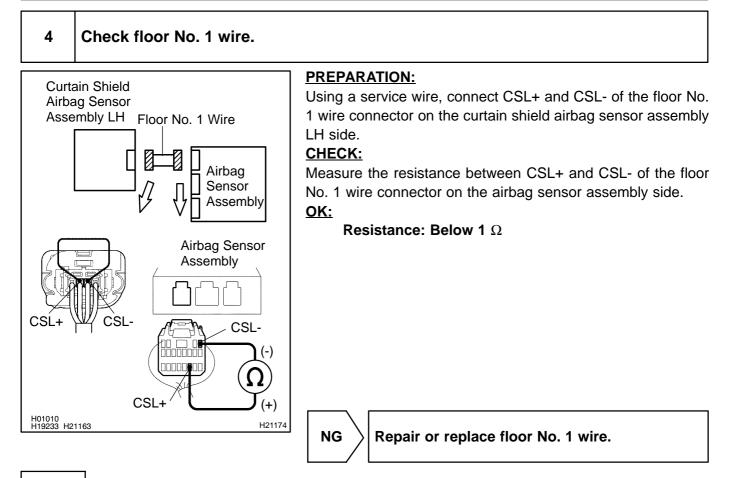
The curtain shield airbag sensor assembly LH consists of the safing sensor, diagnosis circuit and lateral deceleration sensor, etc.

It receives signals from the lateral deceleration sensor, judges whether or not the SRS must be activated, and detects diagnosis system malfunction.

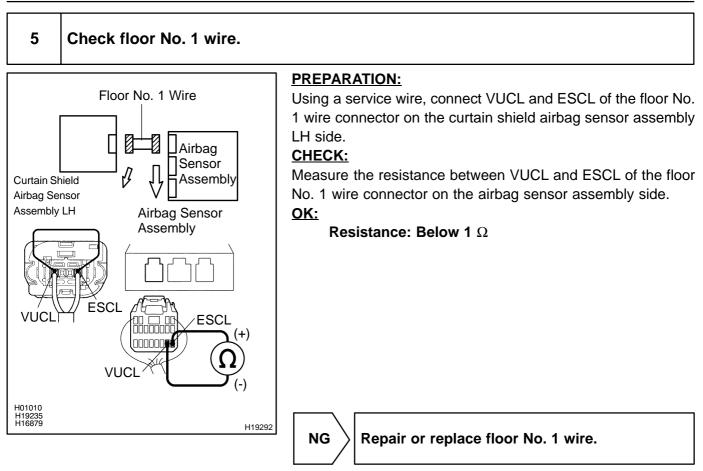

DTC B1155/39 is recorded when occurrence of a malfunction in the curtain shield airbag sensor assembly LH is detected.

DTC No.	DTC Detecting Condition	Trouble Area
B1155/39	★Curtain shield airbag sensor assembly LH malfunction	★Curtain shield airbag sensor assembly LH ★Floor No. 1 wire ★Airbag sensor assembly

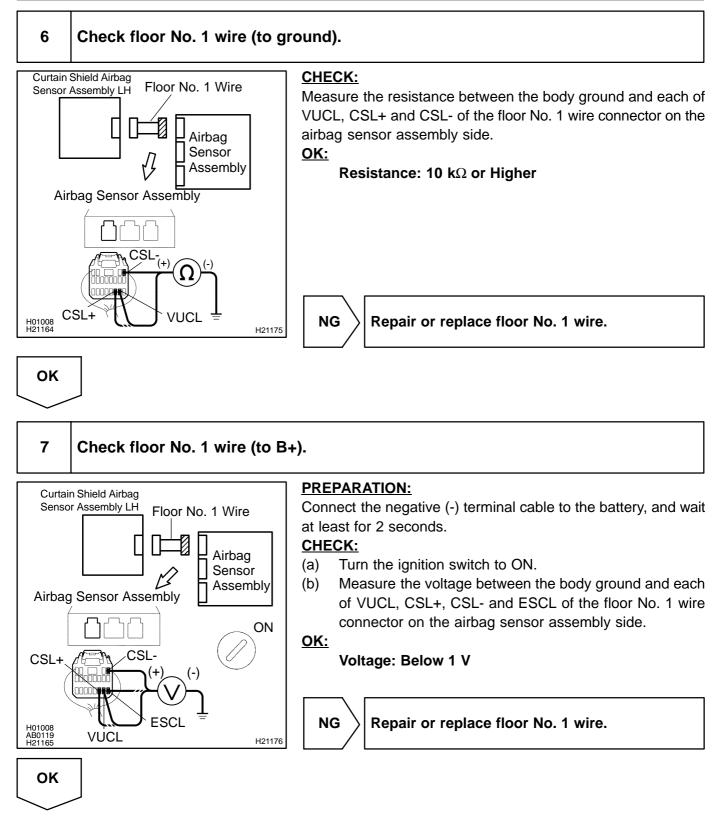

HINT:


DTC B1155/39 is indicated only for the vehicle equipped with the side airbag.

WIRING DIAGRAM



INSPECTION PROCEDURE


ΟΚ

ΟΚ

DI-853

DI-854

8 Check airbag sensor assembly. PREPARATION: $\rightarrow \leftarrow$ Turn the ignition switch to LOCK. (a) ← (b) Disconnect the negative (-) terminal cable from the bat-Airbag tery, and wait at least for 90 seconds. Sensor (c) Connect the connector to the airbag sensor assembly. Assembly **Curtain Shield** Change the curtain shield airbag sensor assembly RH (d) Airbag Sensor position with LH position. Assembly RH ON Connect the negative (-) terminal cable to the battery, (e) and wait at least for 2 seconds. CHECK: DTC B1154/38 Turn the ignition switch to ON, and wait at least for 10 se-(a) conds. DLC3 Clear the DTC stored in memory (See page DI-692). (b) Turn the ignition switch to LOCK, and wait at least for 10 (c) DTC B1155/39 seconds. (d) Turn the ignition switch to ON, and wait at least for 10 se-CG TC conds.

(e) Check the DTC (See page DI-692).

<u>OK:</u>

NG

NG

H21142

Neither DTC B1155/39 nor B1154/38 are not output. HINT:

Codes other than code B1155/39 B1154/38 may be output at this time, but they are not relevant to this check.

Replace airbag sensor assembly (DTC B1155/39 is output).

Replace curtain shield airbag sensor assembly LH (DTC B1154/38 is output).

οκ

H01007

AB0119 H16836

H10600 H16837

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DI6PB-34

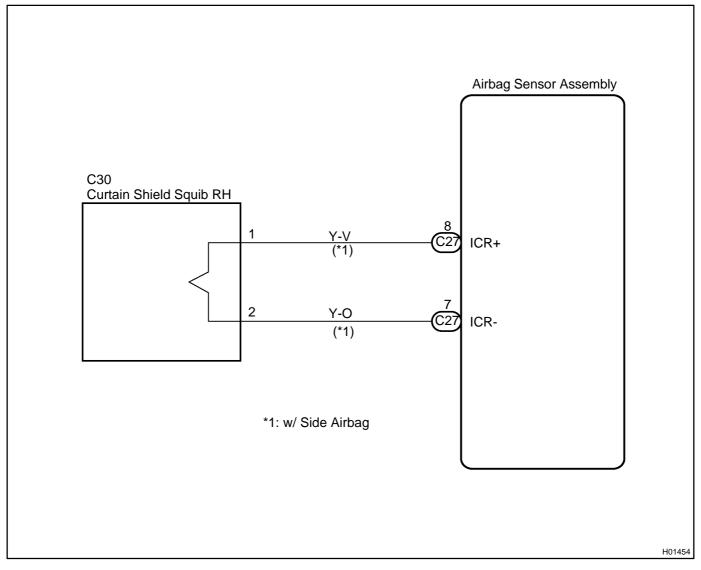
DTC	B1160/83	Short in Curtain Shield Squib RH Circuit

CIRCUIT DESCRIPTION

The curtain shield squib RH circuit consists of the airbag sensor assembly and the curtain shield airbag assembly RH.

It causes the SRS to deploy when the SRS deployment conditions are satisfied.

For details of the function of each component, see OPERATION on page RS-3.

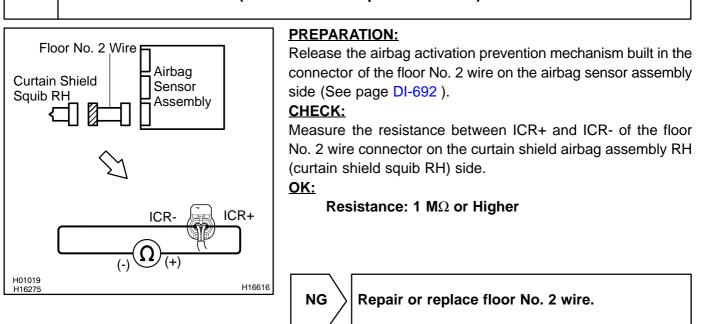

DTC B1110/83 is recorded when a short is detected in the curtain shield squib RH circuit.

DTC No.	DTC Detecting Condition	Trouble Area
	Short in curtain shield squib RH circuit	★Curtain shield airbag assembly RH (Curtain shield squib RH)
B1110/83	★Curtain shield squib RH malfunction	★Airbag sensor assembly
	★Airbag sensor assembly malfunction	★Floor No. 2 wire

HINT:

DTC B1160/83 is indicated only for the vehicle equipped with the side airbag.

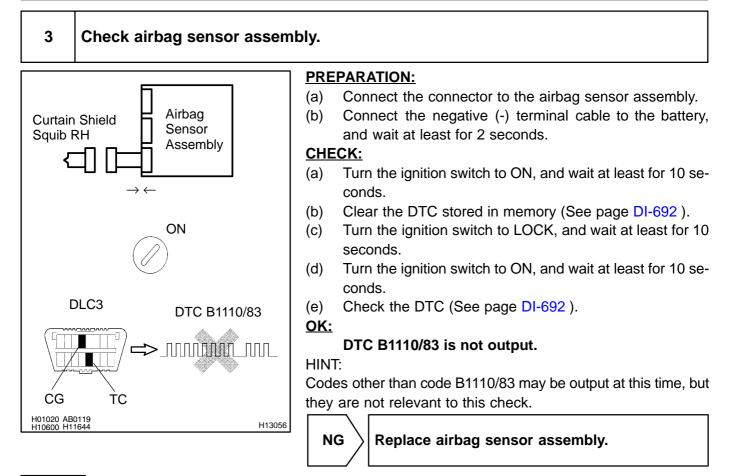
WIRING DIAGRAM



INSPECTION PROCEDURE

1 Prepare for inspection (See step 1 on page DI-923).

2


Check floor No. 2 wire (curtain shield squib RH circuit).

OK

DI-857

DI-858

OK

4 Check curtain shield squib RH. PREPARATION: Turn the ignition switch to LOCK. (a) (b) Disconnect the negative (-) terminal cable from the bat-Airbag tery, and wait at least for 90 seconds. **Curtain Shield** Sensor Squib RH Connect the curtain shield airbag assembly RH (curtain (c) Assembly shield squib RH) connector. Connect the negative (-) terminal cable to the battery, (d) 4 and wait at least for 2 seconds. ON CHECK: (a) Turn the ignition switch to ON, and wait at least for 10 seconds. Clear the DTC stored in memory (See page DI-692). (b) DLC3 DTC B1110/83 Turn the ignition switch to LOCK, and wait at least for 10 (c) seconds. (d) Turn the ignition switch to ON, and wait at least for 10 seconds. CG TC (e) Check the DTC (See page DI-692). <u>OK:</u> H01021 AB0119 H10600 H11644 DTC B1110/83 is not output. H20673 HINT: Codes other than code B1110/83 may be output at this time, but they are not relevant to this check. Replace curtain shield airbag assembly RH NG (curtain shield squib RH).

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DTC B1161/84 Open in Curtain Shield Squib RH Circuit

CIRCUIT DESCRIPTION

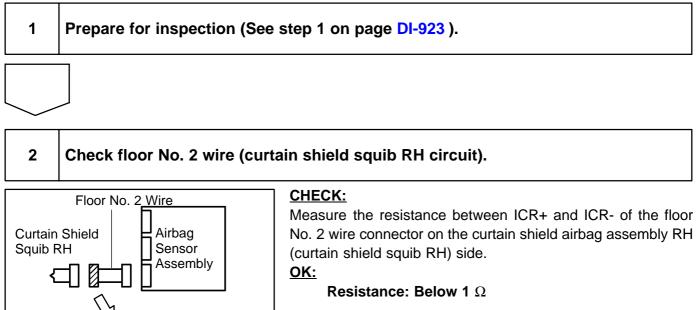
The curtain shield squib RH circuit consists of the airbag sensor assembly and the curtain shield airbag assembly RH.

It causes the SRS to deploy when the SRS deployment conditions are satisfied.

For details of the function of each component, see OPERATION on page RS-3.

DTC B1161/84 is recorded when an open is detected in the curtain shield squib RH circuit.

DTC No.	DTC Detecting Condition	Trouble Area
	★Open in curtain shield squib RH circuit	★Curtain shield airbag assembly RH (Curtain shield squib RH)
B1161/84	★Curtain shield squib RH malfunction	★Airbag sensor assembly
	*Airbag sensor assembly malfunction	★Floor No. 2 wire


HINT:

DTC B1161/84 is indicated only for the vehicle equipped with the side airbag.

WIRING DIAGRAM

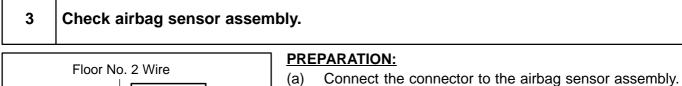
See page DI-856.

INSPECTION PROCEDURE

NG

H01019

H16275


OK

ICR-

ICR+

H16616

Repair or replace floor No. 2 wire.

Airbag

Sensor

ICR+

Assembly

ON

DTC B1161/84

MMMR_MM

Curtain Shield

Squib RH

ICR-

CG

H01020 H16278 AB0119 H10600 H11645

DLC3

TC

- (b) Using a service wire, connect ICR+ and ICR- of the floor
 No. 2 wire connector on the curtain shield airbag assembly.
- No. 2 wire connector on the curtain shield airbag assembly RH (curtain shield squib RH) side.
- (c) Connect the negative (-) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

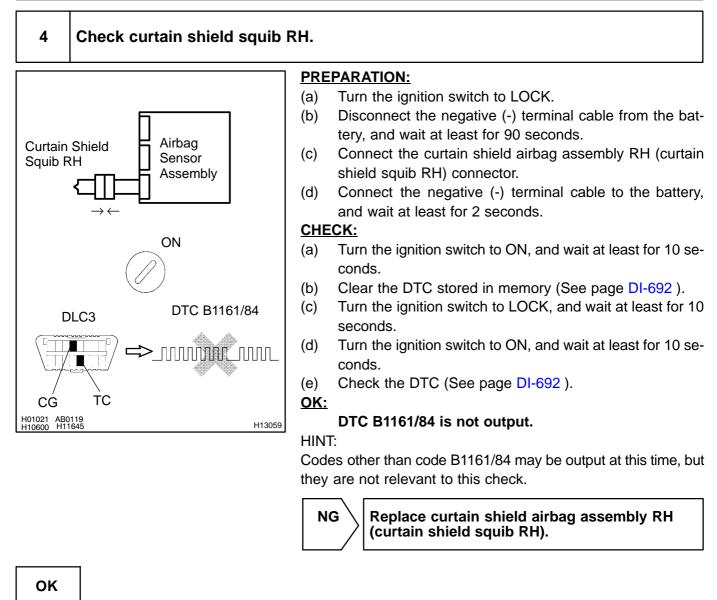
- (a) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (b) Clear the DTC stored in memory (See page DI-692).
- (c) Turn the ignition switch to LOCK, and wait at least for 10 seconds.
- (d) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (e) Check the DTC (See page DI-692).

DTC B1161/84 is not output.

HINT:

H21143

OK:


Codes other than code B1161/84 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.

OK

DI-862

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DI6PD-22

DTC

B1162/81

Short in Curtain Shield Squib RH Circuit (to Ground)

CIRCUIT DESCRIPTION

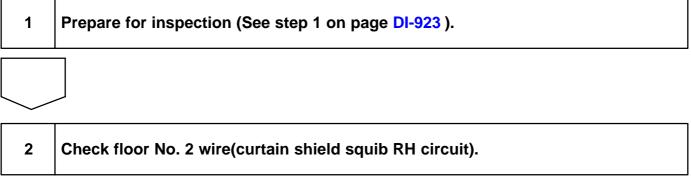
The curtain shield squib RH circuit consists of the airbag sensor assembly and the curtain shield airbag assembly RH.

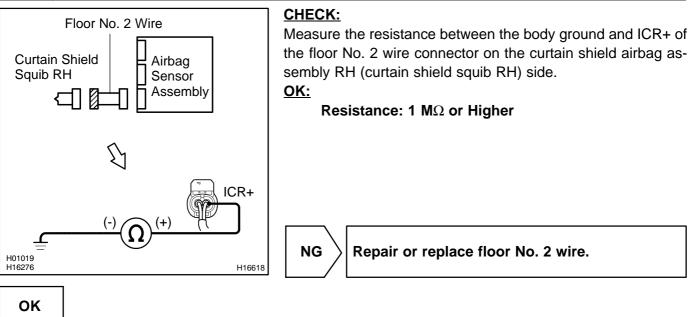
It causes the SRS to deploy when the SRS deployment conditions are satisfied.

For details of the function of each component, see OPERATION on page RS-3.

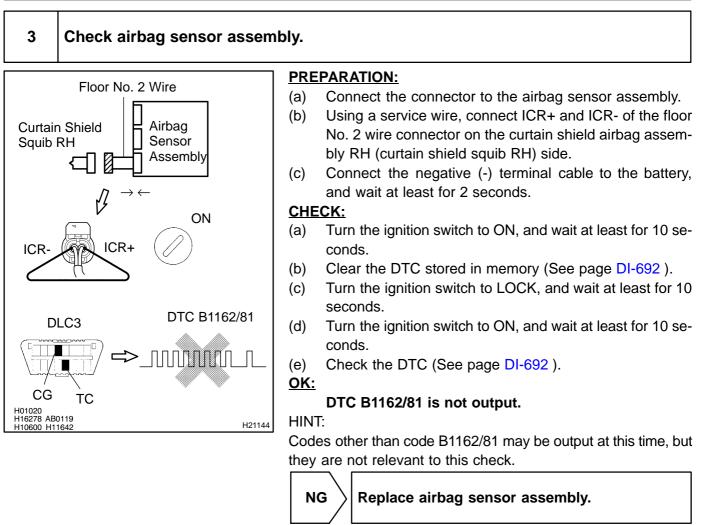
DTC B1162/81 is recorded when ground short is detected in the curtain shield squib RH circuit.

DTC No.	DTC Detecting Condition	Trouble Area
B1162/81	★Short in curtain shield squib RH circuit (to ground) ★Curtain shield squib RH malfunction ★Airbag sensor assembly malfunction	★Curtain shield airbag assembly RH (Curtain shield squib RH) ★Airbag sensor assembly ★Floor No. 2 wire


HINT:


DTC B1162/81 is indicated only for the vehicle equipped with the side airbag.

WIRING DIAGRAM


See page DI-856.

INSPECTION PROCEDURE

2004 LAND CRUISER (RM1071U)

ΟΚ

4 Check curtain shield squib RH. PREPARATION: Turn the ignition switch to LOCK. (a) (b) Disconnect the negative (-) terminal cable from the bat-Airbag tery, and wait at least for 90 seconds. **Curtain Shield** Sensor Squib RH Connect the curtain shield airbag assembly RH (curtain (c) Assembly shield squib RH) connector. Connect the negative (-) terminal cable to the battery, (d) and wait at least for 2 seconds. ON CHECK: (a) Turn the ignition switch to ON, and wait at least for 10 seconds. (b) Clear the DTC stored in memory (See page DI-692). Turn the ignition switch to LOCK, and wait at least for 10 (c) DTC B1162/81 DLC3 seconds. (d) Turn the ignition switch to ON, and wait at least for 10 se-conds. (e) Check the DTC (See page DI-692). CG TC <u>OK:</u> H01021 AB0119 DTC B1162/81 is not output. H13061 HINT: Codes other than code B1162/81 may be output at this time, but they are not relevant to this check. NG Replace curtain shield airbag assembly RH (curtain shield squib RH).

ОК

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DI6PE-23

DTC B1163/82 Short in Curtain Shield Squib RH Circuit (to B+)

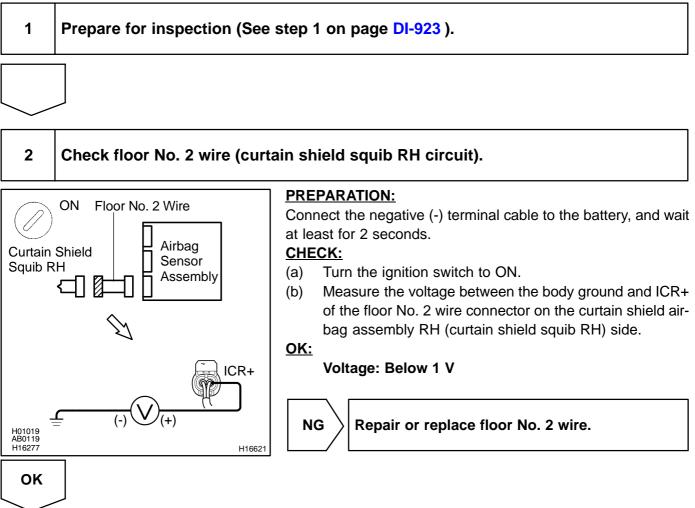
CIRCUIT DESCRIPTION

The curtain shield squib RH circuit consists of the airbag sensor assembly and the curtain shield airbag assembly RH.

It causes the SRS to deploy when the SRS deployment conditions are satisfied.

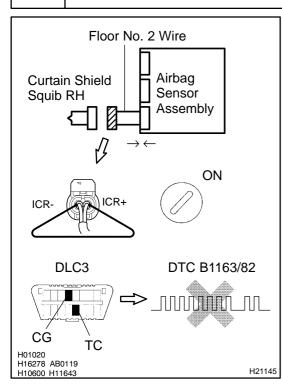
For details of the function of each component, see OPERATION on page RS-3. DTC B1163/82 is recorded when a B+ short is detected in the curtain shield squib RH circuit.

DTC No.	DTC Detecting Condition	Trouble Area
B1163/82	 ★Short in curtain shield squib RH circuit (to B+) ★Curtain shield squib RH malfunction ★Airbag sensor assembly malfunction 	★Curtain shield airbag assembly RH (Curtain shield squib RH) ★Airbag sensor assembly ★Floor No. 2 wire


HINT:

DTC B1163/82 is indicated only for the vehicle equipped with the side airbag.

WIRING DIAGRAM


See page DI-856.

INSPECTION PROCEDURE

2004 LAND CRUISER (RM1071U)

PREPARATION:

- (a) Turn the ignition switch to LOCK.
- (b) Disconnect the negative (-) terminal cable from the battery, and wait at least for 90 seconds.
- (c) Connect the connector to the airbag sensor assembly.
- Using a service wire, connect ICR+ and ICR- of the floor No. 2 wire connector on the curtain shield airbag assembly RH (curtain shield squib RH) side.
- (e) Connect the negative (-) terminal cable to the battery, and wait at least for 2 seconds.

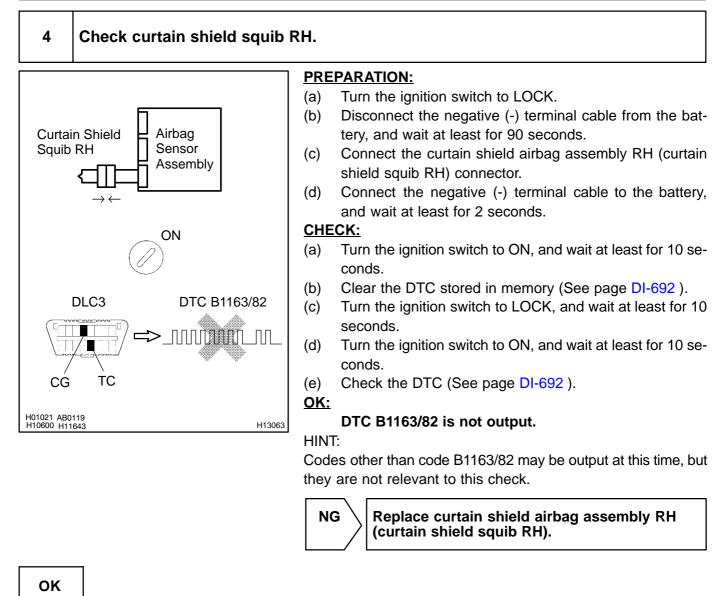
CHECK:

- (a) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (b) Clear the DTC stored in memory (See page DI-692).
- (c) Turn the ignition switch to LOCK, and wait at least for 10 seconds.
- (d) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (e) Check the DTC (See page DI-692).

<u>OK:</u>

DTC B1163/82 is not output.

HINT:


Codes other than code B1163/82 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.

OK

DI-868

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DI-869

DI6PF-35

DTC

B1165/87

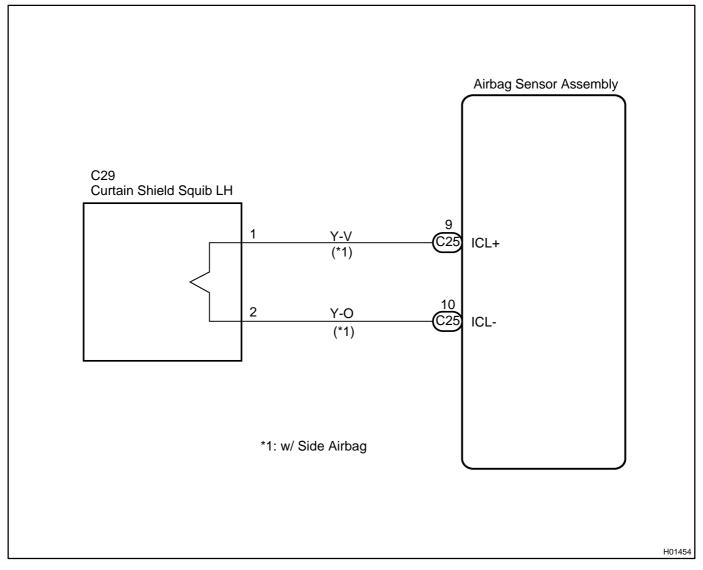
Short in Curtain Shield Squib LH Circuit

CIRCUIT DESCRIPTION

The curtain shield squib LH circuit consists of the airbag sensor assembly and the curtain shield airbag assembly LH.

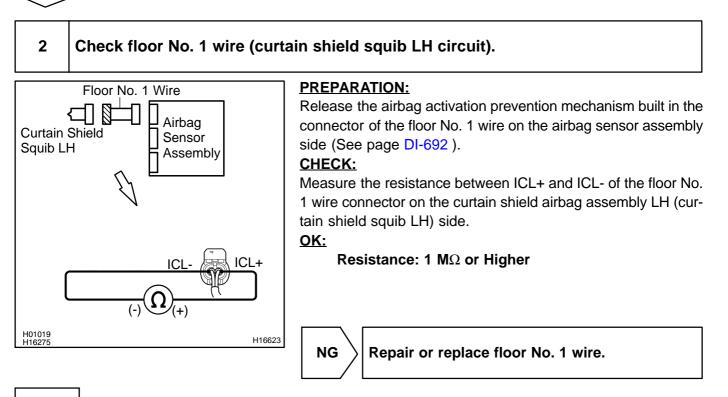
It causes the SRS to deploy when the SRS deployment conditions are satisfied.

For details of the function of each component, see OPERATION on page RS-3.

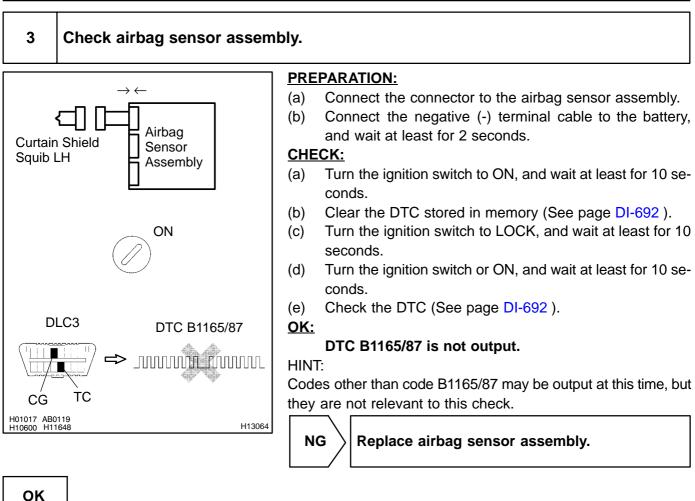

DTC B1165/87 is recorded when a short is detected in the curtain shield squib LH circuit.

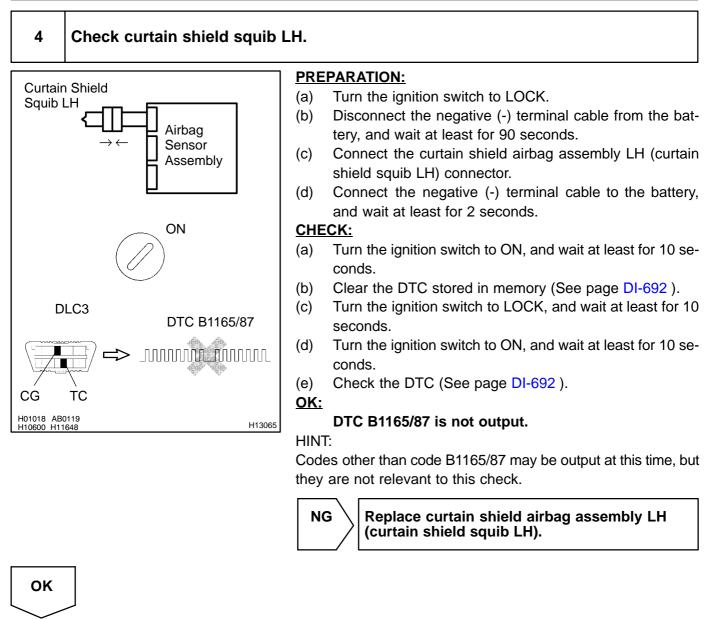
DTC No.	DTC Detecting Condition	Trouble Area
	₭ Short in curtain shield squib LH circuit	★Curtain shield airbag assembly LH (Curtain shield squib LH)
B1165/87	★Curtain shield squib LH malfunction	★Airbag sensor assembly
	*Airbag sensor assembly malfunction	★Floor No. 1 wire

HINT:


DTC B1165/87 is indicated only for the vehicle equipped with the side airbag.

WIRING DIAGRAM




INSPECTION PROCEDURE

1 Prepare for inspection (See step 1 on page DI-923).

ΟΚ

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DI6PG-22

DTC

B1166/88

Open in Curtain Shield Squib LH Circuit

CIRCUIT DESCRIPTION

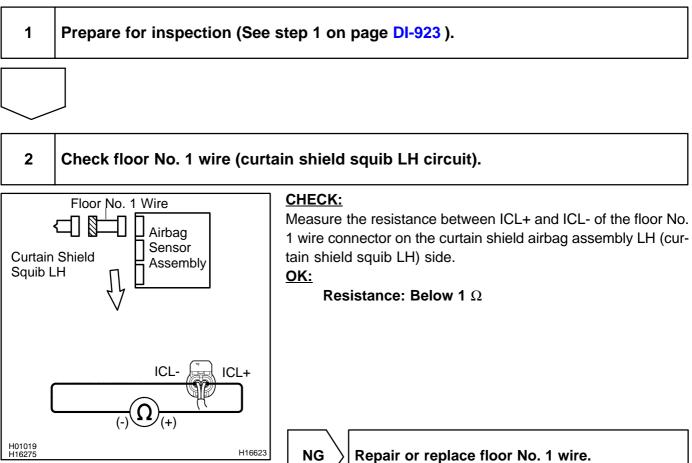
The curtain shield squib LH circuit consists of the airbag sensor assembly and the curtain shield airbag assembly LH.

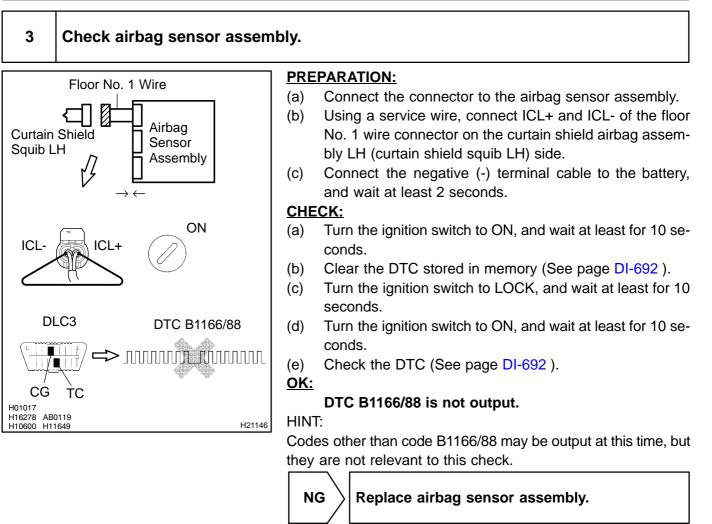
It causes the SRS to deploy when the SRS deployment conditions are satisfied.

For details of the function of each component, see OPERATION on page RS-3.

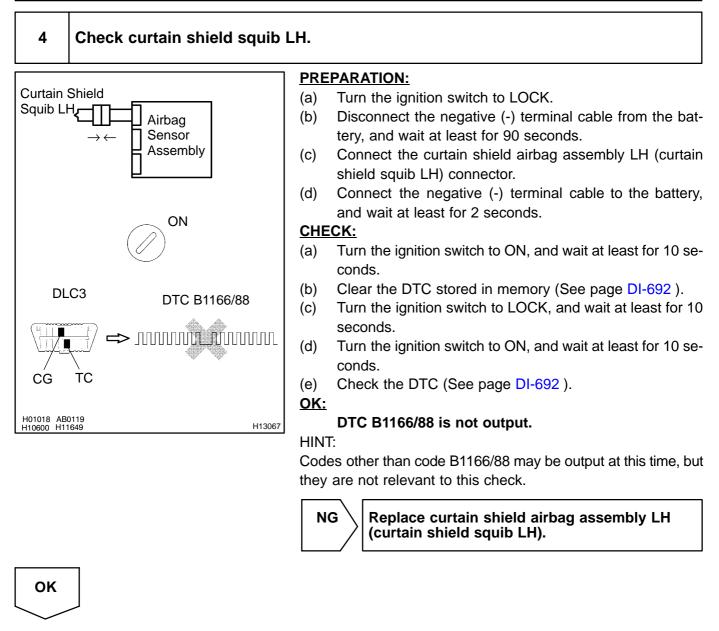
DTC B1166/88 is recorded when an open is detected in the curtain shield squib LH circuit.

DTC No.	DTC Detecting Condition	Trouble Area
	★Open in curtain shield squib LH circuit	★Curtain shield airbag assembly LH (Curtain shield squib LH)
B1166/88	★Curtain shield squib LH malfunction	★Airbag sensor assembly
	★Airbag sensor assembly malfunction	★Floor No. 1 wire


HINT:


DTC B1166/88 is indicated only for the vehicle equipped with the side airbag.

WIRING DIAGRAM


See page DI-869.

INSPECTION PROCEDURE

ОК

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DI-875

DI6PH-22

DTC B1167/85 Short in Curtain Shield Squib LH Circuit (to Ground)

CIRCUIT DESCRIPTION

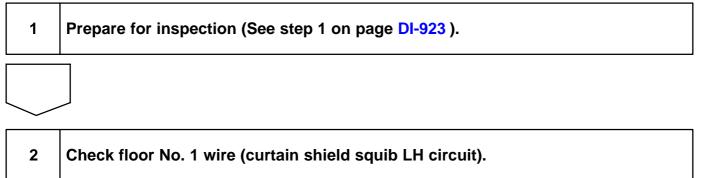
The curtain shield squib LH circuit consists of the airbag sensor assembly and the curtain shield airbag assembly LH.

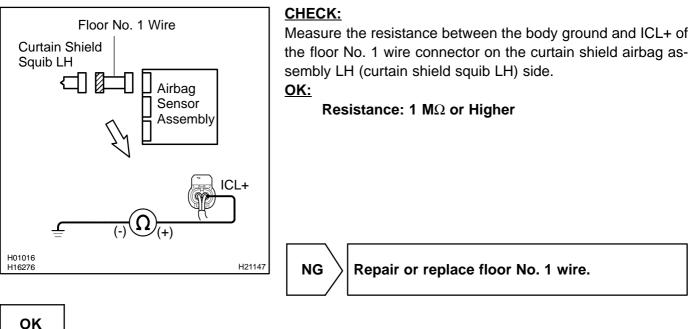
It causes the SRS to deploy when the SRS deployment conditions are satisfied.

For details of the function of each component, see OPERATION on page RS-3.

DTC B1167/85 is recorded when ground short is detected in the curtain shield squib LH circuit.

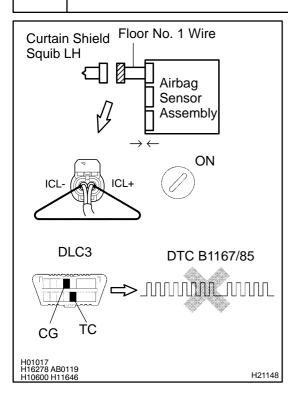
DTC No.	DTC Detecting Condition	Trouble Area
	★Short in curtain shield squib LH circuit (to ground)	★Curtain shield airbag assembly LH (Curtain shield squib LH)
B1167/85	★Curtain shield squib LH malfunction	★Airbag sensor assembly
	*Airbag sensor assembly malfunction	★Floor No. 1 wire


HINT:


DTC B1167/85 is indicated only for the vehicle equipped with the side airbag.

WIRING DIAGRAM

See page DI-856.


INSPECTION PROCEDURE

2004 LAND CRUISER (RM1071U)

3 Check airbag sensor assembly.

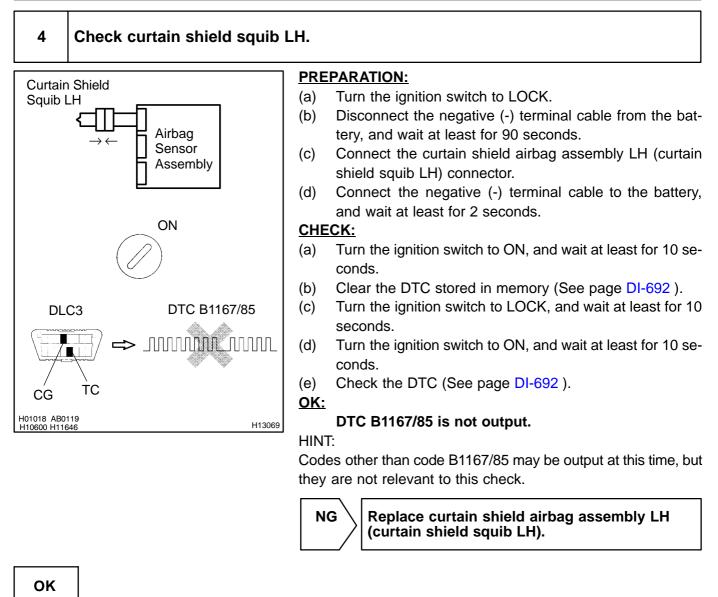
PREPARATION:

- (a) Connect the connector to the airbag sensor assembly.
- (b) Using a service wire, connect ICL+ and ICL- of the floor No. 1 wire connector on the curtain shield airbag assembly LH (curtain shield squib LH) side.
- (c) Connect the negative (-) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

- (a) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (b) Clear the DTC stored in memory (See page DI-692).
- (c) Turn the ignition switch to LOCK, and wait at least for 10 seconds.
- (d) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (e) Check the DTC (See page DI-692).

OK: DTC B1167/85 is not output.


HINT:

Codes other than code B1167/85 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.

OK

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DI6PI-22

DTC

B1168/86

Short in Curtain Shield Squib LH Circuit (to B+)

CIRCUIT DESCRIPTION

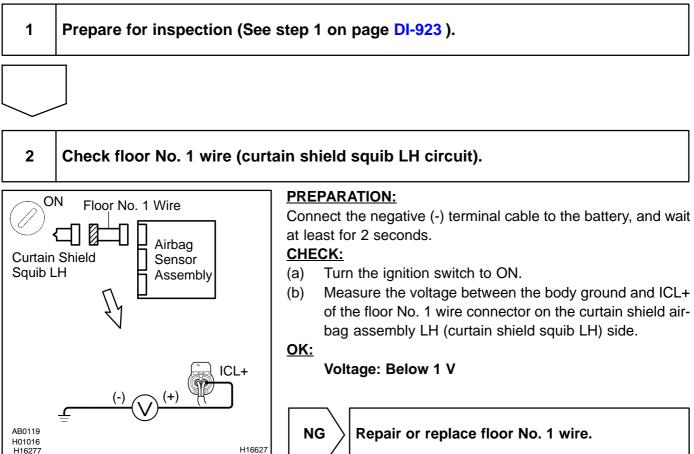
The curtain shield squib LH circuit consists of the airbag sensor assembly and the curtain shield airbag assembly LH.

It causes the SRS to deploy when the SRS deployment conditions are satisfied.

For details of the function of each component, see OPERATION on page RS-3. DTC B1168/86 is recorded when a B+ short is detected in the curtain shield squib LH circuit.

DTC No.	DTC Detecting Condition	Trouble Area
D4400/00	★Short in curtain shield squib LH circuit (to B+)	★Curtain shield airbag assembly LH (Curtain shield squib LH)
B1168/86	 ★Curtain shield squib LH malfunction ★Airbag sensor assembly malfunction 	 ★Airbag sensor assembly ★Floor No. 1 wire

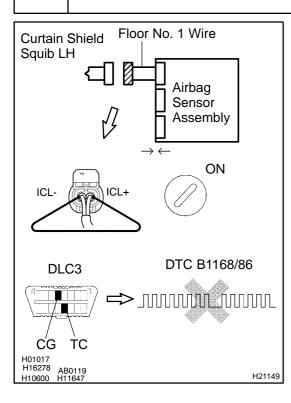
HINT:


DTC B1168/86 is indicated only for the vehicle equipped with the side airbag.

H16627

WIRING DIAGRAM

See page DI-869.


INSPECTION PROCEDURE

2004 LAND CRUISER (RM1071U)

OK

3 Check airbag sensor assembly.

PREPARATION:

(a) Turn the ignition switch to LOCK.

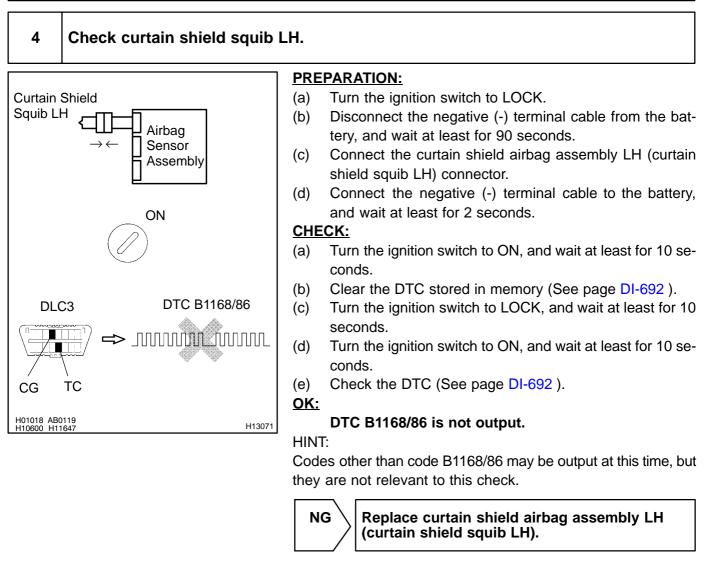
- (b) Disconnect the negative (-) terminal cable from the battery, and wait at least for 90 seconds.
- (c) Connect the connector to the airbag sensor assembly.
- (d) Using a service wire, connect ICL+ and ICL- of the floor No. 1 wire connector on the curtain shield airbag assembly LH (curtain shield squib LH) side.
- (e) Connect the negative (-) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

- (a) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (b) Clear the DTC stored in memory (See page DI-692).
- (c) Turn the ignition switch to LOCK, and wait at least for 10 seconds.
- (d) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (e) Check the DTC (See page DI-692).

<u>OK:</u>

DTC B1168/86 is not output.


HINT:

Codes other than code B1168/86 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.

OK

ОК

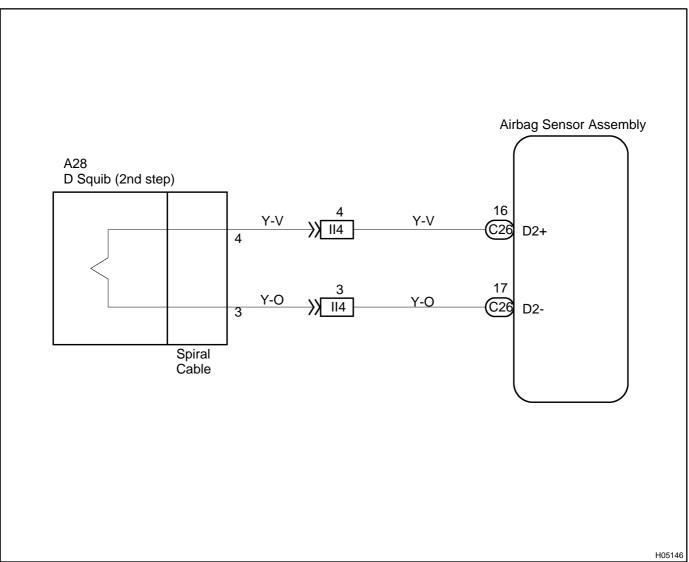
From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DTC

B1180/17

Short in D Squib (2nd step) Circuit

DIB40-01


CIRCUIT DESCRIPTION

The D squib (2nd step) circuit consists of the airbag sensor assembly, the spiral cable and the steering wheel pad.

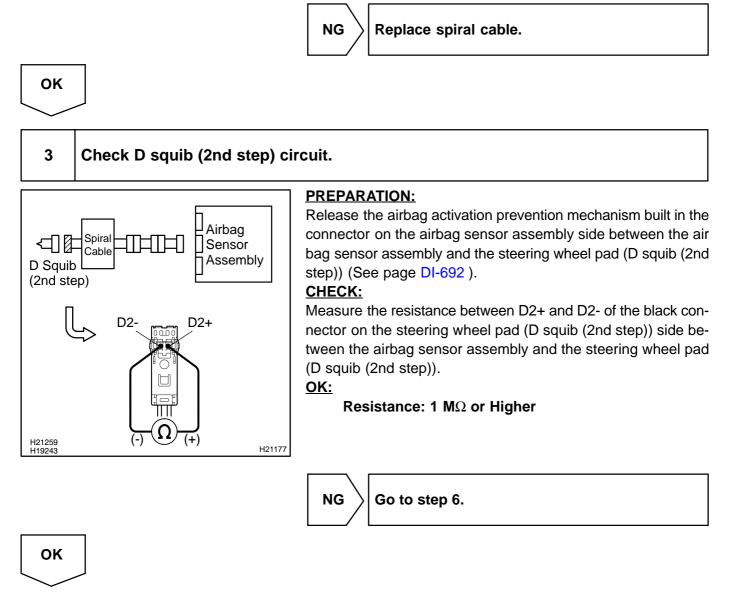
It causes the airbag to deploy when the airbag deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS-3. DTC B1180/17 is recorded when a short is detected in the D squib (2nd step) circuit.

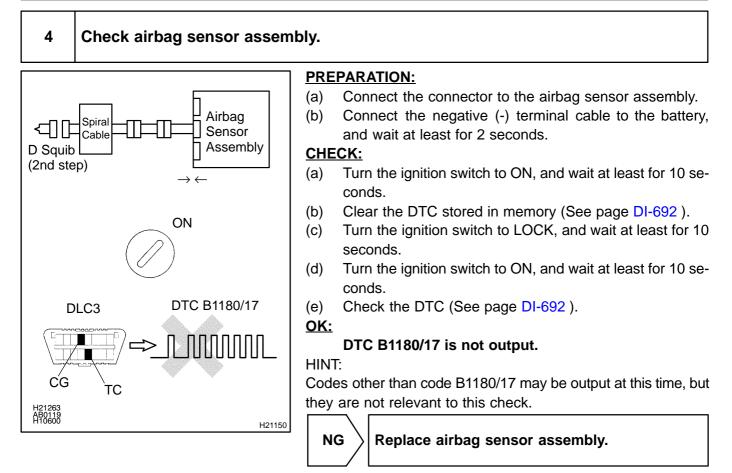
DTC No.	DTC Detecting Condition	Trouble Area
B1180/17	 ★Short in D squib (2nd step) circuit ★D squib (2nd step) malfunction ★Spiral cable malfunction ★Airbag sensor assembly malfunction 	 ★Steering wheel pad (D squib (2nd step)) ★Spiral cable ★Airbag sensor assembly ★Dash wire ★Column wire

WIRING DIAGRAM

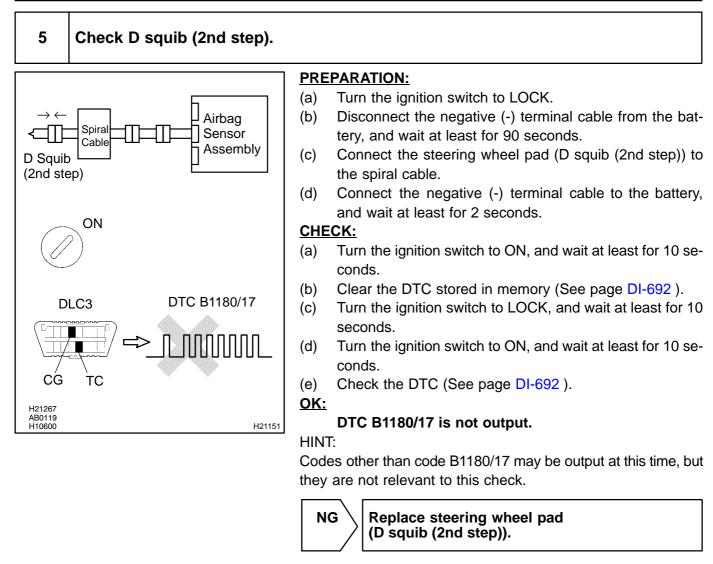
INSPECTION PROCEDURE

1	Prepare for inspection (See step 1 on page DI-923).

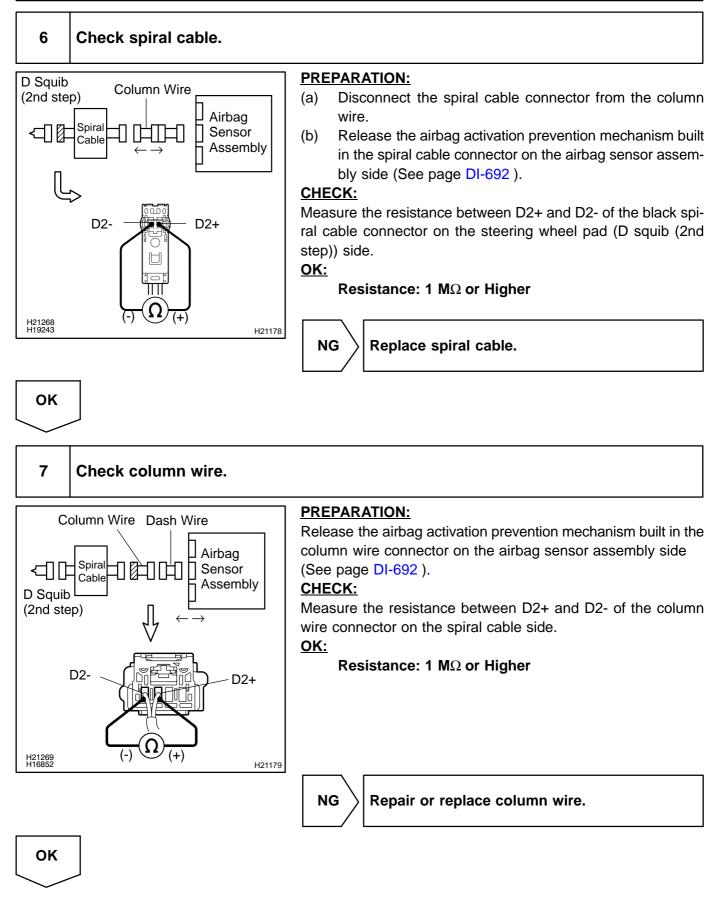

	2	
--	---	--

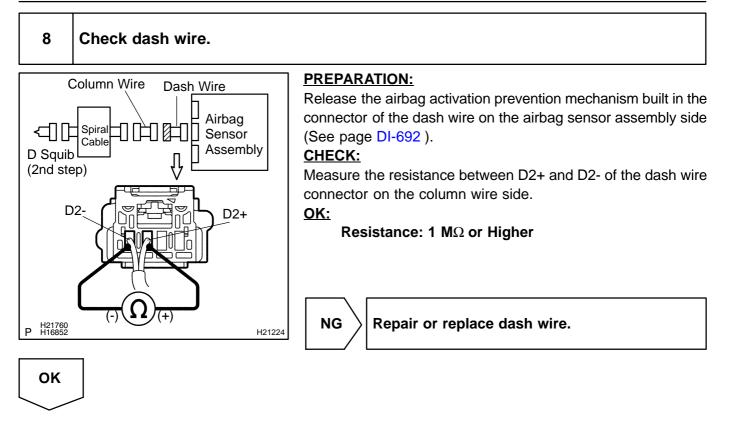

CHECK:

Make sure that the black spiral cable connector is not damaged.


<u>OK:</u>

The lock button is not disengaged, or the claw of the lock is not deformed or damaged.




OK

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

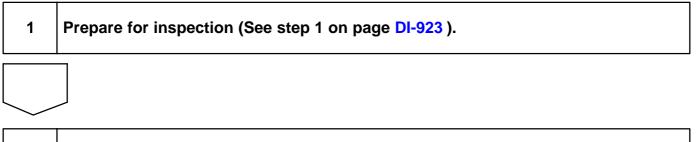
DTC

B1181/18

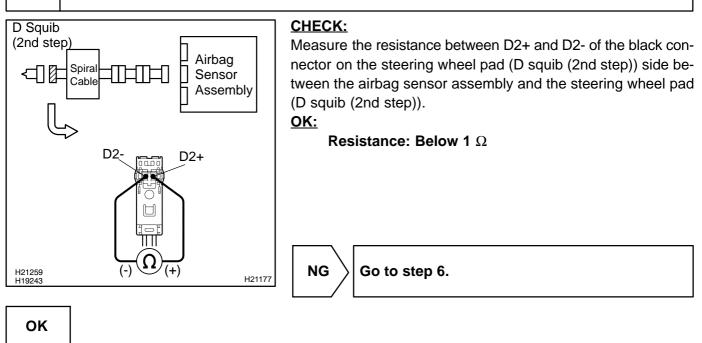
Open in D Squib (2nd step) Circuit

CIRCUIT DESCRIPTION

The D squib (2nd step) circuit consists of the airbag sensor assembly, the spiral cable and the steering wheel pad. It causes the airbag to deploy when the airbag deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS-3.

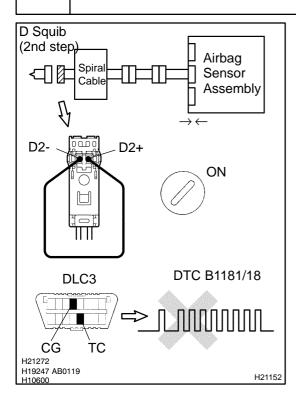

DTC B1181/18 is recorded when an open is detected in the D squib (2nd step) circuit.

DTC No.	DTC Detecting Condition	Trouble Area
B1181/18	 ★Open in D squib (2nd step) circuit ★D squib (2nd step) malfunction ★Spiral cable malfunction ★Airbag sensor assembly malfunction 	★Steering wheel pad (D squib (2nd step)) ★Spiral cable ★Airbag sensor assembly ★Dash wire ★Column wire


WIRING DIAGRAM

See page DI-882.

INSPECTION PROCEDURE



2 Check D squib (2nd step) circuit.

DIB41-01

3 Check airbag sensor assembly.

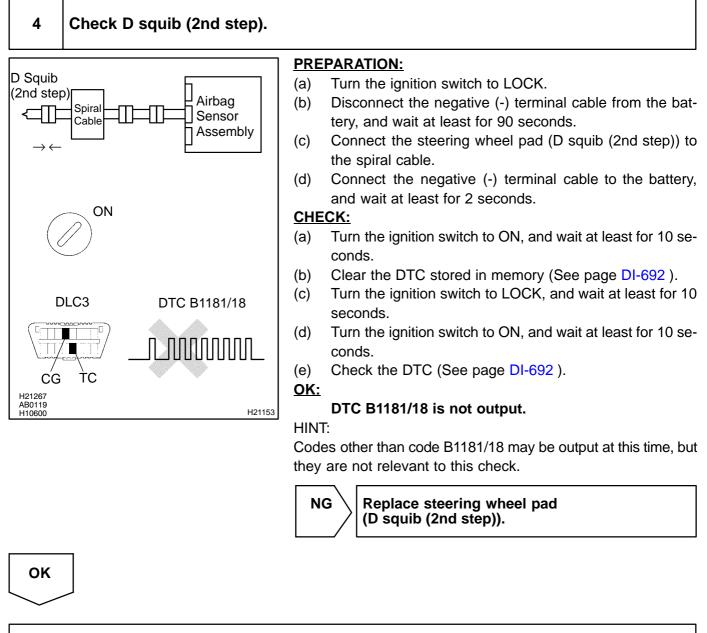
PREPARATION:

- (a) Connect the connector to the airbag sensor assembly.
- (b) Using a service wire, connect D2+ and D2- of the black connector on the steering wheel pad (D squib (2nd step)) side between the airbag sensor assembly and the steering wheel pad (D squib (2nd step)).
- (c) Connect the negative (-) terminal cable to the battery, and wait at least for 2 seconds.

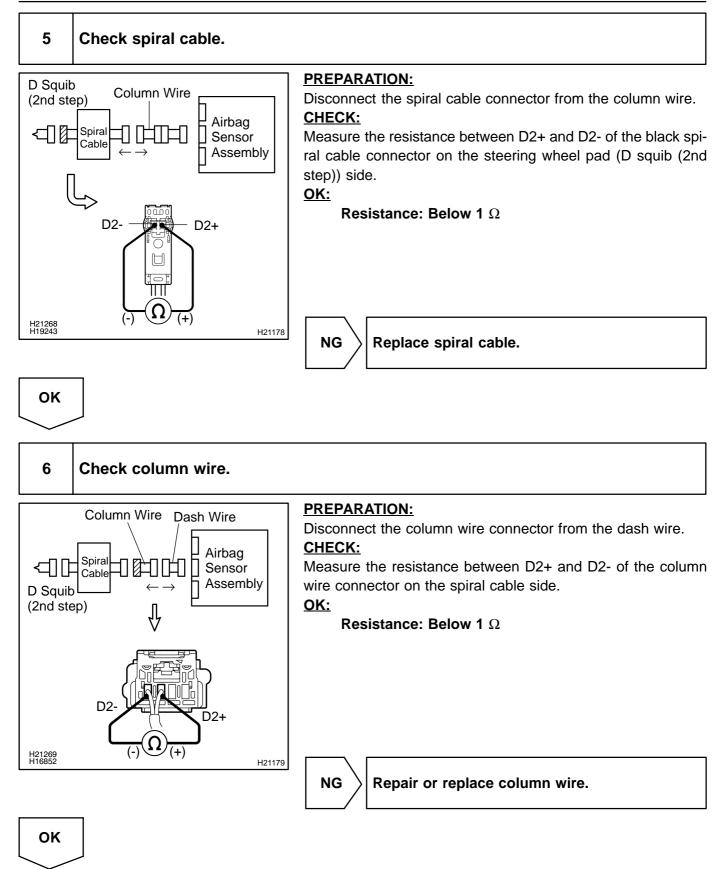
CHECK:

- (a) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (b) Clear the DTC stored in memory (See page DI-692).
- (c) Turn the ignition switch to LOCK, and wait at least for 10 seconds.
- (d) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (e) Check the DTC (See page DI-692).

<u>OK:</u>

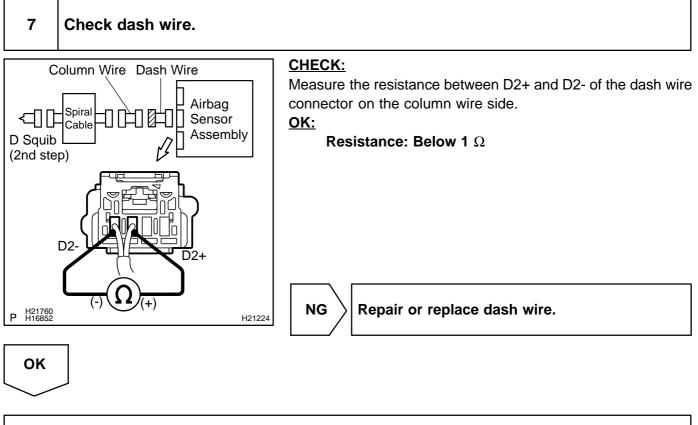

DTC B1181/18 is not output.

HINT:


Codes other than code B1181/18 may be output at this time, but they are not relevant to this check.

Replace airbag sensor assembly.

OK



From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DI-892

DIAGNOSTICS - SUPPLEMENTAL RESTRAINT SYSTEM

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DIB42-01

DTC

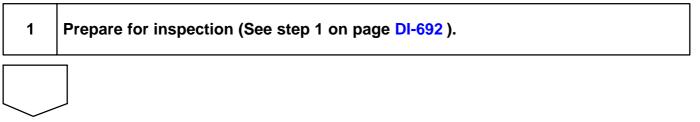
B1182/19

Short in D Squib (2nd step) Circuit (to Ground)

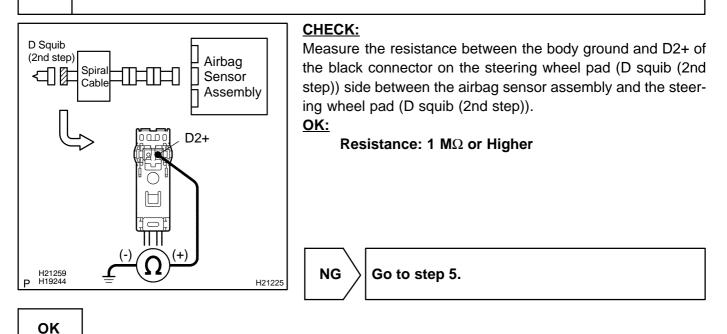
CIRCUIT DESCRIPTION

The D squib (2nd step) circuit consists of the airbag sensor assembly, the spiral cable and the steering wheel pad.

It causes the SRS to deploy when the SRS deployment conditions are satisfied.

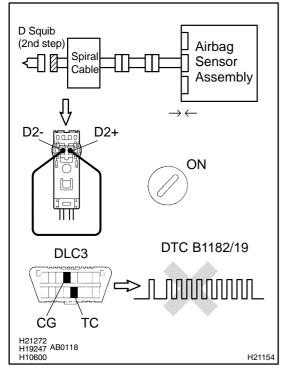

For details of the function of each component, see OPERATION on page RS-3. DTC B0102/11 is recorded when a ground short is detected in the D squib (2nd step) circuit.

DTC No.	DTC Detecting Condition	Trouble Area
B1182/19	 ★Short in D squib (2nd step) circuit (to ground) ★D squib (2nd step) malfunction ★Spiral cable malfunction ★Airbag sensor assembly malfunction 	 ★Steering wheel pad (D squib (2nd step)) ★Spiral cable ★Airbag sensor assembly ★Dash wire ★Column wire


WIRING DIAGRAM

See page DI-882.

INSPECTION PROCEDURE



2 Check D squib (2nd step) circuit.

2004 LAND CRUISER (RM1071U)

PREPARATION:

- (a) Connect the connector to the airbag sensor assembly.
- (b) Using a service wire, connect D2+ and D2- of the black connector on the steering wheel pad (D squib (2nd step)) side between the airbag sensor assembly and the steering wheel pad (D squib (2nd step)).
- (c) Connect the negative (-) terminal cable to the battery, and wait at least for 2 seconds.

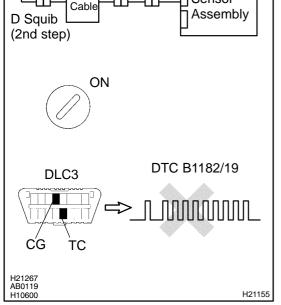
CHECK:

- (a) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (b) Clear the DTC stored in memory (See page DI-692).
- (c) Turn the ignition switch to LOCK, and wait at least for 10 seconds.
- (d) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (e) Check the DTC (See page DI-692).

<u>OK:</u>

DTC B1182/19 is not output.

HINT:


Codes other than code B1182/19 may be output at this time, but they are not relevant to this check.

Replace airbag sensor assembly.

ΟΚ

4 Check D squib (2nd step). (a) Airbad

Sensor

Spira

PREPARATION:

Turn the ignition switch to LOCK.

- (b) Disconnect the negative (-) terminal cable from the battery, and wait at least for 90 seconds.
- Connect the steering wheel pad (D squib (2nd step)) to (c) the spiral cable.
- (d) Connect the negative (-) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

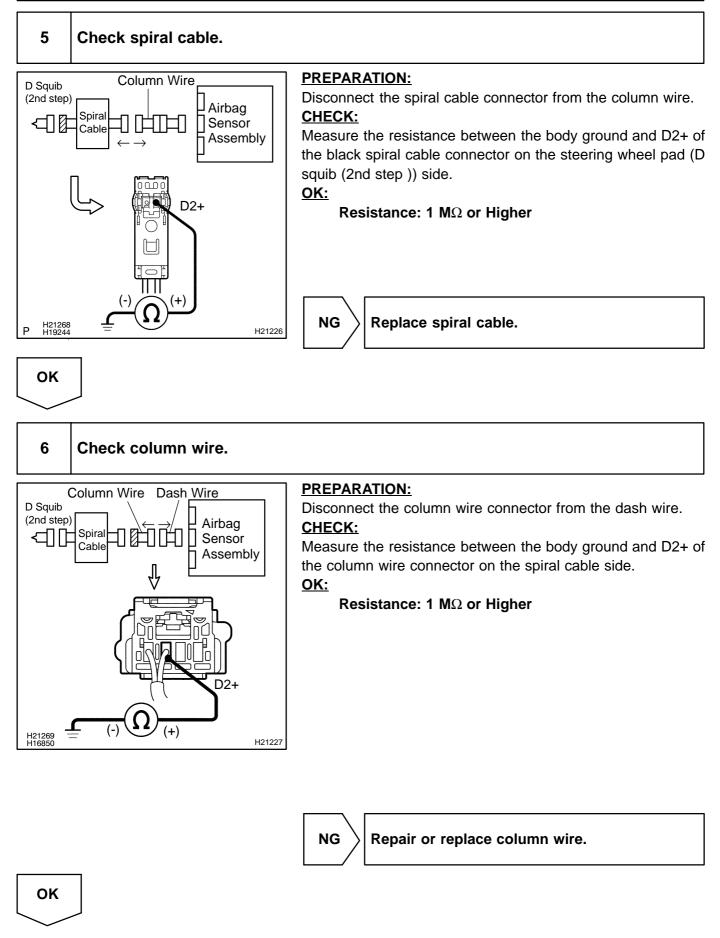
- (a) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (b) Clear the DTC stored in memory (See page DI-692).
- Turn the ignition switch to LOCK, and wait at least for 10 (c) seconds.
- (d) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (e) Check the DTC (See page DI-692).

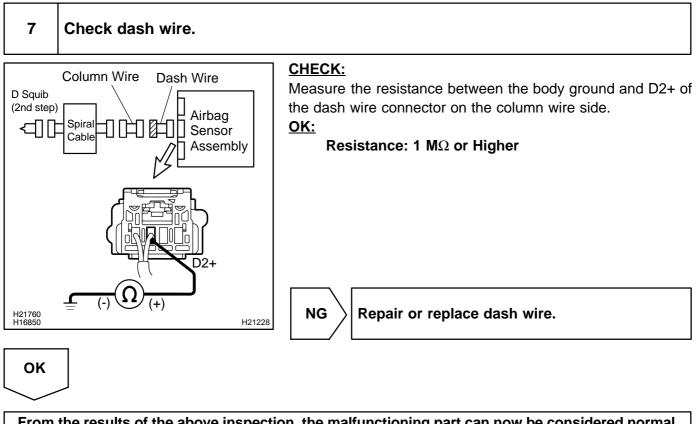
<u>OK:</u>

DTC B1182/19 is not output.

HINT:

NG


Codes other than code B1182/19 may be output at this time, but they are not relevant to this check.


> Replace steering wheel pad (D squib (2nd step)).

OK

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DI-896

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

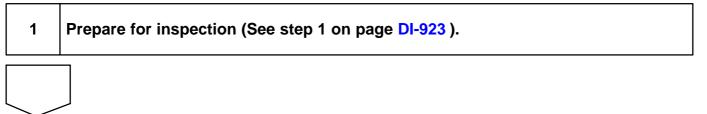
DIB43-01

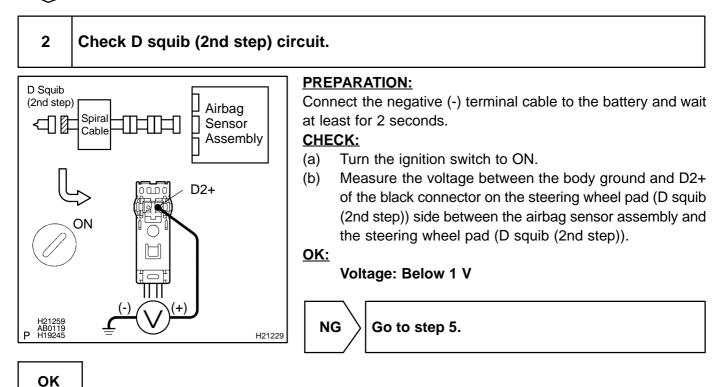
DTC	B1183/22	Short in D Squib (2nd step) Circuit (to B+)

CIRCUIT DESCRIPTION

The D squib (2nd step)circuit consists of the airbag sensor assembly, the spiral cable and the steering wheel pad.

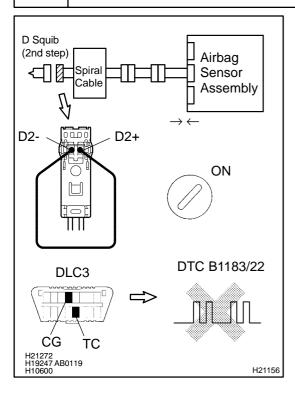
It causes the SRS to deploy when the SRS deployment conditions are satisfied.


For details of the function of each component, see OPERATION on page RS-3. DTC B1183/22 is recorded when a B+ short is detected in the D squib (2nd step) circuit.


DTC No.	DTC Detecting Condition	Trouble Area
B1183/22	 ★Short in D squib (2nd step) circuit (to B+) ★D squib (2nd step) malfunction ★Spiral cable malfunction ★Airbag sensor assembly malfunction 	 ★Steering wheel pad (D squib (2nd step)) ★Spiral cable ★Airbag sensor assembly ★Dash wire ★Column wire

WIRING DIAGRAM

See page DI-882.


INSPECTION PROCEDURE

2004 LAND CRUISER (RM1071U)

3 Check airbag sensor assembly.

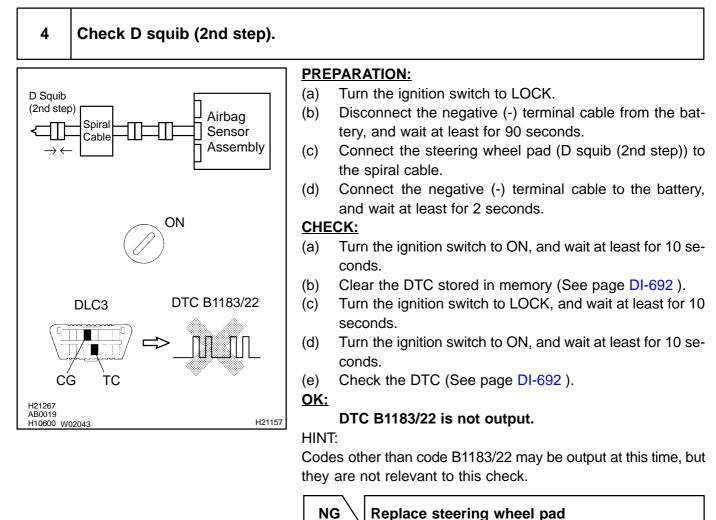
PREPARATION:

- (a) Connect the connector to the airbag sensor assembly.
- (b) Using a service wire, connect D2+ and D2- of the black connector on the steering wheel pad (D squib (2nd step)) side between the airbag sensor assembly and the steering wheel pad (D squib (2nd step)).
- (c) Connect the negative (-) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:

- (a) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (b) Clear the DTC stored in memory (See page DI-692).
- (c) Turn the ignition switch to LOCK, and wait at least for 10 seconds.
- (d) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (e) Check the DTC (See page DI-692).

<u>OK:</u>

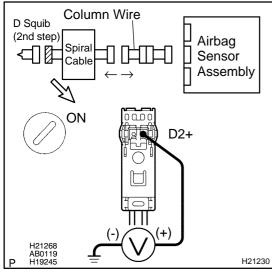

DTC B1183/22 is not output.

HINT:

Codes other than code B1183/22 may be output at this time, but they are not relevant to this check.

Replace airbag sensor assembly.

ΟΚ


(D squib (2nd step)).

ΟΚ

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DIAGNOSTICS - SUPPLEMENTAL RESTRAINT SYSTEM

5 Check spiral cable.

PREPARATION:

(a) Turn the ignition switch to LOCK.

- (b) Disconnect the negative (-) terminal cable from the battery, and wait at least for 90 seconds.
- (c) Disconnect the spiral cable connector from the column wire.
- (d) Connect the negative (-) terminal cable to the battery, and wait at least for 2 seconds.

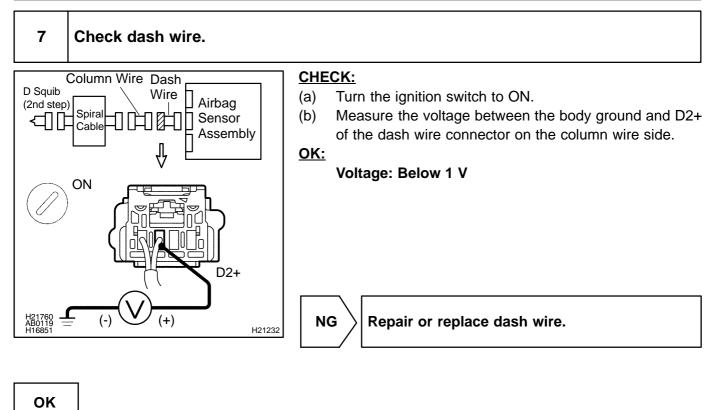
CHECK:

- (a) Turn the ignition switch to ON.
- (b) Measure the voltage between the body ground and D2+ of the black spiral cable connector on the steering wheel pad (D squib (2nd step)) side.

<u>OK:</u>

Voltage: Below 1 V

OK


6 Check column wire. **PREPARATION:** Column Wire Dash D Squib Wire (a) Turn the ignition switch to LOCK. (2nd step) Airbag (b) Disconnect the negative (-) terminal cable from the bat-Spira Sensor Cable tery, and wait at least for 90 seconds. Assembly Disconnect the column wire connector from the dash (C) wire. ON Connect the negative (-) terminal cable to the battery, (d) and wait at least for 2 seconds. CHECK: Turn the ignition switch to ON. (a) (b) Measure the voltage between the body ground and D2+ D2+ of the column wire connector on the spiral cable side. OK: H21269 AB0119 H16851 (-) (+)Voltage: Below 1 V H21231 NG Repair or replace column wire.

2004 LAND CRUISER (RM1071U)

OK

DI-902

DIAGNOSTICS - SUPPLEMENTAL RESTRAINT SYSTEM

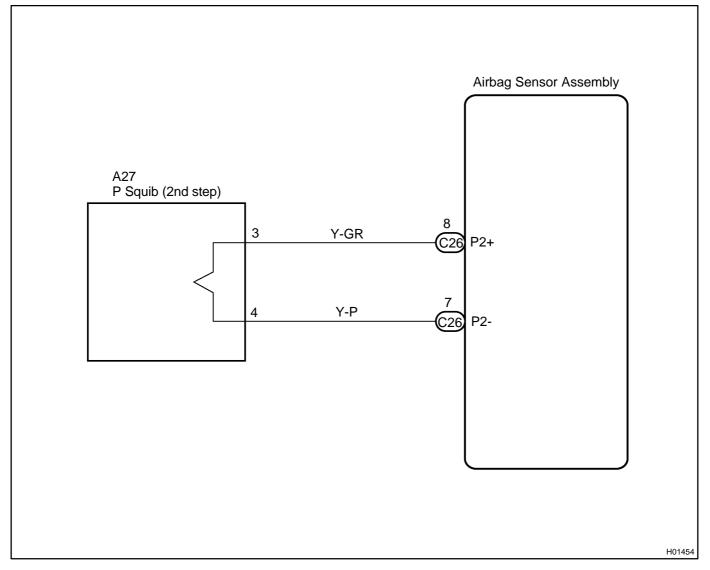
From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DI8F0-06

DTC

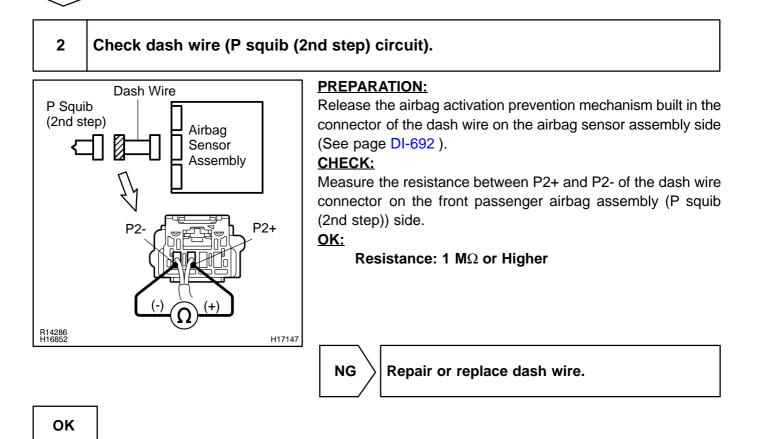
B1185/57

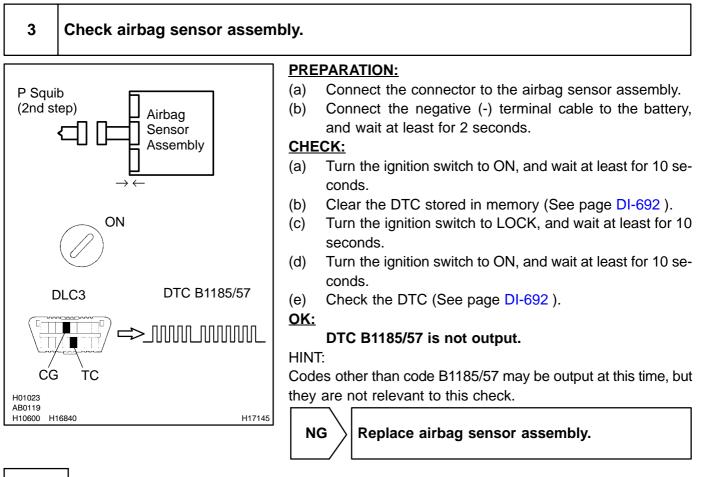
Short in P Squib (2nd step) Circuit


CIRCUIT DESCRIPTION

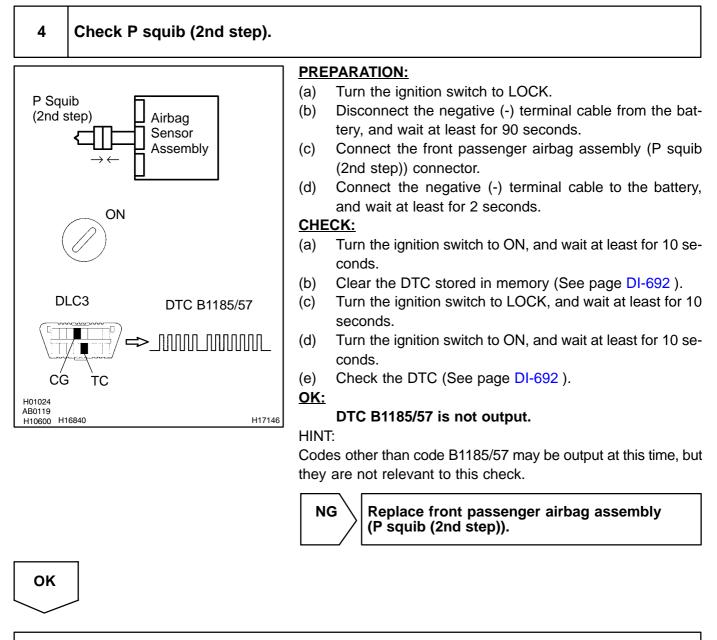
The P squib (2nd step) circuit consists of the airbag sensor assembly and the front passenger airbag assembly. It causes the SRS to deploy when the SRS deployment conditions are satisfied. For details of the function of each component, see OPERATION on page RS-3.

DTC B1185/57 is recorded when a short is detected in the P squib (2nd step) circuit.


DTC No.	DTC Detecting Condition	Trouble Area
	₭Short in P squib (2nd step) circuit	★Front passenger airbag assembly (P squib (2nd step))
B1185/57	₩ squib (2nd step) malfunction	★Airbag sensor assembly
	*Airbag sensor assembly malfunction	★Dash wire


WIRING DIAGRAM

INSPECTION PROCEDURE


1 Prepare for inspection (See step 1 on page DI-923).

ОК

DI-905

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DI8F1-06

DTC

B1186/58

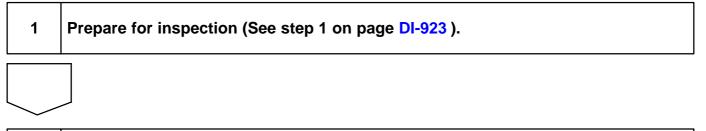
Open in P Squib (2nd step) Circuit

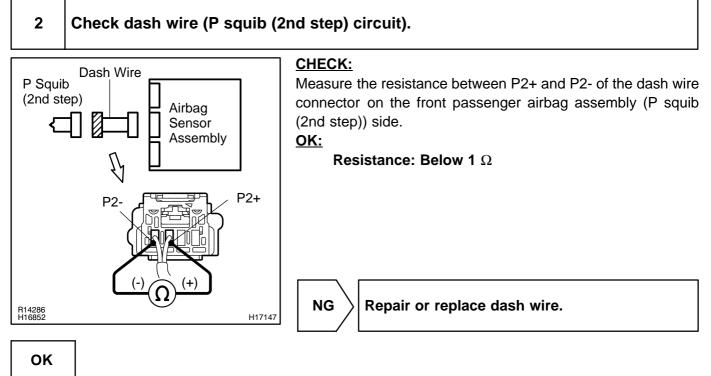
CIRCUIT DESCRIPTION

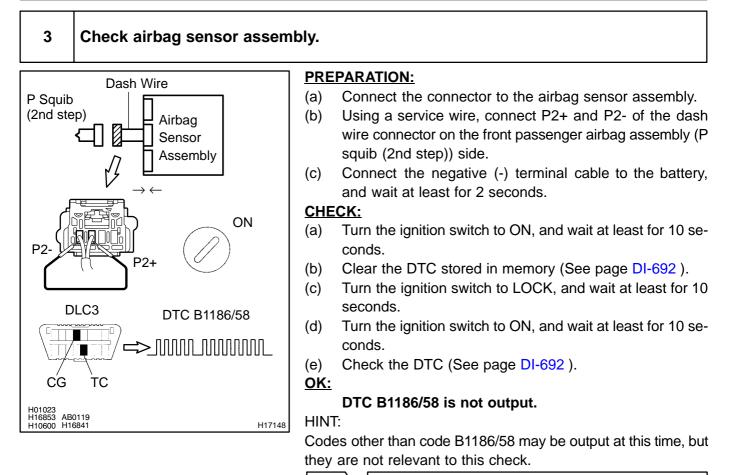
The P squib (2nd step) circuit consists of the airbag sensor assembly and the front passenger airbag assembly.

It causes the SRS to deploy when the SRS deployment conditions are satisfied.

For details of the function of each component, see OPERATION on page RS-3.

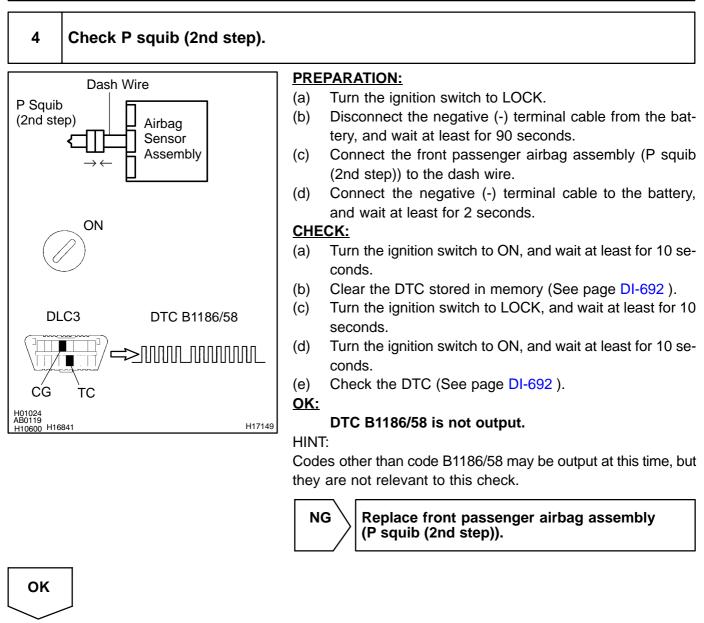

DTC B1186/58 is recorded when an open is detected in the P squib (2nd step) circuit.


DTC No.	DTC Detecting Condition	Trouble Area
	★Open in P squib (2nd step) circuit	★ ront passenger airbag assembly (P squib (2nd step))
B1186/58	₩ squib (2nd step) malfunction	★Airbag sensor assembly
	*Airbag sensor assembly malfunction	★Dash wire


WIRING DIAGRAM

See page DI-903.

INSPECTION PROCEDURE



NG

Replace airbag sensor assembly.

OK

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DI-909

DI8F2-06

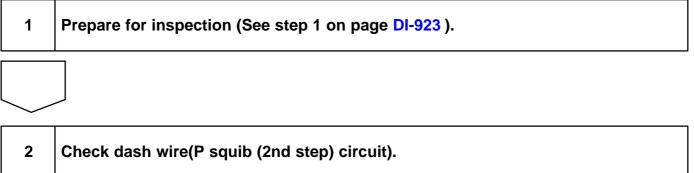
DTC B1187/55 Short in P Squib (2nd step) Circuit (to Ground)

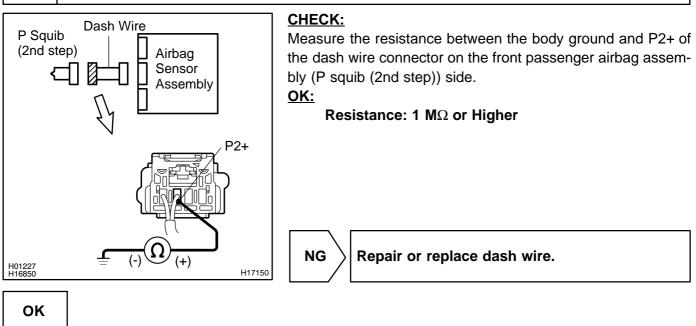
CIRCUIT DESCRIPTION

The P squib (2nd step) circuit consists of the airbag sensor assembly and the front passenger airbag assembly.

It causes the SRS to deploy when the SRS deployment conditions are satisfied.

For details of the function of each component, see OPERATION on page RS-3.


DTC B1187/55 is recorded when ground short is detected in the P squib (2nd step) circuit.


DTC No.	DTC Detecting Condition	Trouble Area
B1187/55	★Short in P squib (2nd step) circuit (to ground) ★P squib (2nd step) malfunction	 ★Front passenger airbag assembly (P squib (2nd step)) ★Airbag sensor assembly
	Airbag sensor assembly malfunction	★Dash wire

WIRING DIAGRAM

See page DI-903.

INSPECTION PROCEDURE

Dash Wire P Squib (2nd step) Airbag Sensor Assembly ON P2-P2+ DTC B1187/55 DLC3 ⇒ ∩∩∩∩ ∩∩∩∩∩ CG тс H01023 H16853 AB0118 H10600 H16838 H17151

PREPARATION:

- (a) Connect the connector to the airbag sensor assembly.
- (b) Using a service wire, connect P2+ and P2- of the dash wire connector on the front passenger airbag assembly (P squib (2nd step)) side.
- (c) Connect the negative (-) terminal cable to the battery, and wait at least for 2 seconds.

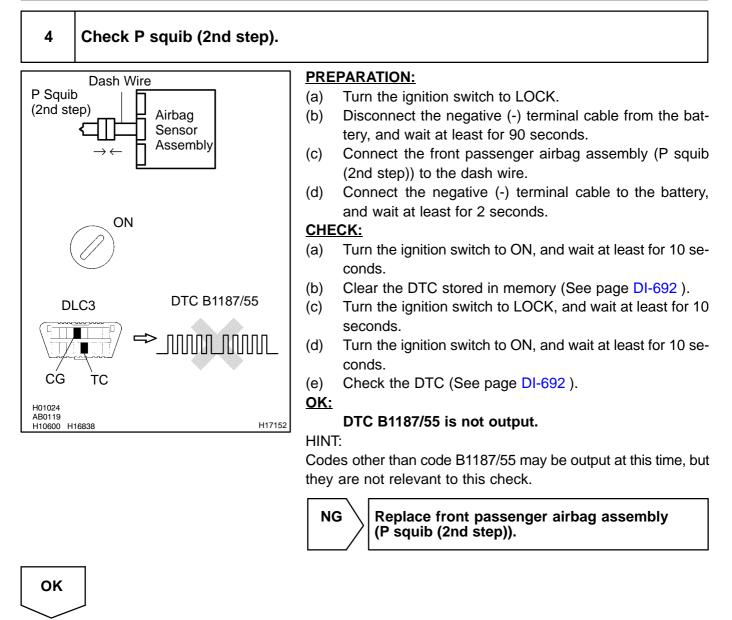
CHECK:

- (a) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (b) Clear the DTC stored in memory (See page DI-692).
- (c) Turn the ignition switch to LOCK, and wait at least for 10 seconds.
- (d) Turn the ignition switch to ON, and wait at least for 10 seconds.
- (e) Check the DTC (See page DI-692).

DTC B1187/55 is not output.

HINT:

OK:


Codes other than code B1187/55 may be output at this time, but they are not relevant to this check.

NG

Replace airbag sensor assembly.

OK

3

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DI8F3-06

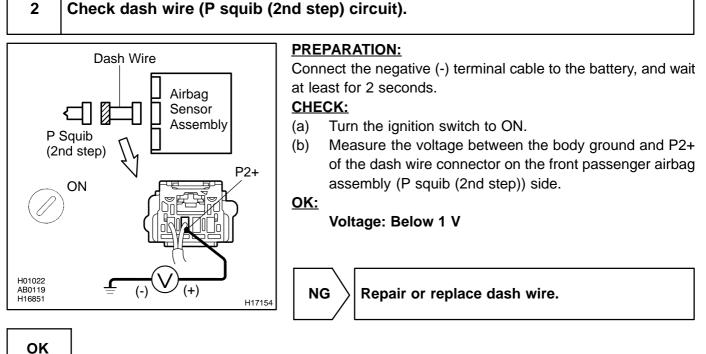
DTC	Short in P Squib (2nd step) Circuit
	(to B+)

CIRCUIT DESCRIPTION

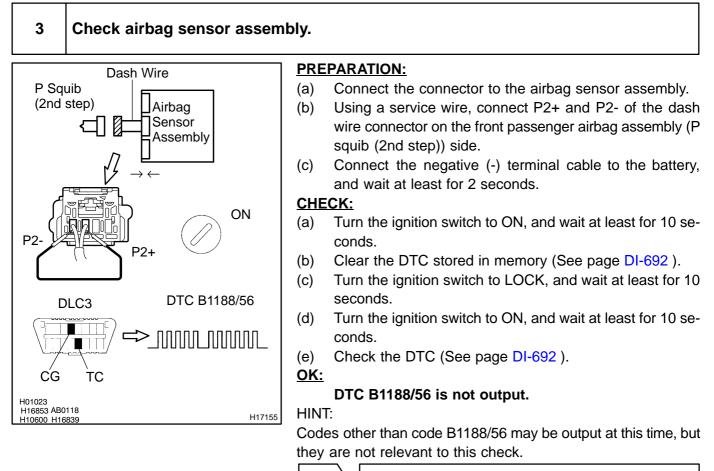
The P squib (2nd step) circuit consists of the airbag sensor assembly and the front passenger airbag assembly.

It causes the SRS to deploy when the SRS deployment conditions are satisfied.

For details of the function of each component, see OPERATION on page RS-3. DTC B1188/56 is recorded when a B+ short is detected in the P squib (2nd step) circuit.

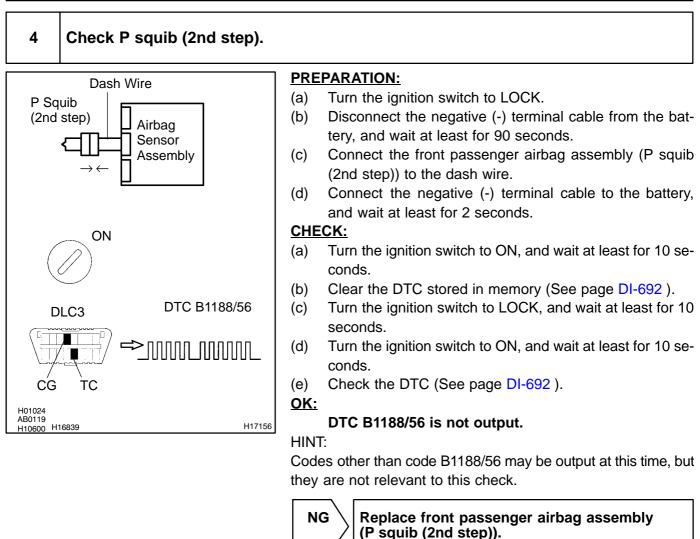

DTC No.	DTC Detecting Condition	Trouble Area
B1188/56	★Short in P squib (2nd step) circuit (to B+) ★P squib (2nd step) malfunction	★Front passenger airbag assembly (P squib (2nd step)) ★Airbag sensor assembly
	Airbag sensor assembly malfunction	★Dash wire

WIRING DIAGRAM


See page DI-903.

INSPECTION PROCEDURE

1	Prepare for inspection (See step 1 on page DI-923).
$\overline{}$	


2004 LAND CRUISER (RM1071U)

NG

Replace airbag sensor assembly.

OK

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check. If the malfunctioning part can not be detected by the simulation method, replace all SRS components including the wire harness.

DI-915

DIB44-01

DTC

B1628/29

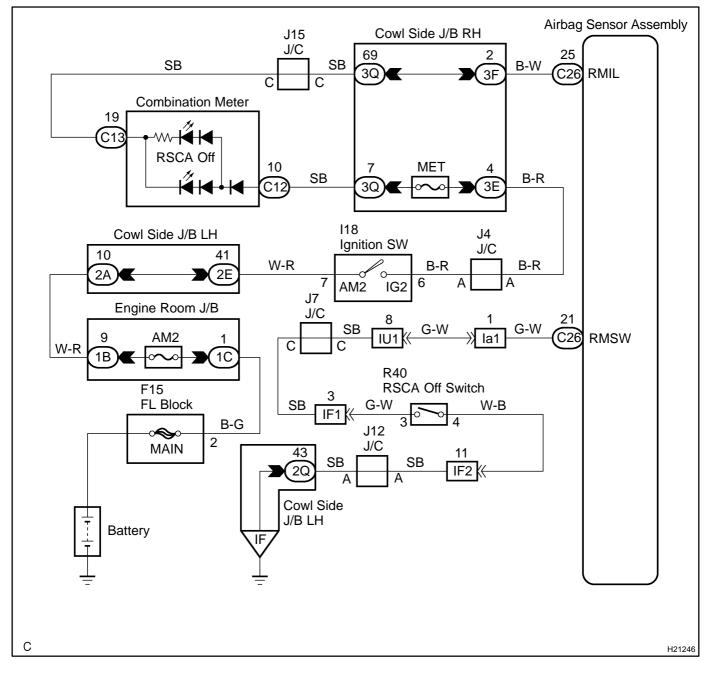
RSCA off Switch Indicator Malfunction

CIRCUIT DESCRIPTION

The RSCA off switch is a mechanism that operates both right and left side of the curtain shield airbag assembly and the seat belt pretensioner when the airbag sensor assembly detects a roll-over.

The RSCA off switch indicator light is installed in the combination meter.

As operating the RSCA off switch, the indicator light comes on to inform the driver that the roll-over detection system is not working.


The initial setting of the roll-over detection system is on. It automatically operates every time the ignition switch is turned on.

DTC No.	DTC Detecting Condition	Trouble Area
B1628/29	★RSCA off indicator circuit malfunction	★RSCA off switch
		★Airbag sensor assembly
		★Dash wire
		★Instrument panel wire

HINT:

DTC B1628/29 is indicated only for the vehicle equipped with the side airbag.

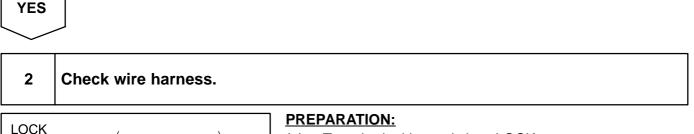
WIRING DIAGRAM

INSPECTION PROCEDURE

The RSCA off indicator light remains on when the RSCA off switch is not operating (Remains ON).

Does indicator light turn off?

PREPARATION:


Disconnect the combination meter connector. **CHECK:**


- (a) Turn the ignition switch to ON.
- (b) Check operation of RSCA off indicator light.
- OK:

The indicator light does not light up.

Check combination meter (See page BE-58).

- (b) Disconnect the negative (-) terminal cable from the battery, and wait at least for 90 seconds.
- (c) Disconnect the airbag sensor assembly connector.

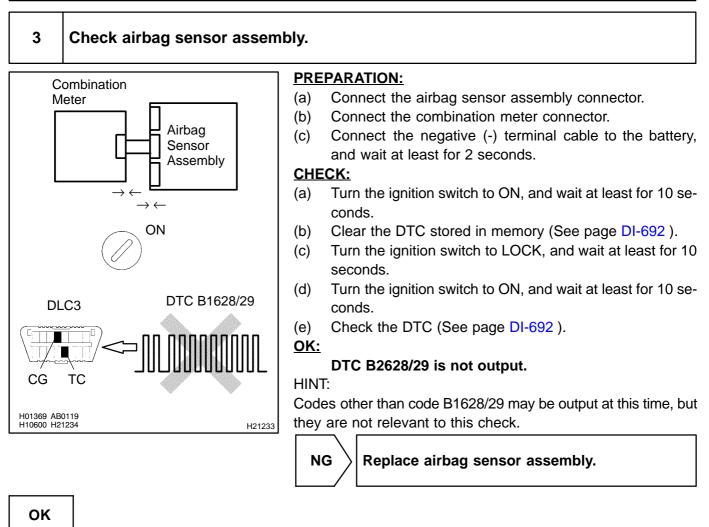
CHECK:

Measure the resistance between the body ground and RMSW on the airbag sensor assembly side between the combination meter and airbag sensor assembly.

<u>OK:</u>

RMSW

H01295


Resistance: 1 M Ω or Higher

 \rangle Repair or replace wire harness.

ΟΚ

AB0117 H01293

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

DI-919

The RSCA off indicator light does not come on when the RSCA off switch is operating (Remains OFF).

1

Check voltage of combination meter.

PREPARATION:

Disconnect the combination meter connector.

CHECK:

OK

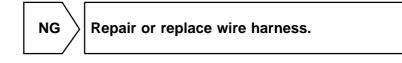
Measure the voltage of the combination meter.

<u>OK:</u>

Voltage: 10 - 14 V

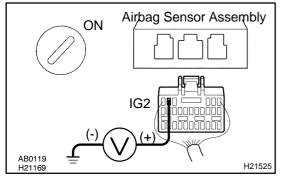
2 Check wire harness.

PREPARATION:


Disconnect the combination meter connector.

CHECK:

Measure the voltage between the body ground and RMSW on the combination meter side between the airbag sensor assembly and the combination meter.

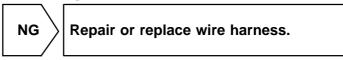

<u>OK:</u>

Voltage: Below 1 V

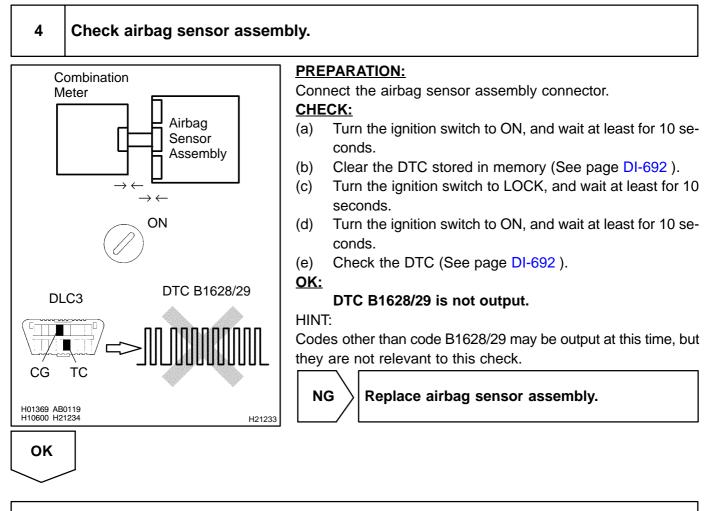
ОК

3 Check wire harness.

PREPARATION:


- (a) Disconnect the negative (-) terminal cable from the battery, and wait at least for 90 seconds.
- (b) Connect the combination meter connector.
- (c) Turn the ignition switch to LOCK, and wait at least for 90 seconds.
- (d) Disconnect the airbag sensor assembly connector.
- (e) Connect the negative (-) terminal cable to the battery, and wait at least for 2 seconds.

CHECK:


- (a) Turn the ignition switch to ON.
- (b) Measure the voltage between the body ground and IG2 on the airbag sensor assembly side.

<u>OK:</u>

Voltage: 10 - 14 V

OK

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

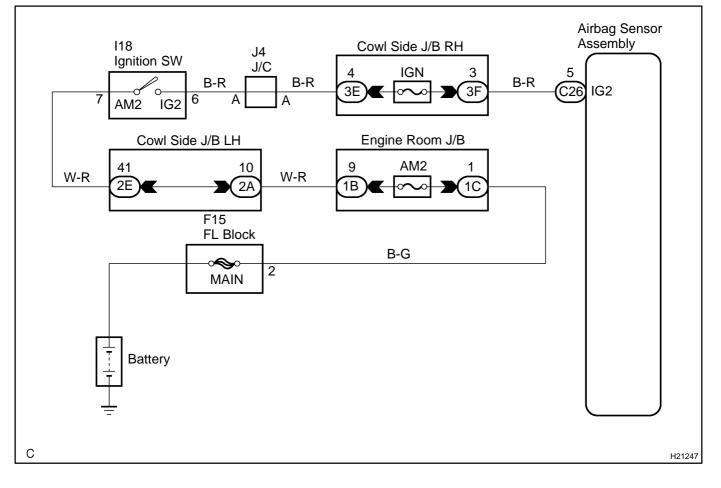
DTC

Normal

Source Voltage Drop

CIRCUIT DESCRIPTION

The SRS is equipped with a voltage-increase circuit (DC-DC converter) in the airbag sensor assembly in case the source voltage drops.

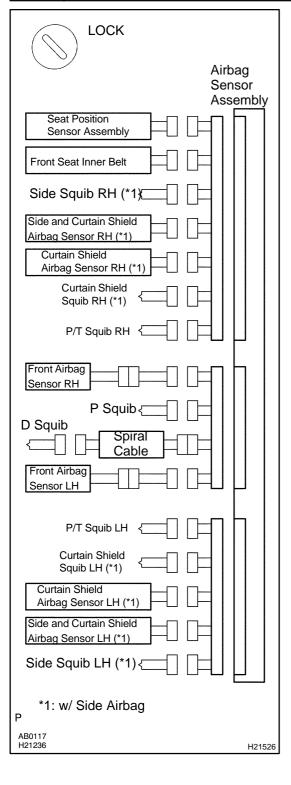

When the battery voltage drops, the voltage-increase circuit (DC-DC converter) functions to increase the voltage of the SRS to normal voltage.

The diagnosis system malfunction display for this circuit is differ from the other circuits in that when the SRS warning light remains on and the DTC shows a normal code, source voltage drop is indicated.

Malfunction in this circuit is not recorded in the airbag sensor assembly, and when the source voltage returns to normal, the SRS warning light automatically goes off.

DTC No.	Diagnosis
(Normal)	Source voltage drop

WIRING DIAGRAM



DI8FC-09

INSPECTION PROCEDURE

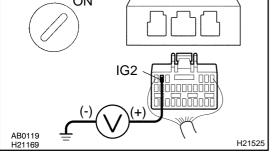
1

Prepare for inspection.

PREPARATION:

- (a) Disconnect the negative (-) terminal cable from the battery, and wait at least for 90 seconds.
- (b) Remove the steering wheel pad (See page SR-29).
- (c) Disconnect the connector of the front passenger airbag assembly (See page RS-31).

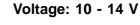
(d) w/ Side airbag:
 Disconnect the connector of the side airbag assembly RH and LH (See page RS-44).

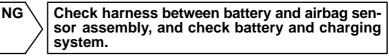

- (e) w/ Side airbag:
 Disconnect the connector of the curtain shield airbag assembly RH and LH (See page RS-59).
- (f) Disconnect the connector of the seat belt pretensioner RH and LH (See page BO-141).
- (g) Disconnect the connectors of the airbag sensor assembly (See page RS-70).
- (h) Disconnect the connector of the front airbag sensor RH and LH (See page RS-75).
- w/ Side airbag:
 Disconnect the connector of the side and curtain shield airbag sensor assembly RH and LH (See page RS-80).
- (j) w/ Side airbag:
 Disconnect the connector of the curtain shield airbag sensor assembly RH and LH (See page RS-86).
- (k) Disconnect the connector of the seat position sensor assembly (See page RS-91).
- Disconnect the front seat inner belt LH connector (See page BO-106).

CAUTION:

Store the steering wheel pad, front passenger airbag assembly, side airbag assembly and curtain shield airbag assembly with the front surface facing upward.

2 Check source voltage.

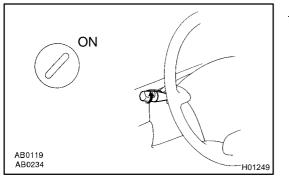



PREPARATION:

Connect the negative (-) terminal cable to the battery. **CHECK:**

- (a) Turn the ignition switch to ON.
- (b) Measure the voltage between the body ground and IG2 on the airbag sensor assembly and operate electric system (defogger, wiper, headlight, heater blower, etc.).

<u>OK:</u>



ОК		
3	Check airbag sensor assembl	y connector.
AB0119 H17211	ON Airbag Sensor Assembly	CHECK: Measure the resistance between the body ground and each of E1 and E2 of the airbag sensor assembly connector. OK: Resistance: 0 Ω (Continuity)
		NG Repair or replace airbag sensor assembly con- nector.

ΟΚ

4

Does SRS warning light turn off?

PREPARATION:

- (a) Turn the ignition switch to LOCK.
- (b) Connect the steering wheel pad connector.
- (c) Connect the front passenger airbag assembly connector.
- (d) w/ Side airbag:

Connect the side airbag assembly connectors.

- (e) Connect the seat belt pretensioner connectors.
- (f) Connect the airbag sensor assembly connectors.
- (g) Connect the front airbag sensor connectors.
- (h) w/ Side airbag: Connect the side and curtain shield airbag sensor assembly connectors.
- (i) w/ Side airbag:

Connect the curtain shield airbag assembly connectors.

- (j) w/ Side airbag: Connect the curtain shield airbag sensor assembly connectors.
- (k) Connect the seat position sensor assembly connector.
- (I) Connect the front seat inner belt LH connector.

CHECK:

- (a) Turn the ignition switch to ON.
- (b) Operate electric system (defogger, wiper, headlight, heater blower, etc.) and check that SRS warning light goes off.

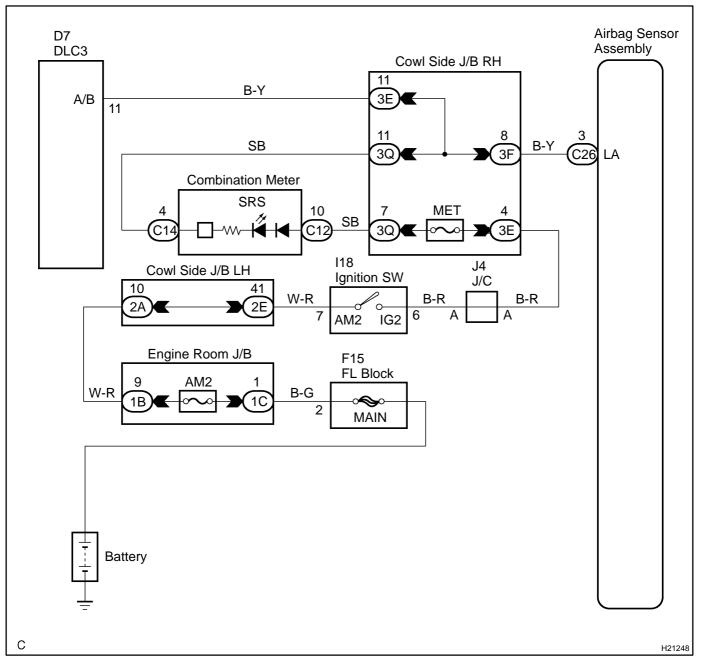
Check for DTCs. If a DTC is output, perform troubleshooting for the DTC. If a normal code is output, replace airbag sensor assembly.

YES

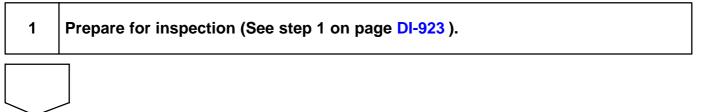
From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use the simulation method to check.

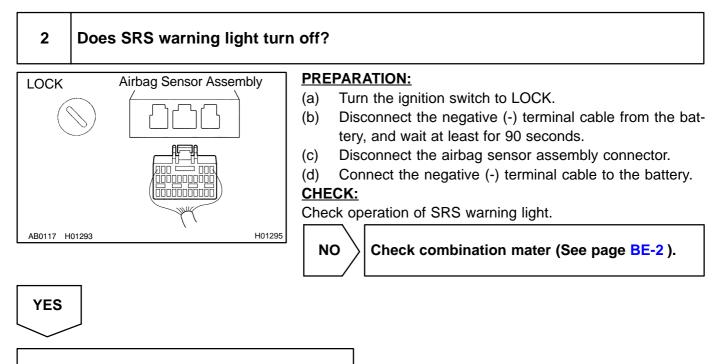
DIB45-01

SRS Warning Light Circuit Malfunction

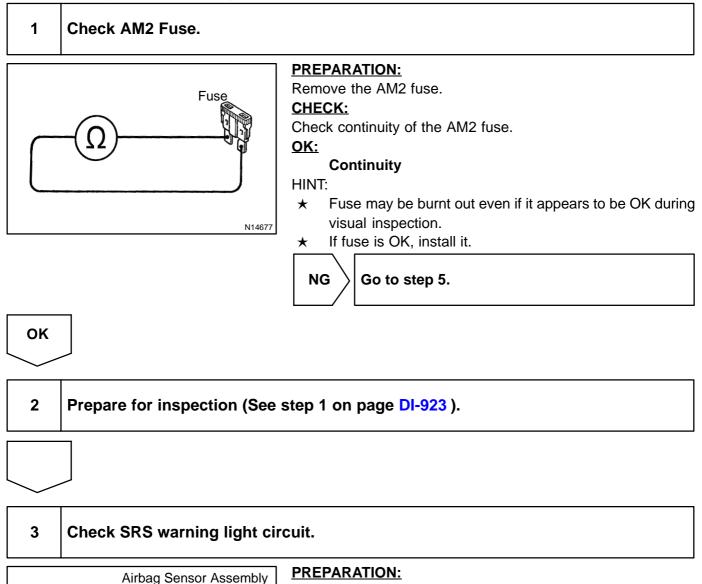

CIRCUIT DESCRIPTION

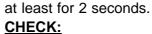
The SRS warning light is located on the combination meter.


When the SRS is normal, the SRS warning light comes on for approx. 6 seconds after the ignition switch is turned from the LOCK position to ON position, and then turns off automatically.


If there is a malfunction in the SRS, the SRS warning light lights up to inform the driver of the abnormality. When terminal TC and CG of the DLC3 are connected, the DTC is indicated by blinking the SRS warning light.

WIRING DIAGRAM


INSPECTION PROCEDURE Always lights up, when ignition switch is in LOCK position.

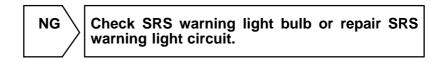


Replace airbag sensor assembly.

Does not light up, when ignition switch is turned to ON.

- (a) Turn the ignition switch to ON.
- (b) Measure the voltage between the body ground and LA of the airbag sensor assembly connector.

Connect the negative (-) terminal cable to the battery, and wait

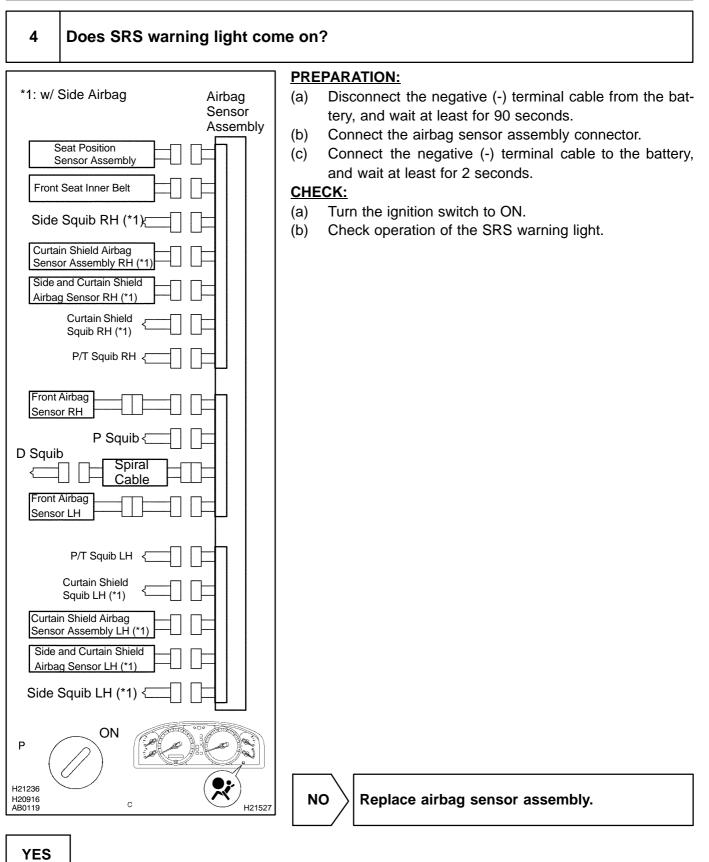

<u> 0K:</u>

LA

H01301

nnnnr

Voltage: 10 - 14 V



OK

AB0119 H01300 ON

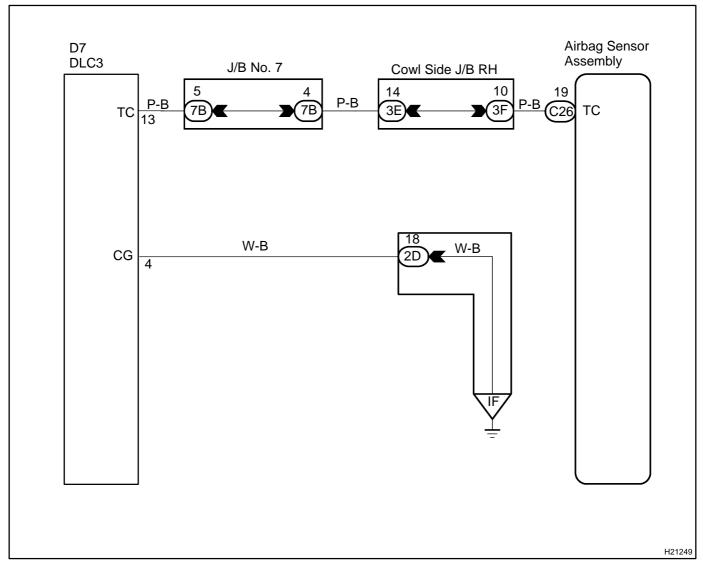
(+)

DI-930

From the results of the above inspection, the malfunctioning part can now be considered normal. To make sure of this, use simulation method to check.

5 Is new AM2 fuse burnt out again?

Using simulation method, reproduce malfunction symptoms (See page IN-26).


Check harness between AM2 fuse and SRS warning light.

TC Terminal Circuit

CIRCUIT DESCRIPTION

DTC output mode is set by connecting terminal TC and CG of the DLC3 the airbag sensor assembly. The DTCs are displayed by blinking the SRS warning light.

WIRING DIAGRAM

DIB46-02

INSPECTION PROCEDURE If the DTC is not displayed, do the following troubleshooting.

1

LOCK

\$ O 4

Does SRS warning light light up for approx. 6 seconds?

ON

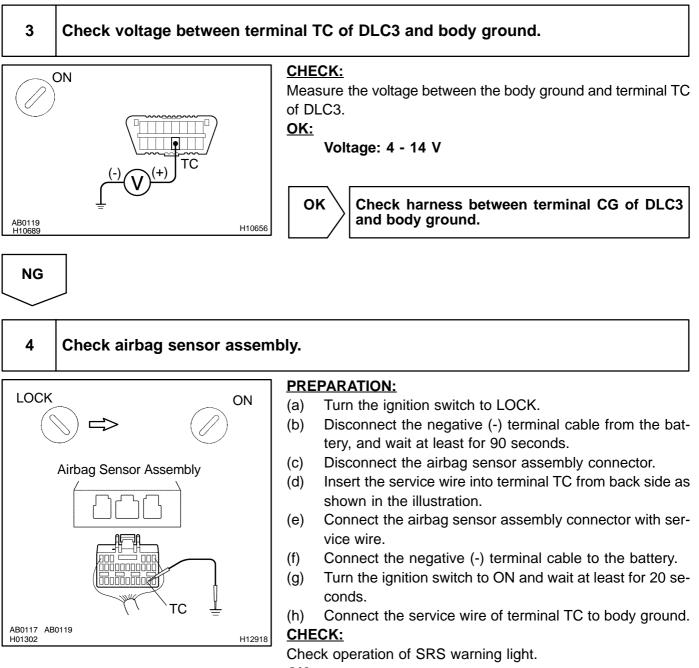
H21240

CHECK:

Check operation of the SRS warning light after ignition switch is turned from LOCK position to ON position.

NO Check SRS warning light system. (See page DI-927)

YES

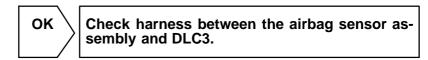

AB0117 AB0119 H20916

2 Check voltage between terminal TC and CG of DLC3.
 ON
 CG
 CG
 CG
 CG
 (+) (+) TC
 H10654

 2 Check voltage between terminal TC and CG of DLC3.
 CHECK:
 Measure the voltage between terminal TC and CG of DLC3.
 OK
 OK
 Go to step 4.

NG

DI-933

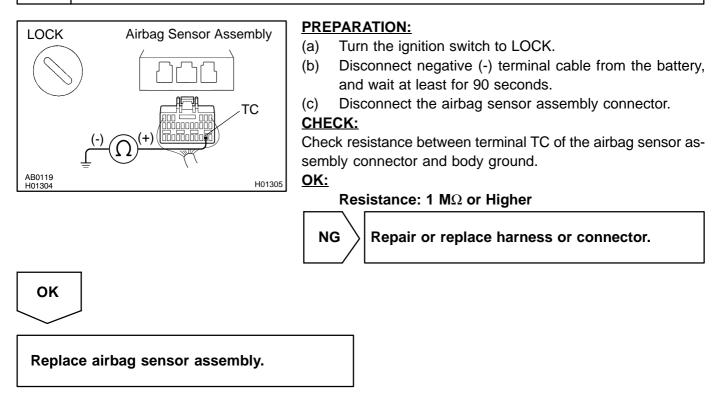


<u>OK:</u>

SRS waning light comes on.

NOTICE:

Pay due attention to the terminal connecting position to avoid a malfunction.



Replace airbag sensor assembly.

If the DTC is displayed without a DTC check procedure, perform the following troubleshooting.

1 Check resistance between terminal TC of airbag sensor assembly and body ground.

DI-935

CUSTOMER PROBLEM ANALYSIS CHECK

Supplemental Restraint System Check Sheet Inspector's Name					_					
			Re	gistratio	on No.					
Customer's Name			Re	gistratio	on Year			1	1	
			Fra	me No.	-					
Date Vehicle Brought In	/	1	Od	ometer	Readin	g				km Miles
Date Problem Occur	ed							1	1	
Weather		□ Fine □ C	loudy		ainy	□ Sn	owy	0	Other	
Temperature		Approx.								
Vehicle Operation			□ Idlin Consta Other	ant spe	ed 🗆	Accele	ration	D D	ecelera	tion]
Road Conditions										
Details of Problem										
Vehicle Inspection, Re ry Prior to Occurrence function (Including St	of Mal-									

Diagnosis System Inspection

tal Restraint System)

SRS Warning Light	1st Time	□ Remains ON	□ Sometimes Lights Up □ Does Not Light Up
Inspection			□ Sometimes Lights Up □ Does Not Light Up
DTC Inspection	1st Time	Normal Code	□ Malfunction Code [Code.]
	2nd Time	Normal Code	□ Malfunction Code [Code.]

DI-691

DIAGNOSTIC TROUBLE CODE CHART

If a malfunction code is displayed during the DTC check, check the circuit listed for that code in the table below (Proceed to the page given for that circuit.).

DTC No. (See Page)	Detection Item	Trouble Area	SRS Warning Light
B0100/13 (DI-711)	★Short in D squib circuit	 Steering wheel pad (squib) Spiral cable Airbag sensor assembly Dash wire Column wire 	ON
B0101/14 (DI-717)	★Open in D squib circuit	★Steering wheel pad (squib) ★Spiral cable ★Airbag sensor assembly ★Dash wire ★Column wire	ON
B0102/11 (DI-722)	★Short in D squib circuit (to ground)	★Steering wheel pad (squib) ★Spiral cable ★Airbag sensor assembly ★Dash wire ★Column wire	ON
B0103/12 (DI-727)	★Short in D squib circuit (to B+)	 ★Steering wheel pad (squib) ★Spiral cable ★Airbag sensor assembly ★Dash wire ★Column wire 	ON
B0105/53 (DI-732)	★Short in P squib circuit	 ★Front passenger airbag assembly (squib) ★Airbag sensor assembly ★Dash wire 	ON
B0106/54 (DI-736)	★Open in P squib circuit	 ★Front passenger airbag assembly (squib) ★Airbag sensor assembly ★Dash wire 	ON
B0107/51 (DI-739)	★Short in P squib circuit (to ground)	 ★Front passenger airbag assembly (squib) ★Airbag sensor assembly ★Dash wire 	ON
B0108/52 (DI-742)	★Short in P squib circuit (to B+)	 ★Front passenger airbag assembly (squib) ★Airbag sensor assembly ★Dash wire 	ON
B0110/43 (*1) (DI-745)	★Short in side squib RH circuit	 ★Side airbag assembly RH (squib) ★Airbag sensor assembly ★Floor No. 2 wire 	Blink
B0111/44 (*1) (DI-749)	★Open in side squib RH circuit	 ★Side airbag assembly RH (squib) ★Airbag sensor assembly ★Floor No. 2 wire 	Blink
B0112/41 (*1) (DI-752)	★Short in side squib RH circuit (to ground)	 ★Side airbag assembly RH (squib) ★Airbag sensor assembly ★Floor No. 2 wire 	Blink
B0113/42 (*1) (DI-755)	★Short in side squib RH circuit (to B+)	 ★Side airbag assembly RH (squib) ★Airbag sensor assembly ★Floor No. 2 wire 	Blink
B0115/47 (*1) (DI-758)	★Short in side squib LH circuit	★Side airbag assembly LH (squib) ★Airbag sensor assembly ★Floor No. 1 wire	Blink

DIAGNOSTICS - SUPPLEMENTAL RESTRAINT SYSTEM

B0116/48	★Open in side squib LH circuit	★Side airbag assembly LH (squib)	Dist
(*1)		★Airbag sensor assembly ★Floor No. 1 wire	Blink
(DI-762)			
B0117/45	*Short in side squib LH circuit	Side airbag assembly LH (squib)	
(*1)	(to ground)	*Airbag sensor assembly	Blink
(DI-765)		★Floor No. 1 wire	
B0118/46	★Short in side squib LH circuit	★Side airbag assembly LH (squib)	
(*1)	(to B+)	*Airbag sensor assembly	Blink
(DI-768)		★Floor No. 1 wire	
B0126/B0127/	★Seat belt buckle switch LH	₩ ront seat inner belt LH	
27	malfunction	★Airbag sensor assembly	ON
(DI-771)		★Floor No. 1 wire	ON
		★Front seat wire LH	
D 0400/00	★Short in P/T squib RH circuit	★Seat belt pretensioner RH (squib)	
B0130/63		★Airbag sensor assembly	Blink
(DI-777)		★ Floor No. 2 wire	
	★Open in P/T squib RH circuit	★Seat belt pretensioner RH (squib)	
B0131/64		*Airbag sensor assembly	Blink
(DI-781)		Floor No. 2 wire	
	★Short in P/T squib RH circuit	★Seat belt pretensioner RH (squib)	
B0132/61	(to ground)	Airbag sensor assembly	Blink
(DI-784)	(to ground)	Floor No. 2 wire	DIITIK
B0133/62	★Short in P/T squib RH circuit	*Seat belt pretensioner RH (squib)	D # 1
(DI-787)	(to B+)	*Airbag sensor assembly	Blink
		Floor No. 2 wire	
B0135/73	★Short in P/T squib LH circuit	★Seat belt pretensioner LH (squib)	
(DI-790)		★Airbag sensor assembly	Blink
()		★Floor No. 1 wire	
B0136/74	★Open in P/T squib LH circuit	★Seat belt pretensioner LH (squib)	
(DI-794)		★Airbag sensor assembly	Blink
(81734)		★Floor No. 1 wire	
D0107/71	★Short in P/T squib LH circuit	★Seat belt pretensioner LH (squib)	
B0137/71	(to ground)	★Airbag sensor assembly	Blink
(DI-797)		⊀F loor No. 1 wire	
	★Short in P/T squib LH circuit	★Seat belt pretensioner LH (squib)	
B0138/72	(to B+)	★Airbag sensor assembly	Blink
(DI-800)		★Floor No. 1 wire	
B1100/31	★Airbag sensor assembly malfunction	★Airbag sensor assembly	
(DI-803)			ON
(Helf connection in sither arrest	Mirhog concer cocombly	
B1135/24	Half connection in airbag sensor	★Airbag sensor assembly ★Dash wire	
(DI-805)	assembly connector	★ Floor No. 1 wire	ON
(600-10)		★Floor No. 1 wire	
B1140/32	Side and curtain shield airbag sensor	★Side and curtain shield airbag sensor assembly RH	D
(*1)	assembly RH malfunction	Airbag sensor assembly	Blink
(DI-807)		★Floor No. 2 wire	
B1141/33	★Side and curtain shield airbag sensor	★Side and curtain shield airbag sensor assembly LH	
(*1)	assembly LH malfunction	*Airbag sensor assembly	Blink
(DI-813)		★Floor No. 1 wire	
	★Front airbag sensor RH malfunction	⊀ Front airbag sensor RH	
B1148/36		★Airbag sensor assembly	
		★Dash wire	ON
1 JI-X1U1			
(DI-819)		₩Engine room No. 2 wire	

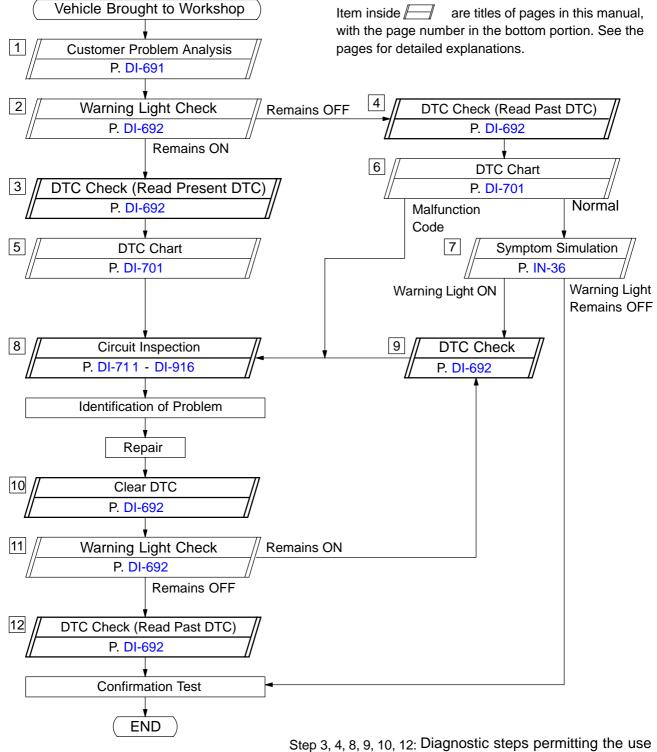
2004 LAND CRUISER (RM1071U)

	·		
B1149/37 (DI-828)	★Front airbag sensor LH malfunction	 ★Front airbag sensor LH ★Airbag sensor assembly ★Dash wire ★Engine room No. 2 wire ★Engine room main wire 	ON
B1153/25 (DI-836)	★Seat position sensor malfunction	★Seat position sensor assembly ★Airbag sensor assembly ★Floor No. 1 wire ★Front seat wire LH	ON
B1154/38 (*1) (DI-844)	★Curtain shield airbag sensor assembly RH malfunction	★Curtain shield airbag sensor assembly RH ★Airbag sensor assembly ★Floor No. 2 wire	Blink
B1155/39 (*1) (DI-850)	★Curtain shield airbag sensor assembly LH malfunction	★Curtain shield airbag sensor assembly LH ★Airbag sensor assembly ★Floor No. 1 wire	Blink
B1160/83 (*1) (DI-856)	★Short in curtain shield squib RH circuit	★Curtain shield airbag assembly RH (squib) ★Airbag sensor assembly ★Floor No. 2 wire	Blink
B1161/84 (*1) (DI-860)	★Open in curtain shield squib RH circuit	★Curtain shield airbag assembly RH (squib) ★Airbag sensor assembly ★Floor No. 2 wire	Blink
B1162/81 (*1) (DI-863)	★Short in curtain shield squib RH circuit (to ground)	★Curtain shield airbag assembly RH (squib) ★Airbag sensor assembly ★Floor No. 2 wire	Blink
B1163/82 (*1) (DI-866)	★Short in curtain shield squib RH circuit (to B+)	★Curtain shield airbag assembly RH (squib) ★Airbag sensor assembly ★Floor No. 2 wire	Blink
B1165/87 (*1) (DI-869)	★Short in curtain shield squib LH circuit	★Curtain shield airbag assembly LH (squib) ★Airbag sensor assembly ★Floor No. 1 wire	Blink
B1166/88 (*1) (DI-873)	★Open in curtain shield squib LH circuit	★Curtain shield airbag assembly LH (squib) ★Airbag sensor assembly ★Floor No. 1 wire	Blink
B1167/85 (*1) (DI-876)	★Short in curtain shield squib LH circuit (to ground)	★Curtain shield airbag assembly LH (squib) ★Airbag sensor assembly ★Floor No. 1 wire	Blink
B1168/86 (*1) (DI-879)	★Short in curtain shield squib LH circuit (to B+)	★Curtain shield airbag assembly LH (squib) ★Airbag sensor assembly ★Floor No. 1 wire	Blink
B1180/17 (DI-882)	★Short in D squib (2nd step) circuit	 ★Steering wheel pad (D squib, 2nd step) ★Spiral cable ★Airbag sensor assembly ★Dash wire ★Column wire 	ON
B1181/18 (DI-888)	★Open in D squib (2nd step) circuit	 ★Steering wheel pad (D squib, 2nd step) ★Spiral cable ★Airbag sensor assembly ★Dash wire ★Column wire 	ON
B1182/19 (DI-893)	★Short in D squib (2nd step) circuit (to ground)	 ★Steering wheel pad (D squib, 2nd step) ★Spiral cable ★Airbag sensor assembly ★Dash wire ★Column wire 	ON

DIAGNOSTICS - SUPPLEMENTAL RESTRAINT SYSTEM

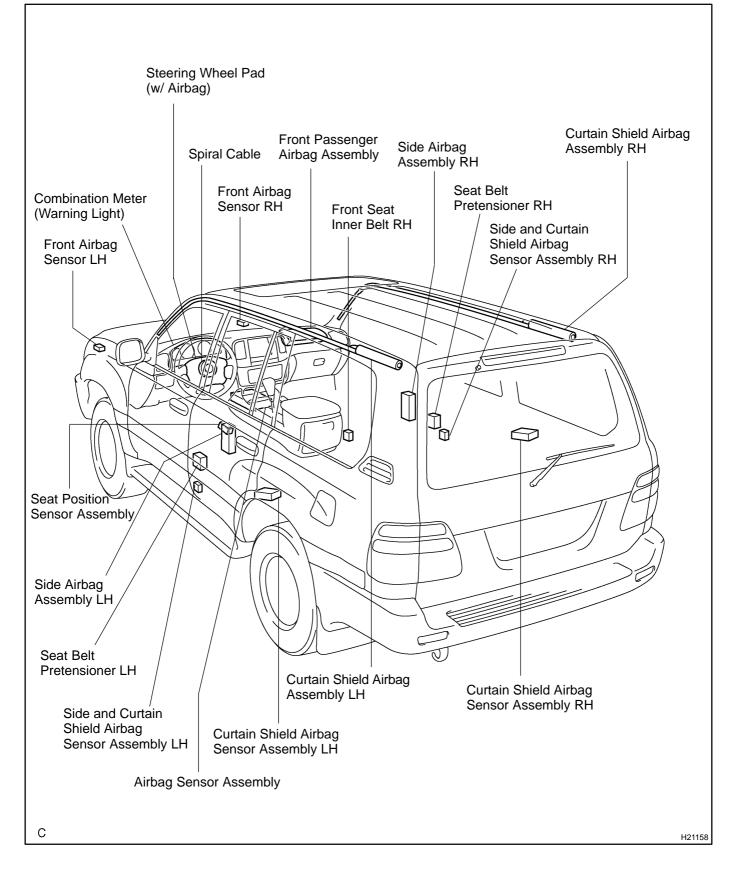
B1183/22 (DI-898)	★Short in D squib (2nd step) circuit (to B+)	 ★Steering wheel pad (D squib, 2nd step) ★Spiral cable ★Airbag sensor assembly ★Dash wire ★Column wire 	ON
B1185/57 (DI-903)	★Short in P squib (2nd step) circuit	 ★Front passenger airbag assembly (squib) ★Airbag sensor assembly ★Dash wire 	ON
B1186/58 (DI-907)	★Open in P squib (2nd step) circuit	 ★Front passenger airbag assembly (squib) ★Airbag sensor assembly ★Dash wire 	ON
B1187/55 (DI-910)	★Short in P squib (2nd step) circuit (to ground)	 ★Front passenger airbag assembly (squib) ★Airbag sensor assembly ★Dash wire 	ON
B1188/56 (DI-913)	★Short in P squib (2nd step) circuit (to B+)	 ★Front passenger airbag assembly (squib) ★Airbag sensor assembly ★Dash wire 	ON
B1628/29 (*1) (DI-913)	★RSCA cutoff switch indicator	 ★RSCA cutoff switch ★Airbag sensor assembly ★Dash wire ★Instrument panel wire 	Blink
	★System normal	-	OFF
Normal (DI-923)	★Voltage source drop	★Battery ★Airbag sensor assembly	ON

*1: w/ Side Airbag

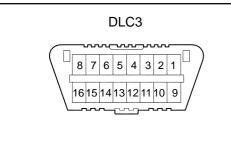

HINT:

★ When the SRS warning light remains lit up and the DTC is the normal code, a voltage source drop is possible.

This malfunction is not stored in memory by the airbag sensor assembly and if the power source voltage returns to normal, the SRS warning light will automatically go out.


- ★ When 2 or more codes are indicated, smaller numbered code will be shown first.
- \star If a code not listed on the chart is displayed, the airbag sensor assembly is at fault.
- ★ In the case of any malfunction concerning any open circuit, ground short, or B+ short due to any squib, another malfunction code may not be detected. In this case, correct the malfunction currently indicated and then perform malfunction diagnosis again. Another malfunction code may then be detected.

SUPPLEMENTAL RESTRAINT SYSTEM HOW TO PROCEED WITH TROUBLESHOOTING



DI6OW-18

PARTS LOCATION

DI6P0-19

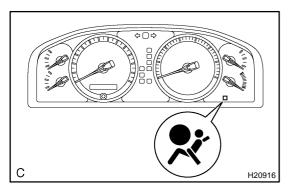
PRE-CHECK

1. DIAGNOSIS SYSTEM

- (a) Check the DLC3.
- HINT:

The vehicle's ECM uses ISO 9141-2 for communication. The terminal arrangement of the DLC3 complies with SAE J1962 and matches the ISO 9141-2 format.

DIB3P-01

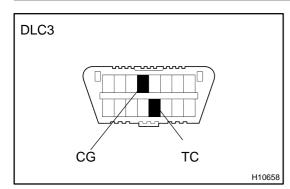

A04550

Terminal No.	Connection/Voltage or Resistance	Condition
7	Bus ± Line/Pulse generation	During Transmission
4	Chassis Ground \leftrightarrow Body Ground/1 Ω or less	Always
16	Battery Positive \leftrightarrow Body Ground/ 9 – 14 V	Always

HINT:

If your display shows UNABLE TO CONNECT TO VEHICLE when you have connected the cable of the OBD II scan tool or TOYOTA hand-held tester to the DLC3, turned the ignition switch ON and operated the scan tool, there is a problem on the vehicle side or tool side.

- ★ If communication is normal when the tool is connected to another vehicle, inspect the DLC3 on the original vehicle.
- ★ If communication is still not possible when the tool is connected to another vehicle, the problem is probably in the tool itself, so consult the Service Department listed in the tool's instruction manual.



2. SRS WARNING LIGHT CHECK

- (a) Turn the ignition switch to ON, and check that the SRS warning light comes on.
- (b) Check that the SRS warning light goes out after approx.6 seconds.

HINT:

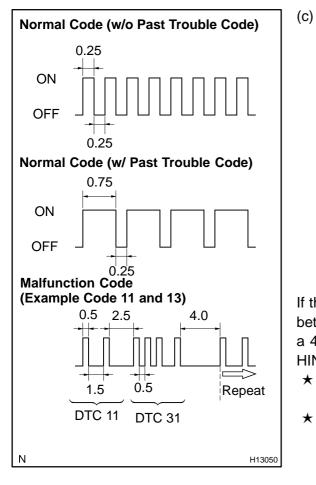
- ★ When the ignition switch is at ON and the SRS warning light remains on or flashes, the airbag sensor assembly has detected a malfunction code.
- ★ If, after approx. 6 seconds have elapsed, the SRS warning light sometimes comes on even when the ignition switch is OFF. In this case, a short in the SRS warning light circuit is possible. Proceed to "SRS warning light circuit malfunction" on page DI-927.

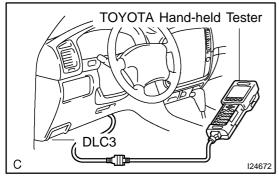
3. DTC CHECK (Using diagnosis check wire)

- (a) Present troubles codes: Output the DTC.
 - (1) Turn the ignition switch to ON, and wait for approx.60 seconds.
 - (2) Using SST, connect terminal TC and CG of the DLC3.
 - SST 09843-18040

NOTICE:

Pay attention to the terminal connecting position to avoid a malfunction.


(b) Past troubles codes:


Output the DTC.

- (1) Using SST, connect terminal TC and CG of the DLC3.
- SST 09843-18040
- (2) Turn the ignition switch to ON, and wait for approx.60 seconds.

NOTICE:

Pay attention to the terminal connecting position to avoid a malfunction.

Read the DTC.

Read the DTC by counting the blinking times. As an example, the blinking patterns of normal, 11 and 31 are shown in the illustration.

- ★ Normal code indication (w/o past trouble code)
 - The light blinks 2 times per seconds.
- ★ Normal code indication (w/ past trouble code) When the past troubles code is stored in the airbag sensor assembly, the light blinks only ones a second.
- ★ Malfunction code indication

The first blinking indicates the first DTC. Second blinking occurs after 1.5- second of pausing.

If there are 2 or more codes, there will be a 2.5-second pause between each code. After all the codes are shown, there will be a 4.0-second pausing, and they will all be repeated. HINT:

- ★ If 2 or more malfunctions are found, the indication starts from the smaller numbered code.
- ★ If the light does not blink or comes out at all, or if DTCs are indicated without a connection of the terminals, proceed to the TC terminal circuit inspection on page DI-932.

4. DTC CHECK (Using TOYOTA hand-held tester)

- (a) Hook up the TOYOTA hand-held tester to the DLC3.
- (b) Read the DTCs by following the prompts on the tester screen.

HINT:

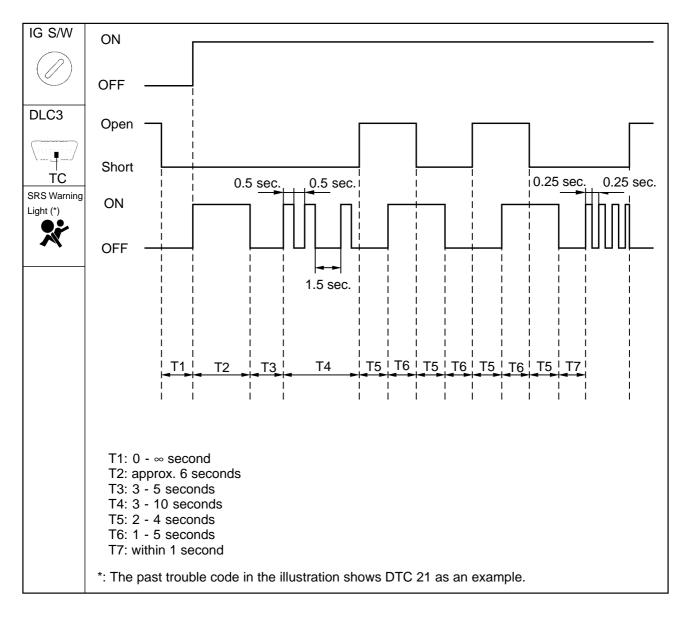
Please refer to the TOYOTA hand-held tester operator's manual for further details.

5. DTC CLEARANCE (Not using service wire)

When the ignition switch is turned OFF, the diagnostic trouble code is cleared.

HINT:

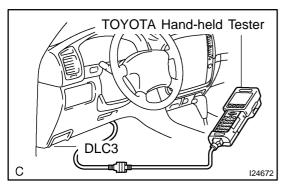
Depending on the DTC, the code might not be cleared by turning the ignition switch OFF.


In this case, proceed to the next step.

6. DTC CLEARANCE (Using service wire)

- (a) Connect the service wire to terminal TC of the DLC3.
- (b) Ground terminal TC of the DLC3.
- (c) Turn the ignition switch to the ON position.
- (d) Within 3 to 10 sec. after DTC is started to be output, release ground from terminal TC of the DLC3.
- (e) The SRS warning light comes on 2 to 4 sec. later. Within 1 to 5 sec. after that, ground terminal TC of the DLC3.
- (f) The SRS warning light goes off 2 to 4 sec. after grounding terminal TC. Within 1 to 5 sec. after that, release ground from terminal TC again.

- (g) The SRS warning light comes on again 2 to 4 sec. later. Within 1 to 5 sec. after that, ground terminal TC of the DLC3 again.
- (h) The SRS warning light goes off 2 to 4 sec. later. Within 1 sec. after that, normal code is output indicating that DTC deletion is completed.


If DTCs are not cleared, repeat the above procedure until the codes are cleared.

Ν

H13049

888

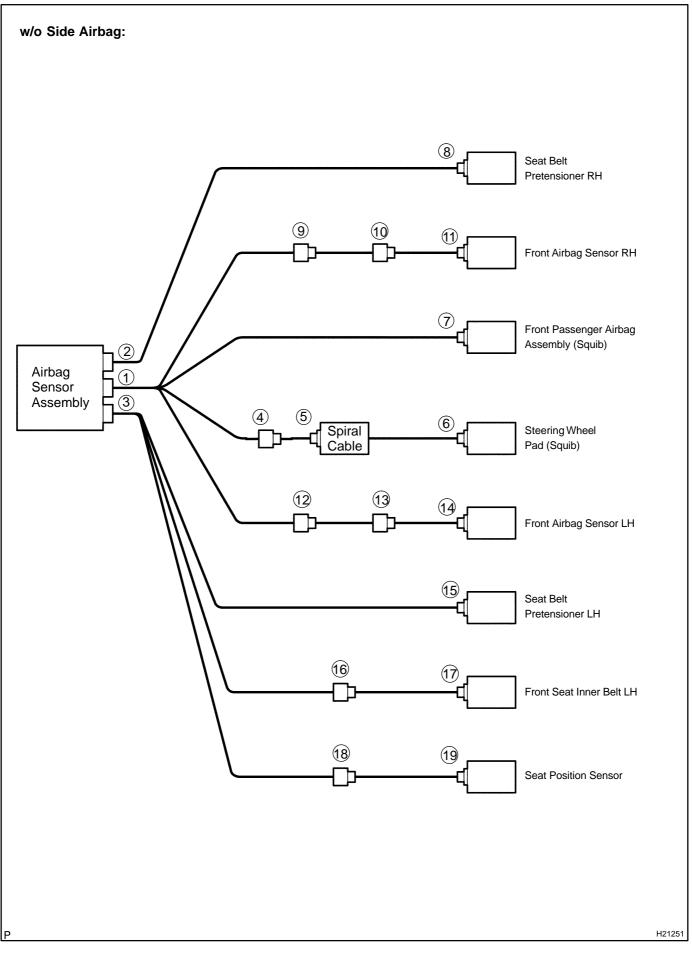
- 7. DTC CLEARANCE (Using TOYOTA hand-held tester)
- (a) Hook up the TOYOTA hand-held tester to the DLC3.
- (b) Clear the DTCs by following the prompts on the tester screen.

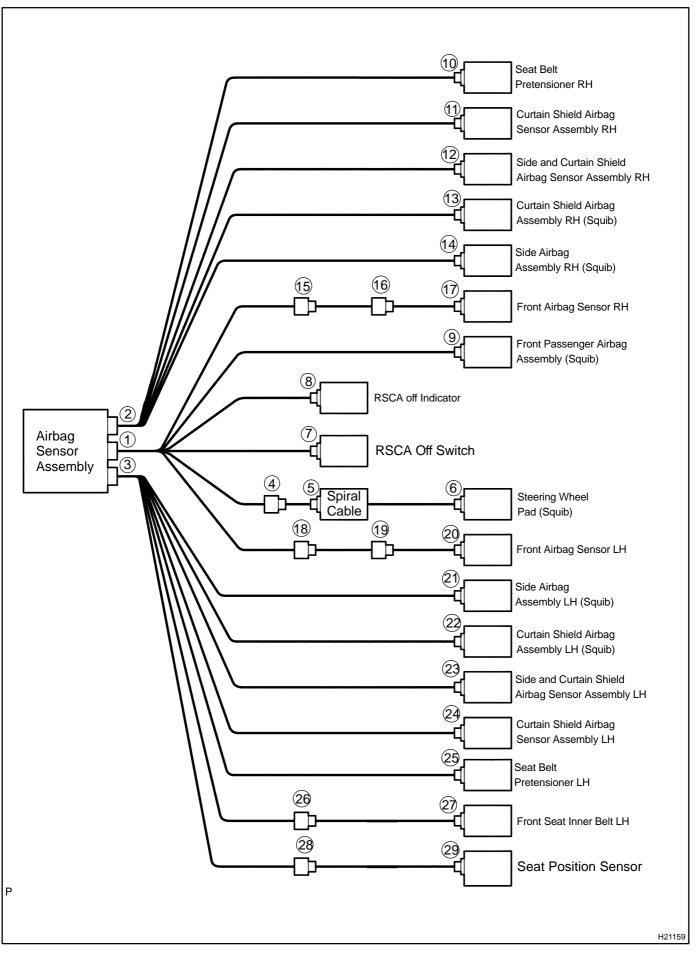
HINT:

Please refer to the TOYOTA hand-held tester operation's manual for further details.

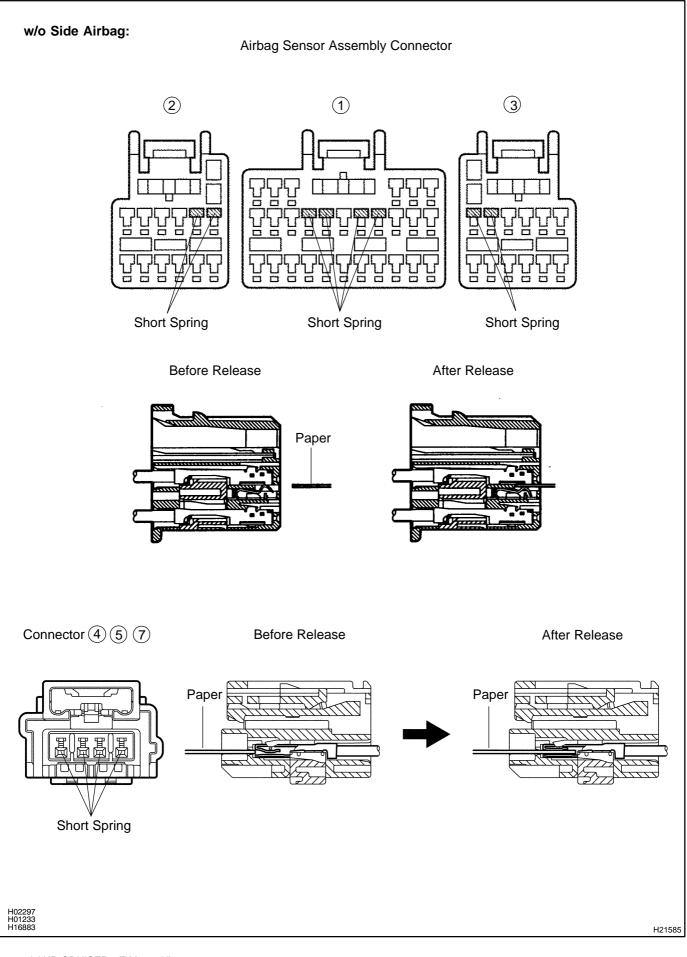
8. RELEASE METHOD OF AIRBAG ACTIVATION PRE-VENTION MECHANISM

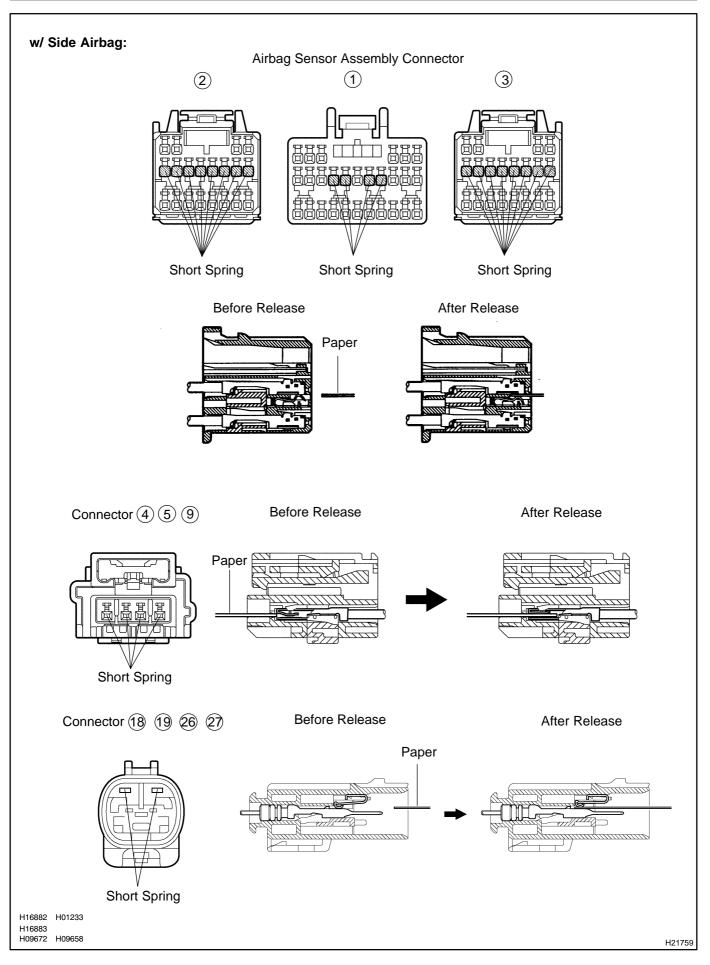
An airbag activation prevention mechanism is built into the connector for the squib circuit of the SRS.


As explained in the troubleshooting later, insert a paper with the same thickness as the male terminal between the terminal and the short spring to release it (Refer to illustrations on next 4 pages).


CAUTION:

Never release the airbag activation prevention mechanism on the squib connector.


NOTICE:


- ★ Do not release the airbag activation prevention mechanism unless specifically directed by the troubleshooting procedure.
- ★ To prevent the terminal and the short spring to be damaged, always use a paper with the same thickness as the male terminals.

Date :

PROBLEM SYMPTOMS TABLE

Proceed with troubleshooting of each circuit in the table below.

Symptom	Suspected Area	See page	
₩With the ignition switch in ON position, the SRS warning light sometimes lights up after approx. 6 seconds have elapsed.			
★SRS warning light is always lit up even when ignition switch is in the LOCK position.	★SRS warning light circuit	DI-927	
₩With the ignition switch in ON position, the SRS warning light does not light up.			
★DTC is not displayed.			
★SRS warning light is always lit up at the time of DTC check pro- cedure.	★TC terminal circuit	DI-932	
+DTC is displayed without TC and CG terminal connection.			

TERMINALS OF ECU

1. w/o Side Airbag:

C25	C26	C27
B A 6 5 4 3 2 1 12 11 10 9 8 7	6 5 4 B A 3 2 17 16 15 14 13 12 11 10 9 8 28 27 26 25 24 23 22 21 20 11	
		L

No.	Symbol	Terminal Name
A	-	Electrical Connector Check Mechanism
В	-	Electrical Connector Check Mechanism
C26 - 3	LA	SRS Warning Light
C26 - 5	IG2	Power Source
C26 - 7	P2-	Squib (Passenger, 2nd step)
C26 - 8	P2+	Squib (Passenger, 2nd step)
C26 - 9	+SR	Front Airbag Sensor RH
C26 - 10	P+	Squib (Passenger)
C26 - 11	P-	Squib (Passenger)
C26 - 12	SIL	Diagnosis
C26 - 13	D-	Squib (Driver)
C26 - 14	D+	Squib (Driver)
C26 - 15	+SL	Front Airbag Sensor LH
C26 - 16	D2+	Squib (Driver, 2nd step)
C26 - 17	D2-	Squib (Driver, 2nd step)
C26 - 19	TC	Diagnosis
C26 - 20	-SR	Front Airbag Sensor RH
C26 - 23	GSW2	Engine ECU
C26 - 26	-SL	Front Airbag Sensor LH
C26 - 27	E1	Ground
C26 - 28	E2	Ground
C25 - 1	PL-	Squib (Seat Belt Pretensioner, LH)
C25 - 2	PL+	Squib (Seat Belt Pretensioner, LH)
C25 - 3	LSP+	Seat Position Sensor Assembly

2004 LAND CRUISER (RM1071U)

DIB3Q-01

DIAGNOSTICS - SUPPLEMENTAL RESTRAINT SYSTEM

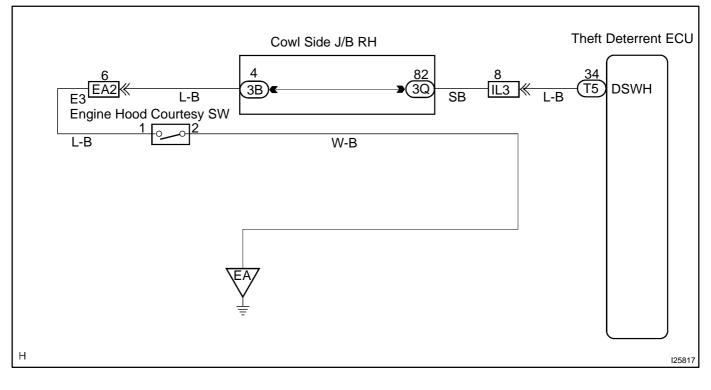
No.	Symbol	Terminal Name
C25 - 8	LSP-	Seat Position Sensor Assembly
C25 - 11	LBE+	Seat Belt Buckle Switch LH
C27 - 5	PR+	Squib (Seat Belt Pretensioner, RH)
C27 - 6	PR-	Squib (Seat Belt Pretensioner, RH)

2. w/ Side Airbag:

C25 C26 C27	
4 3 B A 2 1 6 5 4 B A 3 2 1 4 3 B A 2 1 12 11 10 9 8 7 6 5 17 16 15 14 13 12 11 10 9 8 7 12 11 10 9 8 7 6 5 20 19 18 17 16 15 14 13 12 12 10 9 8 7 6 5 20 19 18 17 16 15 14 13 28 27 26 25 24 23 22 21 19 18 17 16 15 14 13	

No.	Symbol	Terminal Name
A	_	Electrical Connector Check Mechanism
В	-	Electrical Connector Check Mechanism
C26 - 3	LA	SRS Warning Light
C26 - 5	IG2	Power Source
C26 - 7	P2-	Squib (Passenger, 2nd step)
C26 - 8	P2+	Squib (Passenger, 2nd step)
C26 - 9	+SR	Front Airbag Sensor RH
C26 - 10	P+	Squib (Passenger)
C26 - 11	P-	Squib (Passenger)
C26 - 12	SIL	Diagnosis
C26 - 13	D-	Squib (Driver)
C26 - 14	D+	Squib (Driver)
C26 - 15	+SL	Front Airbag Sensor LH
C26 - 16	D2+	Squib (Driver, 2nd step)
C26 - 17	D2-	Squib (Driver, 2nd step)
C26 - 19	TC	Diagnosis
C26 - 20	-SR	Front Airbag Sensor RH
C26 - 21	RMSW	RSCA Off Switch
C26 - 22	MPX2	Instrument Panel Integration ECU
C26 - 23	GSW2	Diagnosis
C26 - 25	RMIL	RSCA Off Switch Indicator
C26 - 26	-SL	Front Airbag Sensor LH
C26 - 27	E1	Ground
C26 - 28	E2	Ground
C25 - 1	CSL-	Curtain Shield Airbag Sensor Assembly LH

2004 LAND CRUISER (RM1071U)


No.	Symbol	Terminal Name
C25 - 3	LSP-	Seat Position Sensor Assembly
C25 - 4	LSP+	Seat Position Sensor Assembly
C25 - 7	PL-	Squib (Seat Belt Pretensioner, LH)
C25 - 8	PL+	Squib (Seat Belt Pretensioner, LH)
C25 - 9	ICL+	Squib (Curtain Shield, LH)
C25 - 10	ICL-	Squib (Curtain Shield, LH)
C25 - 11	SFL-	Squib (Side, LH)
C25 - 12	SFL+	Squib (Side, LH)
C25 - 13	ESCL	Curtain Shield Airbag Sensor Assembly LH
C25 - 14	VUCL	Curtain Shield Airbag Sensor Assembly LH
C25 - 15	CSL+	Curtain Shield Airbag Sensor Assembly LH
C25 - 16	VUPL	Side and Curtain Shield Airbag Sensor Assembly LH
C25 - 17	SSL+	Side and Curtain Shield Airbag Sensor Assembly LH
C25 - 18	ESL	Side and Curtain Shield Airbag Sensor Assembly LH
C25 - 19	LBE+	Seat Belt Buckle Switch LH
C25 - 20	SSL-	Side and Curtain Shield Airbag Sensor Assembly LH
C27 - 4	CSR-	Curtain Shield Airbag Sensor Assembly RH
C27 - 5	SFR+	Squib (Side, RH)
C27 - 6	SFR-	Squib (Side, RH)
C27 - 7	ICR-	Squib (Curtain Shield, RH)
C27 - 8	ICR+	Squib (Curtain Shield, RH)
C27 - 9	PR+	Squib (Seat Belt Pretensioner, RH)
C27 - 10	PR-	Squib (Seat Belt Pretensioner, RH)
C27 - 13	SSR-	Side and Curtain Shield Airbag Sensor Assembly RH
C27 - 15	ESR	Side and Curtain Shield Airbag Sensor Assembly RH
C27 - 16	SSR+	Side and Curtain Shield Airbag Sensor Assembly RH
C27 - 17	VUPR	Side and Curtain Shield Airbag Sensor Assembly RH
C27 - 18	CSR+	Curtain Shield Airbag Sensor Assembly RH
C27 - 19	VUCR	Curtain Shield Airbag Sensor Assembly RH
C27 - 20	ESCR	Curtain Shield Airbag Sensor Assembly RH

Engine hood courtesy switch circuit

CIRCUIT DESCRIPTION

The door courtesy light goes on when the door is opened and goes off when closed.

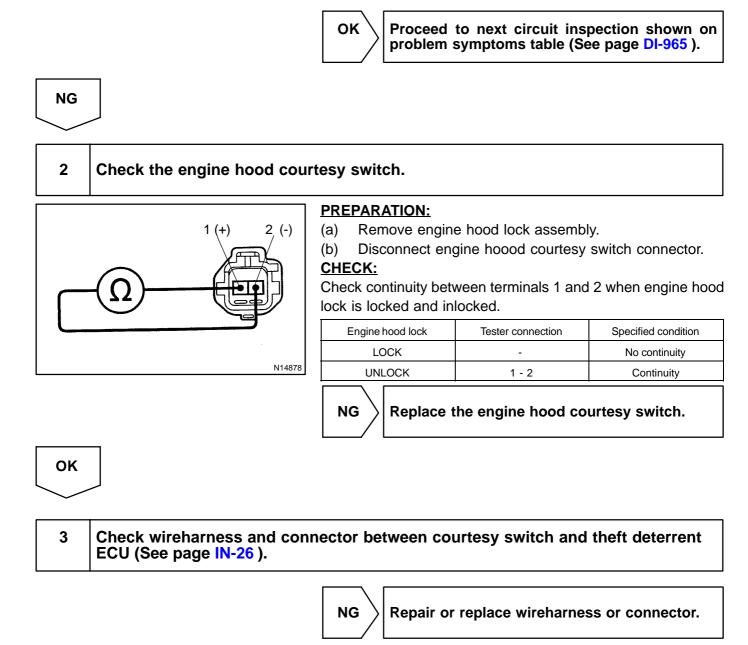
WIRING DIAGRAM

DIB4V-02

INSPECTION PROCEDURE

HINT:

In case of using the hand-held tester, start the inspection from step 1 and in case of not using the hand-held tester, start from step 2.


Check engine hood courtesy switch using hand-held tester.

PREPARATION:

Connect the hand-held tester to DLC 3.

CHECK:

Check that the engine hood courtesy switch operate in DATA LIST (See page DI-1040).

ок

Proceed to next circuit inspection shown on problem symptoms table (See page DI-965).

DIB4T-02

Security indicator circuit

CIRCUIT DESCRIPTION

When the theft deterrent system is preparing to be set, this circuit lights up the indicator.

When the system is set, the indicator blinks.

It also indicates the condition of the immobiliser system according to the request from the Transponder Key ECU.

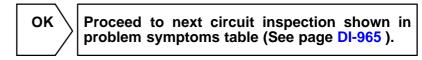
T5 Theft Deterrent ECU Cowl Side J/B RH Multi Display 12 LP (*1) 14 21 76 25 SECURITY (*2) 3D 3Q IND M5 M9 G-R G-R *2 *1) GND1 (*1) GND (*2) 8 3 M9 M5 W-B 2 Cowl Side J/B RH Н 8 J10 Н 3D J/C W-B 10 Η 3D W-B *1: w/ Navigation system *2: w/o Navigation system С 127345

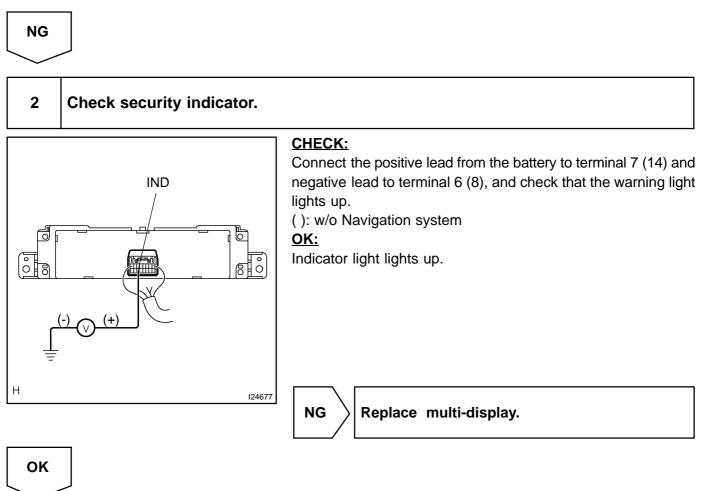
WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

In case of using the hand-held tester, start the inspection from step 1 and in case of not using the hand-held tester, start from step 2.


Check security indicator using hand-held tester.

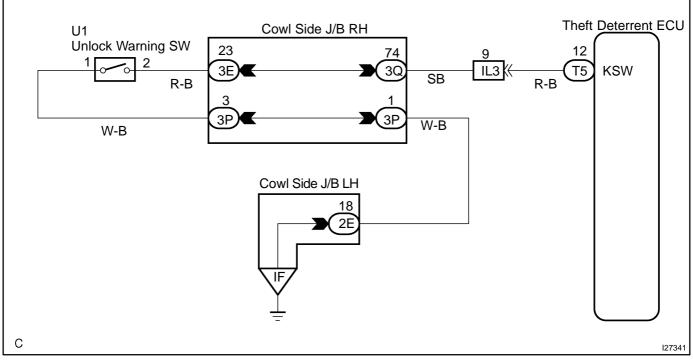

PREPARATION:

Connect the hand-held tester to the DLC 3.

CHECK:

Check that the theft deterrent in the indicator lights in ACTIVE TEST (See page DI-955).

3	Check wire harness and connector between theft deterrent ECU and indicator, indicator and body ground (See page IN-36).		
	NG Repair or replace wire harness or connector.		
ОК			
	eed to next circuit inspection shown in em symptoms table (See page 5).		


Key unlock warning switch circuit

CIRCUIT DESCRIPTION

The key unlock warning switch goes on when the ignition key is inserted the key cylinder and goes off when the ignition key is removed.

The ECU operates the key confinement prevention function while the key unlock warning switch is ON.

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

In case of using the hand-held tester, start the inspection from step 1 and in case of not using the hand-held tester, start from step 2.

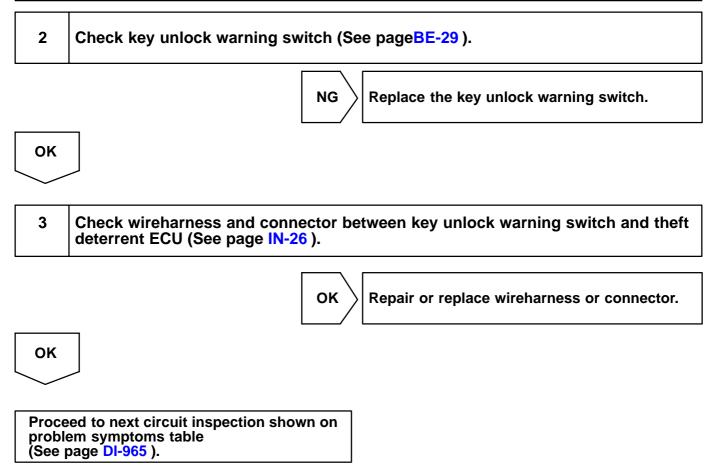
Check unlock warning switch using hand-held tester.

PREPARATION:

Connect the hand-held tester to DLC 3.

CHECK:

1


Check that the unlock warning switch operate in DATA LIST (See page DI-1040).

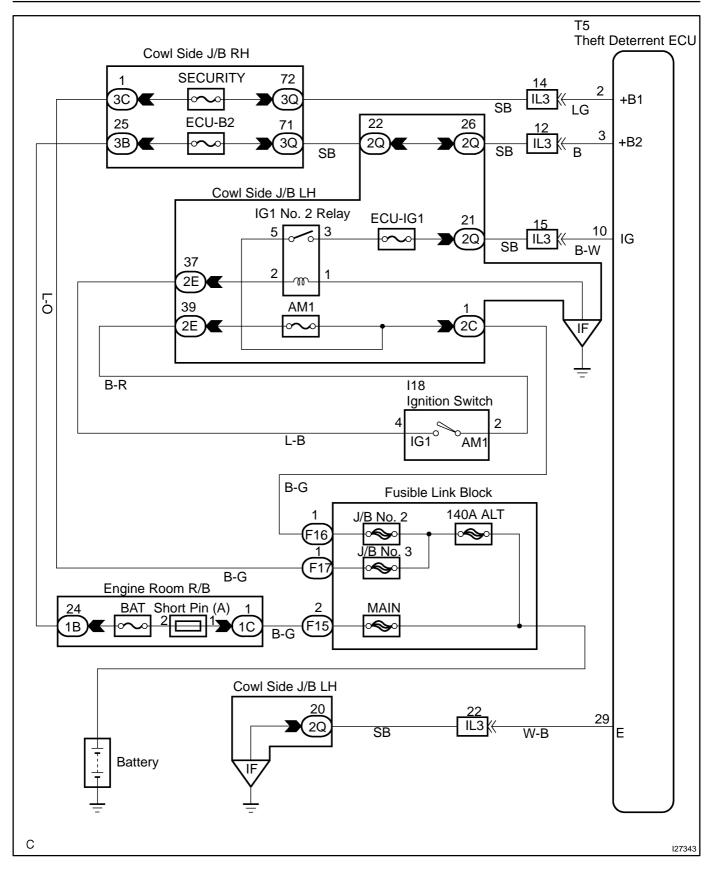
Proceed to next circuit inspection shown on problem symptoms table (See page DI-965).

DIB4W-02

CIRCUIT INSPECTION

Power source circuit

CIRCUIT DESCRIPTION


When the ignition switch is turned to the ACC position, battery positive voltage is applied to the terminal ACC of the ECU.

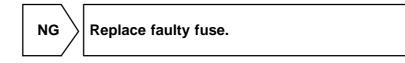
Also, if the ignition switch is turned to the ON position, battery positive voltage is applied to the terminals ACC and IG of the ECU.

When the battery positive voltage is applied to the terminal IG of the ECU while the theft deterrent system is activated, the warning stops.

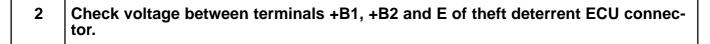
Furthermore, power supplied from the terminals ACC and IG of the ECU is used as power for the door courtesy switch, position switch, etc.

DIB4S-02

INSPECTION PROCEDURE


1

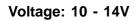
Check ECU-B2 and SECURITY fuse.


CHECK:

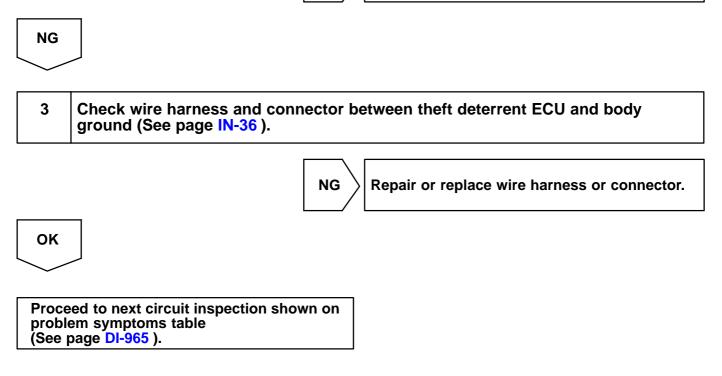
Check continuity of ECU-B2 and SECURITY fuse.

Continuity

ОК


PREPARATION:

- (a) Turn the ignition switch OFF.
- (b) Disconnect the theft deterrent ECU connector.

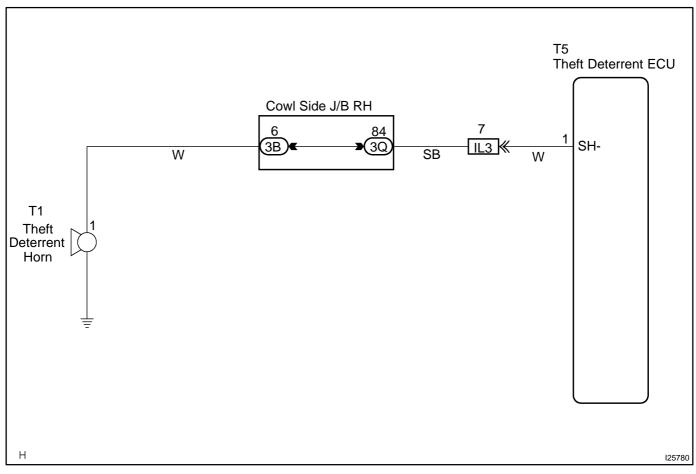

CHECK:

Measure the voltage between terminals +B1, +B2 and E.

<u>OK:</u>

OK Proceed to next circuit inspection shown on problem symptoms table (See page DI-965).

Theft deterrent horn circuit


CIRCUIT DESCRIPTION

When the theft deterrent system is activated, the relay in the ECU is turned ON and OFF at of approximately 0.2 sec. interval, causing the theft deterrent horn to sound (See the wiring diagram below). In this condition, if any of the following operations is done, the relay in the ECU is turned OFF, thus stopping

the theft deterrent horn from sounding:

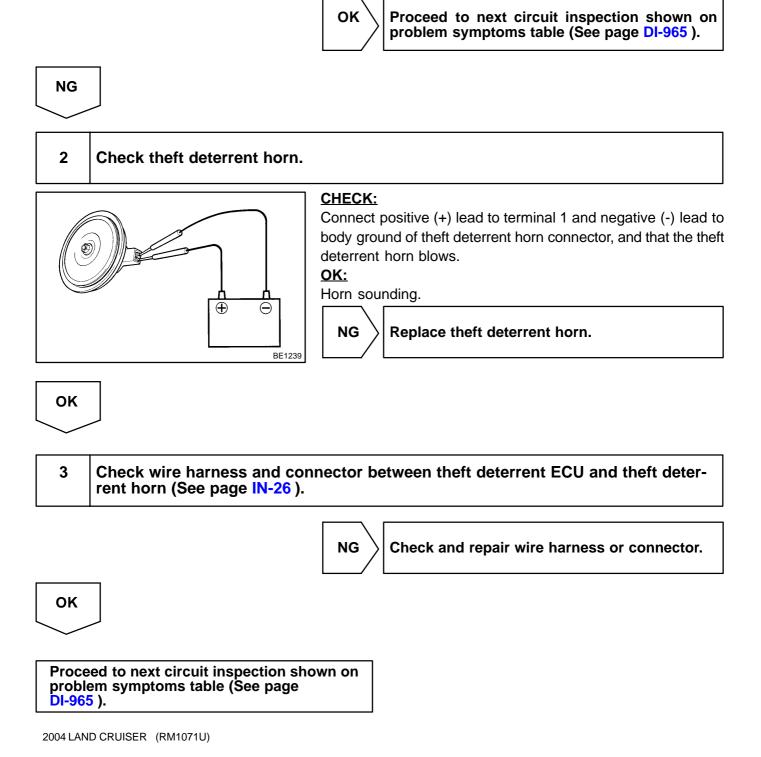
- (1) Unlock the driver door with key.
- (2) Turn the ignition switch to ON position.
- (3) Unlock the doors with the wireless door lock control system.
- (4) Wait for approximately 60 seconds.
- (5) Press the panic switch of the wireless door lock control system.

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

In case of using the hand-held tester, start the inspection from step 1 and in case of not using the hand-held tester, start from step 2.


Check theft deterrent horn using hand-held tester.

PREPARATION:

Connect the hand-held tester to the DLC 3.

CHECK:

Check that the theft deterrent horn sounds in ACTIVE TEST (See page DI-955).

CUSTOMER PROBLEM ANALYSIS CHECK

THEFT DETERRENT SYSTEM Check Sheet

Inspector's name: _____

		Registration No.	
Customer's Name		Registration Year	
		Frame No.	
Date Vehicle Brought In	1 1	Odometer Reading	km Mile

Date Problem First Occurred		/ /
Frequency Problem Occurs		 ★ Constantly ★ Sometimes (Times per day, month) ★ Once only
Weather Conditions	Weather	 ★ Fine ★ Cloudy ★ Rainy ★ Snowy ★ Various/Others
When Problem		.e ★ Hot ★ Warm ★ Cool ★ Cold (Approx. °F(°C))

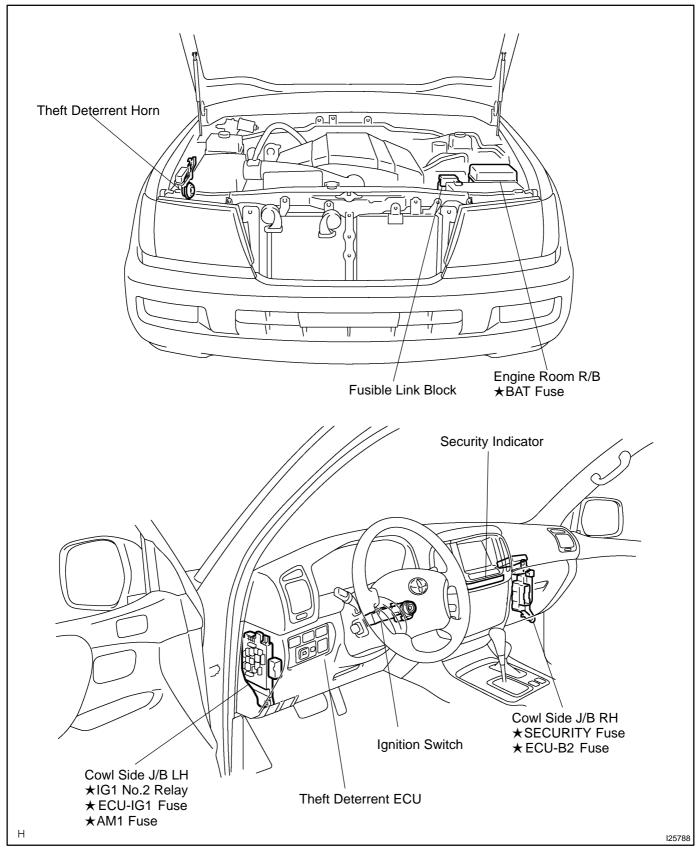
	 ★ Theft deterrent system cannot be set. ★ Indicator light does not flash when the theft deterrent system is set. 		
	(It stays ON or does not light at all.)		
Problem Symptom	★ Theft deterrent system does not operate.	 ★ When unlocked using the door lock knob. ★ When the engine hood is opened. 	Malfunction ★ Horns only ★ Theft deterrent horn only ★ Headlights only ★ Taillights only ★ Starter cut only ★ Door lock operation only
	★ Once set system cannot be canceled.	 ★ When door is unlocked using key or wireless door lock control system. ★ When the key is inserted in the ignition key cylinder and turned to ACC or ON position. (However, only when the system has never operated) ★ When the luggage compartment door is opened with the key. 	
	★ System cannot be canceled during warning operation.	 ★ When door is unlocked using key or wireless door lock control system. ★ When the key is inserted in the ignition key cylinder and turned to ACC or ON position. 	
	★ Warning operation starts when the system is set and the door or luggage compartment door is opened with the key.		
	★ Others.		

DI01Q-07

THEFT DETERRENT SYSTEM HOW TO PROCEED WITH TROUBLESHOOTING

HINT:

Troubleshooting of the theft deterrent system is based on the premise that the door lock control system is operating normally. Accordingly, before troubleshooting the theft deterrent system, first make certain that the door lock control system is operating normally.


For troubleshooting use a volt/ohm meter.

Be sure to use troubleshooting procedure appropriate to the diagnostic tool being used. Perform troubleshooting in accordance with the procedure on the following page.

Vehicle Brought to Workshop Titles inside *[*____] are titles of pages in this manual with the page number indicated in the bottom portion. See the indicated pages for 1 detailed explanations. **Customer Problem Analysis** P. DI-954 Symptom does not occur 3 Symptom Simulation 2 **Problem Symptom Confirmation** P. IN-26 Symptom occurs 4 Problem Symptom Table P. DI-954 5 **Circuit Inspection** P. DI-966 - DI-976 Identification of Problem Repair 7 **Confirmation Test** Step 5, 7 : Diagnostic steps permitting the use ٦Ļ of the hand-held tester and breakout-box. End

DI01P-16

PARTS LOCATION

DI3CP-03

DIB4R-01

PRE-CHECK

1. OUTLINE OF THEFT DETERRENT SYSTEM

The security has an "Alarm Control" and the control consists of 2 modes.

Active mode

This mode begins "Alarm Control" as the user locks the vehicle by intention (See the reference step 2). Passive mode

This mode begins "Alarm Control" even if the user forgets locking the vehicle (See the reference step 5). (This mode begins "Alarm Control" when the user closed all doors and the engine hood.)

HINT:

"Alarm Control" refers to the function that detects intrusion into the vehicle and sounds an alarm.

Even when the "Alarm Control" operates in the passive mode, it works as in the active mode if a condition to begin the active mode is met.

2. ACTIVE ARMING MODE

There are 4 modes in active mode.

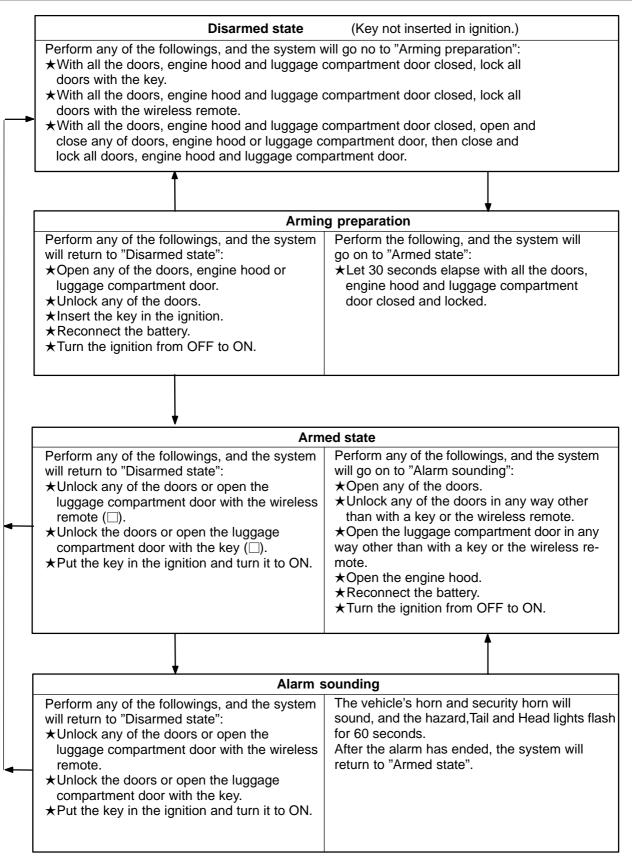
(1) Disarmed state

The alarm system is not set (theft detection is impossible), and the alarm does not sound. The system does not detect any theft.

(2) Arming preparation (for 30 seconds)

The waiting period when the alarm set requirements are met to when the system is actually set.

(3) Armed state


The state the alarm is set (operation is possible). The system can detect theft.

(4) Alarm sounding:

The system detects theft and informs using sounds and lights.

The state of waiting to switch to armed state again to have alarming interval after finishing alarming time.

Perform forced door lock when the door is unlocked.

3. PASSIVE ARMING MODE

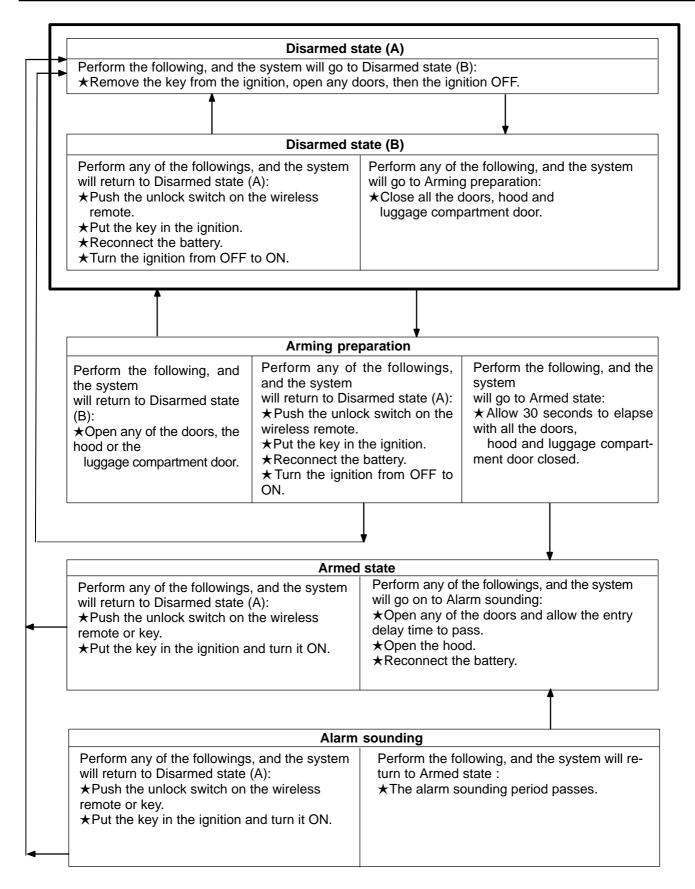
There are 4 modes in active mode.

(1) Disarmed state (1)

The state is same as the disarmed state in active mode.

(2) Disarmed state (2)

The alarm is not set. Pulling out the key and any of the doors is/are opened. (= the state if the opened door(s) and the engine hood are closed, the alarm is set.)

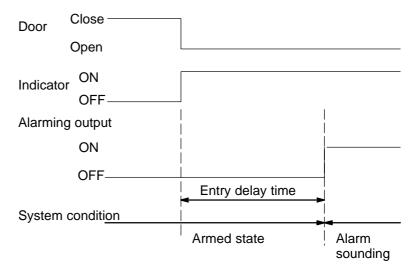

- Arming preparation (for 30 seconds) The state is same as the arming preparation in active mode.
- (4) Armed state

The state is same as the armed state in the active mode (However, it does not performs the theft deterrent by unlock operation).

(5) Alarm sounding:

The system detects theft and informs using sounds and lights.

The state is same as the alarming sounding in the active mode (However, it does not performs forced door lock output).



HINT:

In the armed state, if one of the doors is opened, entry delay occurs. (14 secs.)

During this time, the mode transfers to the disarmed state when the condition described on the previous page (\Box) is met.

When the condition is not met, the system judges as a theft occurred, and the mode transfers to alarm sounding.

4. INDICATOR LIGHT OUTPUT

The indicator output the condition of the alarm control and the intrusion sensor control as shown below.

Condition	Indicator light
Disarmed state	OFF
Arming preparation	ON
Armed state	OFF
(Entry delay time)	(ON)
Alarm sounding	ON

HINT:

Even in disarmed state, the indicator light flashes. (Due to the signal output from immobiliser system). The indicator always flashes by receiving the signal from the immobiliser system at any time in the arming condition.

Flashing frequency:

0.2 seconds (ON)

1.8 seconds (OFF)

Response:

The hazard lights flash under the following conditions.

(1) When the system is set.

When arming preparation is set from disarmed state using the wireless door lock, the hazard lights flash once.

(2) When the system is released. When disarmed state is set from either arming preparation, armed state or alarm sounding using the wireless door lock, the hazard lights flash twice.

5. SWITCH TO ACTIVE MODE

In each passive mode, when "disarmed state of active mode \rightarrow arming preparation switch condition" is met, the active mode switch to each condition. In this case, active mode continues till disarmed state.

Passive mode when transfer condition is met.	Active mode transfer condition
Disarmed state	Arming preparation condition
Arming preparation condition	Arming preparation condition
Armed state (During entry delay time)	Arming condition (After alarming time has elapsed, arming condition if all the doors, engine hood and luggage compartment door is closed, all the doors are locked.)
Alarm sounding	After alarming time has elapsed, arming condition if all the doors, engine hood and luggage compartment door is closed, all the doors are locked.

6. FORCED DOOR LOCK CONTROL

While detecting intrusion into the vehicle and sounding alarm, alarm control outputs the door lock at the moment the door is unlocked, and prevents intrusion into the vehicle.

(1) Condition for Starting Forced Door Lock

Detecting any of the following conditions activates the forced door lock.

Alarm system is in alarm status in active mode.

Except for the case that the key unlock/luggage unlock switch is turned on.

No key is in the ignition key cylinder.

Some of the doors are unlocked.

Since the start of the last forced lock, 0.38 sec. or more has been elapsed.

(2) Conditions for Stopping Forced Door Lock Detecting any of the following conditions stops the forced door lock.

All doors are locked.

An alarm is stopped.

A key is inserted into the key cylinder.

7. PANIC CONTROL

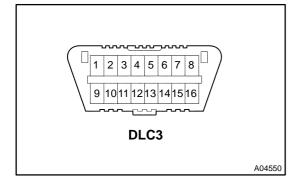
The function to sound the alarm when the user presses the panic switch of the wireless key.

8. ALARM MEMORY CONTROL

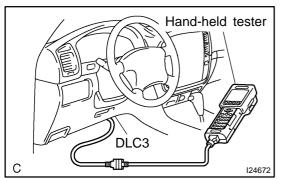
If an alarm is activated while a user leaves the vehicle, when the user comes back to the vehicle and reset the security system, the tail lights will come on for 2 sec. to show the alarm occurrence.

9. DTC CHECK (Using hand-held tester)

(a) Inspect the DLC3.


The vehicle's ECM uses ISO 9141-2 for communication. The terminal arrangement of DLC3 complies with SAEJ1962 and matches the ISO 9141-2 format.

HINT:


If the display shows "UNABLE TO CONNECT TO VEHICLE" when the cable of hand-held tester is connected to DLC3, the ignition switch is turned ON and the scan tool is operated, there is a problem either on the vehicle side or the tool side.

If communication is normal when the tool is connected to another vehicle, inspect DLC3 on the original vehicle. If communication does not function when the tool is connected to another vehicle, the problem is probably in the tool itself, so consult the Service Department listed in the tool's instruction manual.

(b) Make sure the details of the DLC3.

DIAGNOSTICS - THEFT DETERRENT SYSTEM

- (c) Prepare the hand-held tester.
- (d) Connect the hand-held to DLC3.
- (e) Turn the ignition switch ON and the hand-held tester main switch ON.
- (f) Use the hand-held tester to check the DTCs, note them down. (For opening instructions, see the hand-held tester's intrusion book).

10. DATA LIST

HINT:

By the DATA LIST displayed on the Hand-held tester, you can read the value of the switch, sensor, actuator and so on without removing any parts. Reading the DATA LIST as a first step of troubleshooting is one of the method to shorten the labor time.

- (a) Turn the ignition switch OFF.
- (b) Connect the hand-held tester to DLC3.
- (c) Turn the ignition switch ON.
- (d) According to the display on the tester, read the "DATA LIST".

THEFT DETERRENT ECU:

Item	Condition	Specified Condition
HOOD COURTSY SW	Engine hood Close \rightarrow Open	OFF/ON
INTRS DETECT	Intrusion sensor detection $OFF \rightarrow ON$	OFF/ON
GLS BRK DETECT	Glass broken sensor detection $OFF \rightarrow ON$	OFF/ON
KEY UNLK WRN SW	Insert key	OFF/ON
IG SW	IG switch ON or other	OFF/ON
PASSIVE MODE	Passive mode \rightarrow other mode	OFF/ON
WARN BY GLS SEN	Warning by glass broken sensor $OFF \to ON$	OFF/ON
INTRUSION SEN	Intrusion sensor OFF \rightarrow ON	OFF/ON
WARNING (HORN)	Warning by Horn $OFF \rightarrow ON$	OFF/ON
ENTRY DELAY	Entry delay time	0 s/14 s /30 s

11. ACTIVE TEST

HINT:

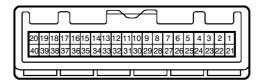
Performing ACTIVE TEST using the Hand-held tester allows the relay, and so on to operate without removing any parts. Performing ACTIVE TEST as a first step of troubleshooting is one of the method to shorten the labor time.

DATA LIST can be displayed during ACTIVE TEST.

- (a) Turn the ignition switch OFF.
- (b) Connect the Hand-held tester to DLC3.
- (c) Turn the ignition switch ON.
- (d) According to the display on tester, perform the "ACTIVE TEST".

THEFT DETERRENT ECU:

Item	Test details	Diagnostic note
SECURITY INDIC	Turns security indicator ON/OFF	Connect terminals TC and E1 of DLC1
SECURITY HORN2	Turns security horn2 ON/OFF	-


PROBLEM SYMPTOMS TABLE

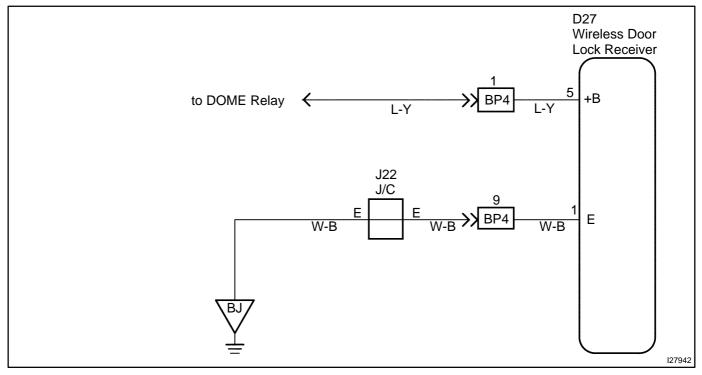
Symptom	Suspect Area	See page
Theft deterrent system is not set.	 Security indicator circuit Key unlock warning switch circuit Door courtesy switch circuit Door unlock detection switch circuit Engine hood courtesy switch circuit Power source circuit 	DI-969 DI-974 DI-1062 DI-1110 DI-976 DI-966
Security indicator does not light up or blink.	 Theft deterrent ECU Security indicator circuit Theft deterrent ECU 	- DI-969
Theft deterrent system cannot be unset even if ignition switch is ON.	 Key unlock warning switch circuit Power source circuit Theft deterrent ECU 	DI-974 DI-966 -
During warning condition, horn does not operate.	 Horn circuit Theft deterrent ECU 	DI-972 -

DI-965

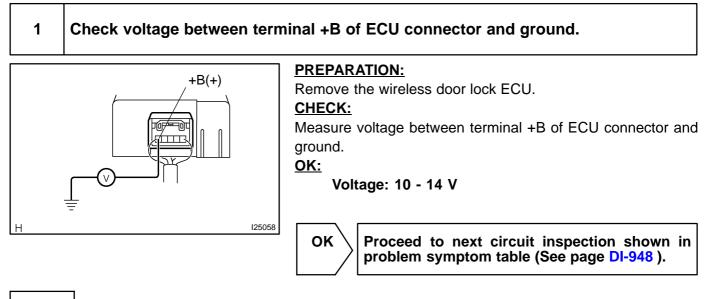
TERMINALS OF ECU

Symbols (Terminals No.)	Wiring Color	Condition	Specified condition
SH- \leftrightarrow Body Ground (T5-1 \leftrightarrow Body Ground)	$W \leftrightarrow W\text{-}B$	Always	10 - 14 V
+B1 \leftrightarrow Body ground (T5-2 \leftrightarrow Body ground)	$LG \leftrightarrow Body \\ Ground$	Always	10 - 14 V
+B2 \leftrightarrow Body Ground (T5-3 \leftrightarrow Body Ground)	B ↔ Body Ground	Always	10 - 14 V
HORN ↔ E (T5-5 ↔ T5-29)	$G\text{-}O \leftrightarrow W\text{-}B$	Horn switch "OFF"	10 - 14 V
$\begin{array}{l} IG\leftrightarrowE \\ (T5\text{-}10\leftrightarrowT5\text{-}29) \end{array}$	$B\text{-}W\leftrightarrowW\text{-}B$	Ignition switch is turned to "ON" position	10 - 14 V
$GBS \leftrightarrow E$		Glass sensor is "ON"	10 - 14 V
(T5-11 ↔ T5-29)	$Y\text{-}G\leftrightarrowW\text{-}B$	Glass sensor is "OFF"	Below 1 Ω
KSW ↔ E		Key unlock warning switch "ON" (Key inserted)	Below 1 Ω
(T5-12 ↔ T5-29)	R-B ↔ W-B	Key unlock warning switch "OFF" (Key removed)	1 M Ω or higher
$\begin{array}{l} IND\leftrightarrowE \\ (T5-25\leftrightarrowT5-29) \end{array}$	$G\text{-}R \leftrightarrow W\text{-}B$	During set preparation	3 - 5 V
$E \leftrightarrow Body \text{ ground} \\ (T5-29 \leftrightarrow Body \text{ Ground})$	$\begin{array}{l} W\text{-}B \leftrightarrow Body \\ \\ Ground \end{array}$	Always	10 - 14 V
MPX1 (T5-31)	В	Multiplex communication circuit	-
DSWH ↔ E		Engine hood courtesy switch "ON" (Engine hood opened)	Below 1 Ω
(T5-34 ↔ T5-29)	L-R ↔ W-B	Engine hood courtesy switch "OFF" (Engine hood closed)	1 M Ω or higher

DI1AH-21

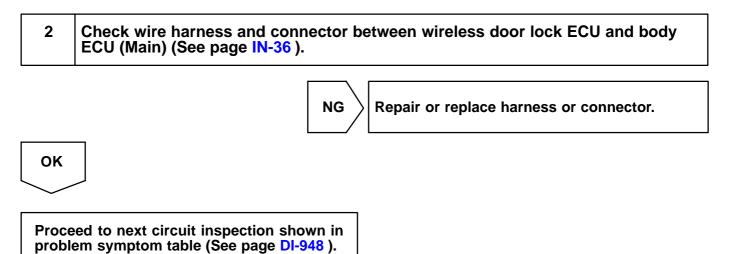

124938

ECU Power Source Circuit


CIRCUIT DESCRIPTION

Battery positive voltage is always applied to the terminal +B of the wireless door lock ECU.

WIRING DIAGRAM



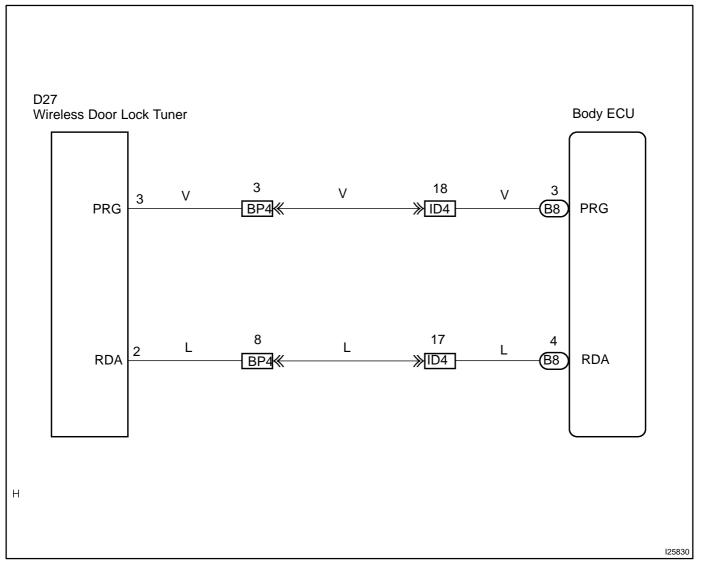
INSPECTION PROCEDURE

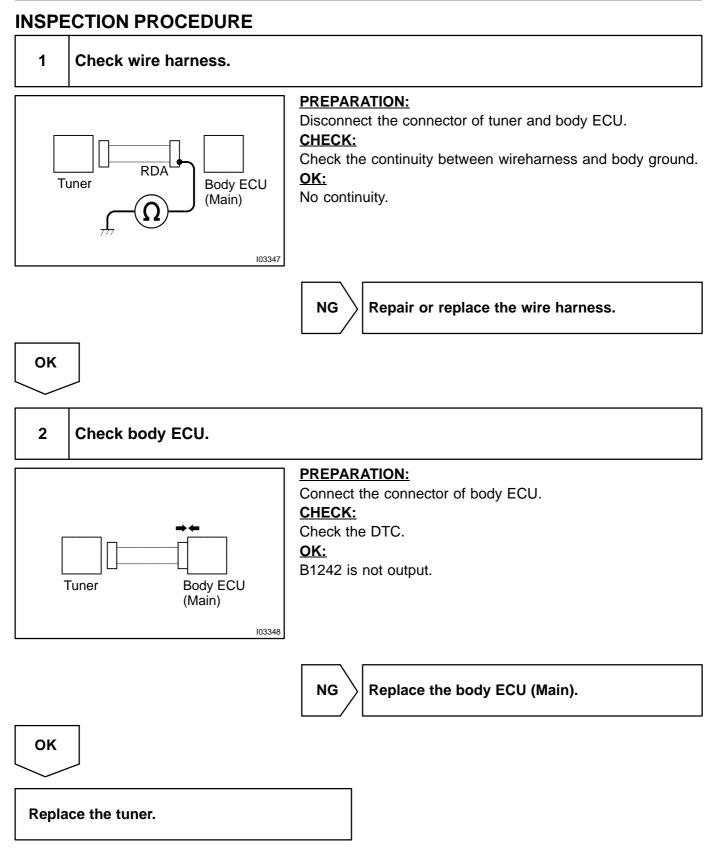
NG

DIB5V-02

DIB5U-01

CIRCUIT INSPECTION


DTC	B1242	Wireless door lock receiver circuit mal- function
		TUNCTION


CIRCUIT DESCRIPTION

This DTC is output when GND short of RDA terminal is detected.

DTC No.	DTC Detecting Condition	Trouble Area
B1242/42	GND short of RDA terminal	₩Wire harness ₩Wireless door lock tuner
		₩Body ECU (Main)

WIRING DIAGRAM

CUSTOMER PROBLEM ANALYSIS CHECK

DI0DR-04

DI-937

WIRELESS DOOR LOCK CONTROL System Check Sheet

Inspector's Name

			Registration No.			
Customer's Name			Registration Year	/	/	
			Frame No.			
Date Vehicle Brought In	1	1	Odometer Reading			km Miles

Date Problem First Occurred		1 1
Frequency Problem Occurs		 Constant Sometimes (times/per day, month) Once only
Weather Conditions	Weather	□ Fine □ Cloudy □ Rainy □ Snowy □ Various/Others
When Problem Oc- curred	Outdoor Temperature	□ Hot □ Warm □ Cool □ Cold (Approx. °F (°C))
	Place	Everywhere Specific Locality()
Date Transmitter Battery Last Replaced		1 1

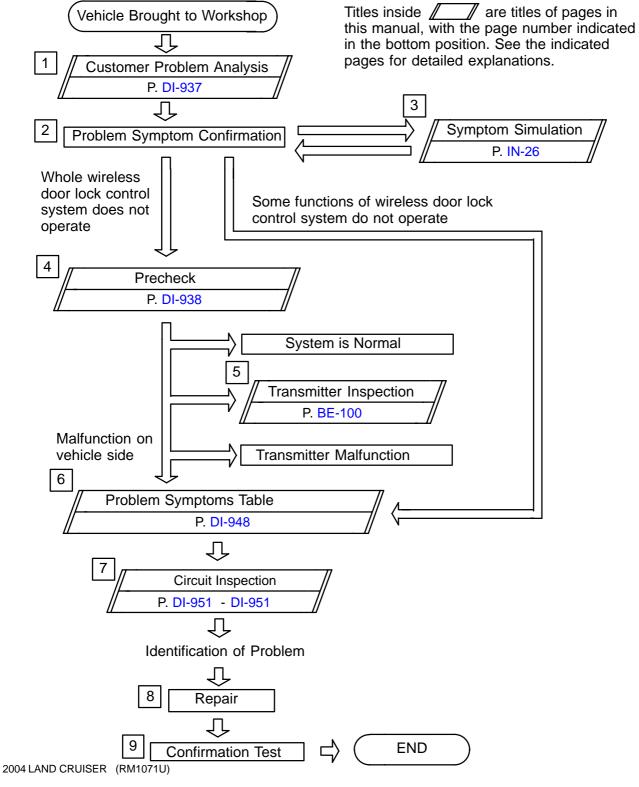
	Whole wireless door lock control system does not operate.				
	Only door unlock operation is not possible.				
otom	Only door lock operation is not possible.				
Symptom	Only key confinement prevention function is not possible.				
	Wireless door lock function operates even when each door is opened.				
Problem	 Wireless door lock functions incorrectly. (Although one door is unlocked, when the transmitter switch is pressed, all doors become unlocked.) 	When RH door is unlockedWhen LH door is unlocked			
	□ Others	-			

DIAGNOSTIC TROUBLE CODE CHART

If a malfunction code is displayed during DTC check, check the circuit corresponding to the code in the table below (Proceed to the page given for the circuit).

DTC No. (See Page)	Circuit Inspection	Trouble Area
B1242 (DI-949)	Wireless door lock tuner circuit malfunction	₩Wire harness ₩Wireless door lock tuner (door control receiver) ★Theft deterrent ECU

DIB5T-01

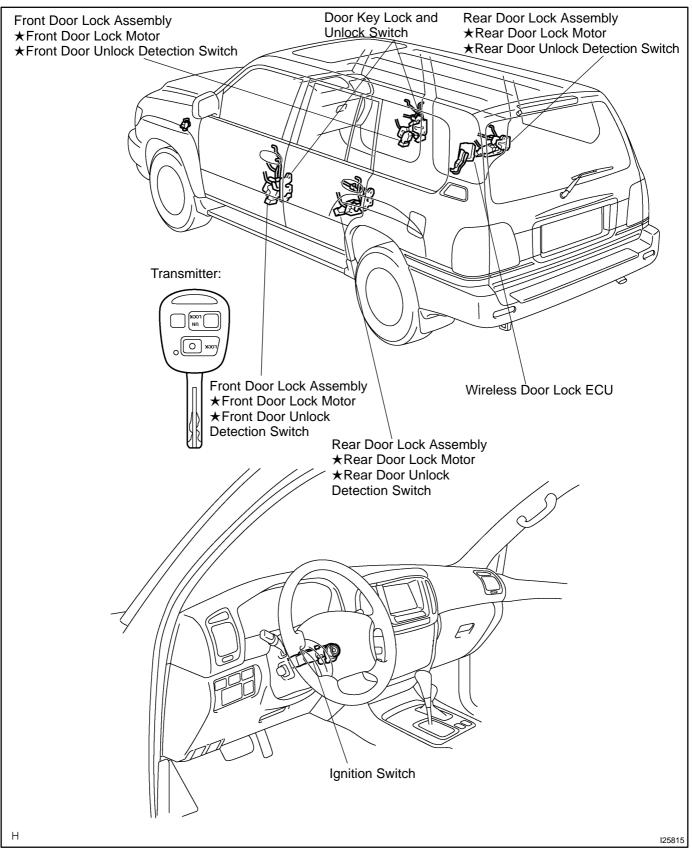

WIRELESS DOOR LOCK CONTROL SYSTEM HOW TO PROCEED WITH TROUBLESHOOTING

DI0DQ-13

HINT:

Troubleshooting of the wireless door lock control system is based on the premise that the door lock control system is operating normally. Accordingly, before troubleshooting the wireless door lock control system, first make certain that the door lock control system is operating normally.

Perform troubleshooting in accodnce with procedure on the following page.



Date :

PARTS LOCATION

DI-947

DI89V-02

PRE-CHECK

1. CHARACTERS OF WIRELESS DOOR LOCK

- (a) The operation distance changes according to how customers hold the transmitter or where it is used.
- (b) Because of using the very weak radio wave, if there is a strong wave or noise on the frequency being used, the operation distance may become shorter.
- 2. WIRELESS DOOR LOCK BASIC FUNCTION
- (a) Stand on the driver's side. Stay 1 m away from the vehicle.
- (b) Turn the transmitter toward the vehicle and press any one of the transmission switched for 1 sec.
- 3. INSPECT WIRELESS DOOR LOCK DIAGNOSIS MODE
- (a) Start up diagnosis mode.
- HINT:

Follow the method below.

- (1) Insert the ignition key into the ignition key cylinder.
- (2) Remove the ignition key from the ignition key cylinder.
- (3) Insert the key into the ignition switch.
- (4) Turn the ignition switch ON once within 5 sec.
- (5) Repeat turning the ignition switch OFF \rightarrow ON 9 times within 30 sec.
- (6) Enter the diagnosis mode, and make sure that the taillight lights up.

	Within. 5	isecs.	V	Vithin. 30secs.			
Key Plate Inserted Key Plate Not Inserted							
ON OFF		1	2	3	9	10	
	Once			9 times			
							120790

(b) Finishing the Diagnosis Mode.
 During the Diagnosis mode, turn the ignition switch OFF
 → ON to go back to the normal mode.
 At this time make sure that the taillight lights up.

Date :

(1) LOCK switch ON OFF 0.13secs. 0.5secs (2) UNLOCK switch ON OFF 0.13secs. 0.25secs. 0.5secs. (3) Luggage door switch ON OFF 0.5secs.0.5secs. (4) Disagreement of recognition code or rolling code. OFF While receiving 120456 (c) Diagnosis Mode Check.

HINT:

Check how the taillight lights up when pressing each transmitter switch.

- (1) LOCK switch
- (2) UNLOCK switch
- (3) Luggage door switch

(4) Disagreement of recognition code or rolling code. HINT:

If (4) is detected in the Diagnosis Check, conduct the recognition code registration.

(5) No response from the taillight.

HINT:

Conduct the following checks.

- □ Wireless door lock transmitter.
- \Box Wireless door lock receiver.
- 4. INSPECT WIRELESS DOOR LOCK TRANSMITTER OPERATION

HINT:

Refer to "3. REPLACE TRANSMITTER (LITHIUM) BATTERY".

- (a) Using a screwdriver, remove the 2 screws and cover.
- (b) Remove the battery (lithium battery).

(c) Install a new or normal battery (lithium battery). HINT:

When a new or normal battery can not be obtained, connect 2 new 1.5 V batteries in series, connect the battery (+) to the battery receptacle side terminal and battery (-) to the bottom terminal, then apply 3 V voltage to the transmitter.

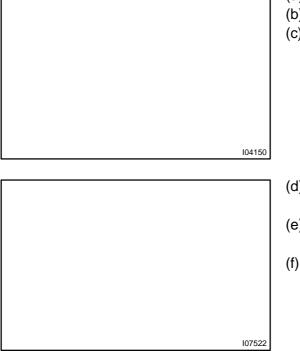
(d) In the location where is approx. 1 m away from driver's outside handle in the right direction, face the key plate of the transmitter to the vehicle, and check the transmitter operation when pressing transmission switch of the transmitter body.

Standard:

- □ Remote control of vehicle door lock can be operated.
- □ LED lights up more than once.

HINT:

- □ The minimum operation distance differs according to operator, the way of holding the transmitter, and location.
- ☐ As weak wave is used, operation distance might be shortened when noise is detected in strong wave or used frequency.
- (e) Install the battery (lithium battery).
- (f) Install a cover so that O-ring is not distorted or slipped off.
- (g) Using a screwdriver, tighten the 2 screws.


5. CHECK BATTERY CAPACITY

HINT:

- □ Make sure to use the TOYOTA electrical tester.
- □ With the battery unloaded, judge can not be made whether the battery is available or not on the test.
- □ When the transmitter is faulty, the energy amount left in the battery might not be checked correctly.
- On the lithium battery used for the transmitter, the voltage more than 2.5 V with the battery unloaded is shown on the tester until the energy is completely consumed.

Accordingly when inspecting the energy amount left in the battery, it is necessary to measure the voltage when the battery is loaded. (1.2 k Ω).

- (a) Remove the 2 screws and cover using a (-) driver.
- (b) Remove the battery (lithium battery) from the transmitter.
- (c) Connect the lead to the (-) terminal of the transmitter and install the battery.
- (d) Connect the (+) tester to the (+) battery (lithium battery), and (-) tester to the lead respectively.
 - (e) Press one of the transmitting switches on the transmitter for approx. 1 second.
 - (f) Press the transmitting switch on the transmitter again to check the voltage.
 Standard: 2.1 V or more

HINT:

When the temperature of the battery is low, the judge can not be made correctly.
 When the externa of the test is less than 2.1.1/c conduct

When the outcome of the test is less than 2.1 V, conduct the test again after leaving the battery in the place at 18 °C for more than 30 minutes.

 By auto power off function, the voltage becomes no load voltage (more than 2.5 V) condition 20 seconds after the switch was pressed.

Make sure to read the voltage before of it.

- □ High voltage might be shown 1 to 2 times after leaving the battery, judge should be made with the voltage shown at the 3rd time or later.
- (g) Disconnect the lead.
- (h) Set the battery (lithium battery) in the transmitter.
- (i) Install the cover, so that the O-ring is not distorted or slipped off.
- (j) Using a screwdriver, tighten the 2 screws.

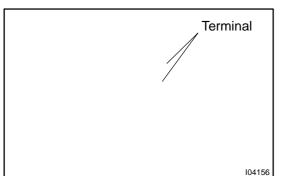
6. REPLACE TRANSMITTER (LITHIUM) BATTERY NOTICE:

Special caution should be taken for handling each component as they are precision electronic components.

(a) Using a screwdriver, remove the screw and cover. **NOTICE:**

Do not pry out the cover forcibly.

HINT:


Push the cover with a finger so that there becomes clearance, then pry out the cover from that clearance.

- (b) Remove the transmitter.
- (c) Using a screwdriver, remove the 2 screws and cover.

(d) Remove the battery (lithium battery).

NOTICE:

- □ Do not push the terminals with a finger.
- □ If prying up the battery (lithium battery) forcibly to remove, the terminals are deformed.

(e) Install a battery (lithium battery) as shown in the illustration.

NOTICE:

104155

Face the battery upward. Take care not to deform the terminals.

- (f) Check that O-ring is not distorted or slipped off, and install the cover.
- (g) Using a screwdriver, tighten the 2 screws.

NOTICE:

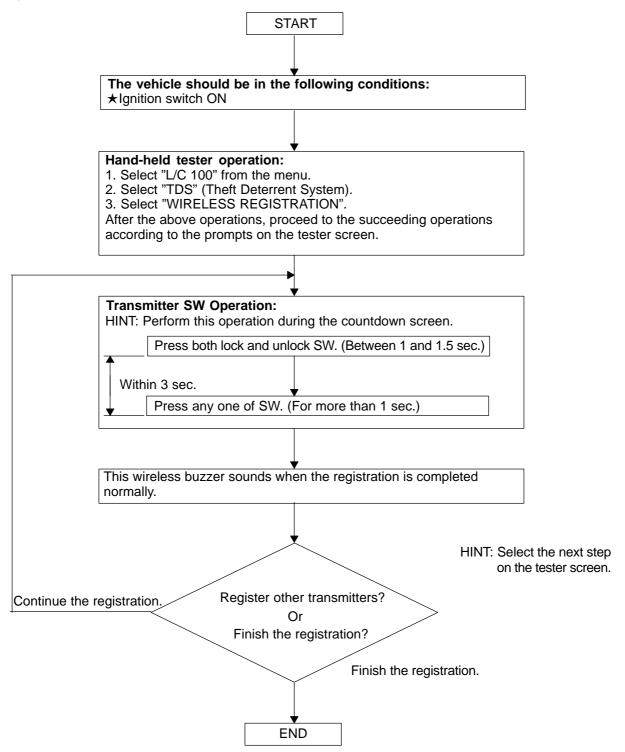
When the shrews are tightened loosely, it might cause faulty contact of battery (lithium battery) and terminals.

- (h) Assemble the transmitter to the key plate and the cover.
- (i) Using a screwdriver, tighten the screw.
- 7. REPLACE DOOR CONTROL RECEIVER AND TRANS-MITTER

NOTICE:

When replacing the theft deterrent ECU or transmitter, registration of recognition code is necessary because they are provided as a single components.

- (a) Select the operation mode to perform from the following operation modes.
 - □ Add mode
 - □ Rewrite mode
 - Prohibition mode
 - □ Confirmation mode

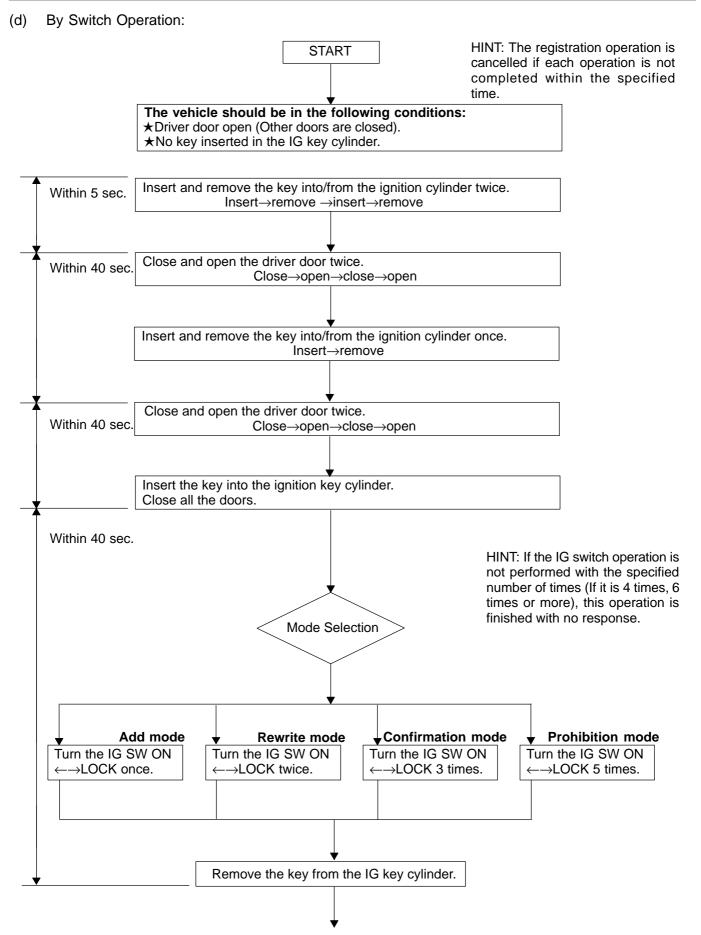

HINT:

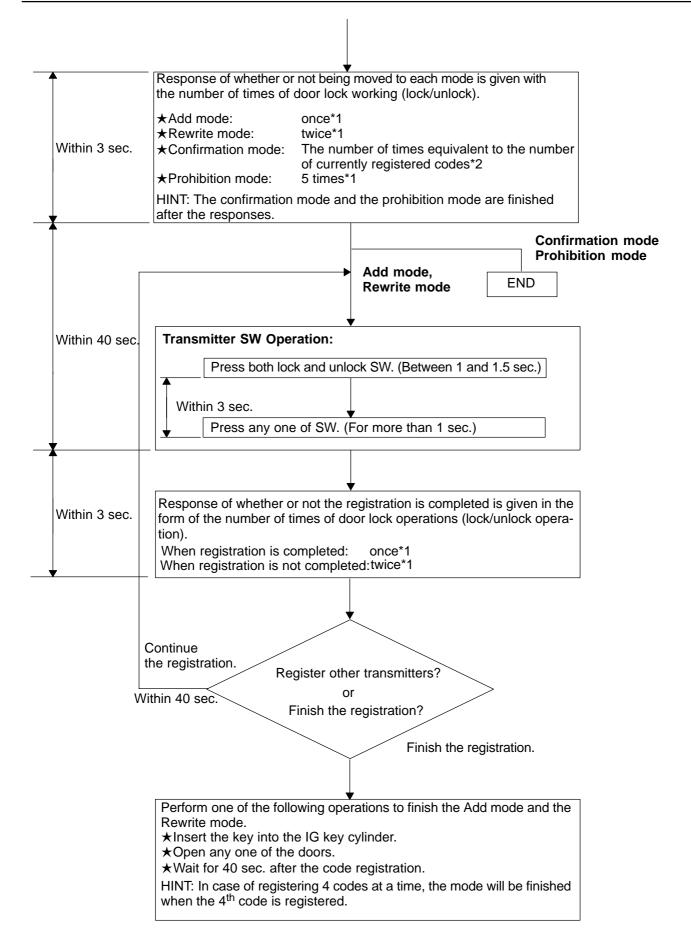
- The "Add mode" is for adding the newly recognized codes for registration while the already registered codes are retained. This mode is used when the transmitter is added. When the number of the registered codes exceeds 4 codes, the previously registered codes will be erased in order, staring from the first registered code.
- □ The "Rewrite mode" is for erasing all the registered codes and registering newly recognized codes only. This mode is used when the transmitter or the door control receiver is replaced.
- ☐ The "Prohibition mode" is for erasing all the registered codes to prohibit the wireless door lock operation. This mode is used when the transmitter is lost.
- □ The "Confirmation mode" is for confirming the number of recognition codes that are registered. This mode is used to check the number of registered codes when new codes are added to the registration, etc.
- (b) Follow the chart on the following page to register the transmitter recognition code to the theft deterrent ECU.

HINT:

- □ When procedure is out of the specified, the registration operation is cancelled.
- \Box Maximum 4 recognition codes can be registered.
- \Box For the details of the registration procedure, see page BE-93.

(c) By TOYOTA Hand-Held Tester




HINT:

This page is to show briefly the registration procedure using the hand-held tester.

For detailed procedures, please refer to the prompts on the tester screen.

The number of currently registered codes can be checked out on the first screen of the WIRELESS REG-ISTRATION.

PROBLEM SYMPTOMS TABLE

Perform troubleshooting of the circuit for the applicable problem symptom in the order given in the chart below. Proceed to the page located for each circuit.

HINT:

- ★ Troubleshooting of the wireless door lock control system is based on the premise that the door lock control system and theft deterrent system are operating normally. Accordingly, before troubleshooting the wireless door lock control system, first make certain that the door lock control system and theft deterrent system are operating normally.
- ★ If the instruction "Proceed to next circuit inspection shown on matrix chart" is given in the flow chart for each circuit, proceed to the circuit with the next highest number in the table to continue the check.
- ★ If the trouble still reappears even through there are no abnormalities in any of the other circuits, check and replace the Wireless Door Lock ECU as the last step.

Symptom	Suspect Area	See page
All function of wireless door lock control system do no operate.	 ECU Power Source Circuit. Door Courtesy Switch Circuit. Door Key Lock and Unlock Switch Circuit. Key Unlock Warning Switch Circuit. Wireless Door Lock ECU. Body ECU (Main). 	DI-951 DI-1062 DI-1106 DI-1060 IN-36 IN-36
Only door unlock operation is not possible (Lock operation is possible).	 Door Key Lock and Unlock Switch Circuit Door Unlock Detection Switch Circuit Wireless Door Lock ECU. Body ECU (Main). 	DI-1 106 DI-1060 IN-36 IN-36
Only door lock operation is not possible (Unlock operation is possible).	 Door Key Lock and Unlock Switch Circuit Wireless Door Lock ECU Body ECU (Main). 	DI-1 106 IN-36 IN-36
Only transmitter misoperation prevention function is not possible.	 Key Unlock Warning Switch Circuit Wireless Door Lock ECU Body ECU (Main). 	DI-1060 IN-36 IN-36
Wireless door lock function operates even when each door is opened.	 Door Courtesy Switch Circuit Wireless Door Lock ECU Body ECU (Main). 	DI-1062 IN-36 IN-36
Wireless door lock functions incorrectly. (Although one door is unlocked, when the transmitter switch is pressed, all doors unlock.)	 Door Unlock Detection Switch Circuit Wireless Door Lock ECU Body ECU (Main). 	DI-1060 IN-36 IN-36
Wireless door lock operates, but the taillight does not respond.	 Taillight Relay Circuit Taillight Circuit Wireless Door Lock ECU Body ECU (Main). 	DI-1076 DI-1076 IN-36 IN-36

DI0DV-12